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Standfirst Microorganisms and minerals both contribute to organic carbon preservation and 21 

accumulation in soil. The soil microbial carbon pump describes the microbial processes, but a 22 

separate soil mineral carbon pump needs to be acknowledged and investigated.   23 

 24 

[H1] Introduction 25 

Soil impacts climate through the sequestration or release of carbon, which is impacted by soil organic 26 

matter formation1. The role of microbes in soil organic carbon (OC) production and sequestration is 27 

described by the soil microbial carbon pump (MCP) concept2. In this model, new organic compounds 28 

are produced through microbial anabolism, and are subsequently stabilized on mineral surfaces and 29 

within soil structures by the entombing effect. Although mineral-organic carbon associations are 30 

traditionally assumed to be protective, emerging evidence suggests these interactions are complicated 31 

and include numerous abiotic reactions not considered in the MCP. Here, we propose a distinct soil 32 

mineral carbon pump (MnCP) that works in parallel to the MCP.  33 

 34 

[H1] The soil mineral carbon pump  35 

The MnCP describes how soil minerals enhance the persistence and accumulation of OC. Soil 36 

minerals can transform plant or microorganism-derived labile OC into more stable forms through 37 

processes such as adsorption, occlusion, aggregation, redox reactions, and polymerization (Fig. 1). 38 

Adsorption, occlusion and aggregation can reduce the availability of OC by lowering its concentration 39 

in the dissolved pool, forming organo–minerals that are too large to be ingested by microbes and/or 40 

limiting the functioning of hydrolytic enzymes4. Clay minerals (kaolinite, montmorillonite) and metal 41 

(oxyhydr)oxides (iron oxides, birnessite) can drive polymerization, producing more recalcitrant OC 42 

(ref.3). Furthermore, redox reactions at mineral surfaces drive OC oxidation to CO2 and can produce 43 

radicalized OC that can be complexed into larger molecules5. 44 

The MnCP operates in various soil environments, potentially with a key role in OC sequestration 45 

in mineral soils. This pump is sustainable and can operate over long periods: there are abundant clays 46 

and metal (oxyhydr)oxides in soil to associate with labile OC, protecting it from microbial 47 

degradation4. Moreover, fluctuating redox conditions in soil can recycle reactive minerals that 48 

catalyze polymerization6, especially in environments like paddy soils and peatlands.  49 

 50 

[H1] Relationship to the soil MCP 51 

The initial adsorption of OC with minerals is usually followed by reactions that are distinct from 52 

those in the soil MCP; these reactions are included in the soil MnCP, as is mineral-catalyzed abiotic 53 

polymerization. However, the MnCP and MCP are not mutually exclusive. As exemplified by the 54 



entombing effect in the MCP (ref.2), they work synergistically to preserve OC in soil.  For example, 55 

redox reactions on OC-minerals interfaces can be either abiotic or biotic7, and the MnCP and MCP 56 

can be coupled through mineral–microbe interactions during minerals dissolution and electron 57 

transfer. Moreover, the extracellular polymeric substances excreted by microorganisms (as part of the 58 

MCP) can strengthen the aggregation of organic matter and minerals via a gluing effect 8 (part of the 59 

MnCP) in soil.  60 

 61 

[H1] Broader impacts 62 

Minerals can be as important as microorganisms in increasing soil OC persistence and accumulation. 63 

The MnCP highlights this role and provides a framework for research into mineral–OC interactions, at 64 

fine scales and within the broader soil ecosystem. This work is needed to understand the complexity 65 

of soil OC (ref.9), and why some OC persists while other OC does not.  66 

Acknowledging the suite of natural reactions that occur through the MnCP will be especially 67 

helpful in guiding analytical soil research. For example, the ability of minerals to catalyze 68 

polymerization of OC has been mostly found in laboratory settings3, but its occurrence in the soil and 69 

its broader impact on OC structure and persistence are unclear. Polymerization of OC can produce 70 

numerous new and larger molecules that are hard to identify analytically. Therefore, emerging new 71 

techniques (such as FT–ICR–MS, NEXAFS, and Nano–SIMS) should be used and combined to 72 

understand how the MnCP operates under different OC characteristics and mineralogy, and to find 73 

fingerprints of polymerized OC that might be used to identify its production and persistence in soils. 74 

Experimental work to demonstrate that soil mineral-catalyzed polymerization increases OC stability is 75 

also needed.  76 

Interest in enhancing soil carbon sequestration to combat climate change is growing, so it is 77 

increasingly important to understand the mechanisms underlying OC preservation. Fostering and 78 

strengthening the MnCP in soil could be a part of this effort, analogously to enhanced silicate 79 

weathering methods10, providing another potential tool to stabilize carbon in the soil.   80 

 81 
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 111 

Fig. 1: The soil mineral and microbial carbon pumps. a| Minerals enhance the persistence and 112 

accumulation of organic carbon in soils in the soil mineral carbon pump (MnCP). Organic substrates 113 

from plants and microorganisms are stabilized via processes such as adsorption, occlusion, 114 

aggregation, redox reaction, and polymerization. b| The microbial carbon pump (MCP) is on the right 115 

for comparison. Panel b is adapted from ref 2, Springer Nature Ltd. 116 
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