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Introduction

Most behavioral patterns are assembled from sequences of 
actions performed with a specific spatio-temporal organization. 
As action sequences are learned, they tend to become chunked or 
integrated into behavioral units, rendering their performance 
automatic and rigid (Dezfouli and Balleine, 2012; Sakai et al., 
2003; Savalia et al., 2016; Smith and Graybiel, 2016). This is 
associated with a reduction in the cognitive load, thus being able 
to chunk behaviors is a fundamental process in the automatiza-
tion of behavioral patterns, possibly allowing a more efficient 
execution of complex action sequences (Dezfouli et al., 2014; 
Smith and Graybiel, 2016; Veksler et al., 2014).

Several brain regions and electrophysiological patterns have 
been related to action sequencing. An overall picture has emerged 
across several species and tasks, in which the cortex seems to 
function as a master sending sensory, motor, and planning infor-
mation to the striatum (Dhawale et al., 2021; Grillner, 2006; 
Kawai et al., 2015), which itself is one of the main structures for 
the acquisition and performance of action sequences (Geddes 
et al., 2018; Jin and Costa, 2015; Martiros et al. 2018; Nakamura 
et al., 2017; Ölveczky et al., 2005; Penhune et al., 2012; Smith 
and Graybiel, 2013; Yin, 2010). Although much information has 
been gathered about specific roles of striatal subregions (Geddes 
et al., 2018; Yin, 2010; Yin and Knowlton, 2006), firing patterns 
(such as the characteristic striatal bracketing activity; Jin and 
Costa, 2010; Jog et al., 1999; Martiros et al., 2018) and dopa-
mine-dependent plasticity (Jin and Costa, 2015; Nakamura et al., 

2017), less attention has been paid to the role that different stri-
atal neuromodulators could be playing in action sequence 
chunking.

Within the striatum, there exists a complex biochemical cir-
cuit. Substance P (SP) is a neuropeptide abundant in the striatum 
that has been shown to facilitate the response of striatal medium 
spiny neurons (MSNs) to cortical glutamatergic inputs through 
presynaptic NK1 receptors (Blomeley et al., 2009). Interestingly, 
computational modeling studies have suggested that these SP 
connections could be essential for the smooth implementation of 
action sequences (Buxton et al., 2017). Furthermore, several 
studies have found a modulatory effect of SP on striatal dopa-
mine (Brimblecombe and Cragg, 2015; Gauchy et al., 1996; Gygi 
et al., 1993; Kraft et al., 2001; Tremblay et al., 1992), which is 
itself instrumental in motor learning.

At the behavioral level, SP has been linked to learning, mem-
ory, and attention processes (Hasenöhrl et al., 2000; Lénárd et al., 
2017; Porter et al. 2015). Using NK1 receptor knock-outs and 
NK1 receptor antagonists, it has been found that mice with 
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impaired NK1 receptors display a greater percentage of omissions 
(i.e., they fail to respond), perseverative responses, premature 
responses, and they take longer times to retrieve the reward in the 
five-choice serial reaction time task (Yan et al., 2010; Weir et al., 
2014; Porter et al., 2015; Porter et al., 2016). Although these 
results clearly suggest that impairment of NK1 receptors leads to 
disrupted action selection in an unordered serial task, few studies 
have focused on the role of SP in ordered action sequences that 
need to be integrated as a unit. Nevertheless, it has been reported 
that NK1 receptor antagonism leads to the inhibition of stereo-
typical behaviors (Duffy et al., 2002) and to disruptions inside the 
highly fixed and ordered grooming chain displayed by rats (Favila 
et al., 2021). Therefore, we hypothesized that SP could play a 
significant role in the changes in cortico-striatal synapses and 
dopamine that have been proposed as fundamental for learning 
and performing action sequences (Jin and Costa, 2015; Nakamura 
et al., 2017).

The aim of the present study was to investigate the effects of 
an NK1 receptor (primarily targeted by SP; Rupniak and Kramer, 
2002) antagonist on learning and performing action sequences. 
To do so, in a first empirical experiment, we determined the 
effect of an NK1 receptor antagonist in a sequential reversal 
learning task (i.e., when rats had to reverse a sequence they had 
learned). In a second experiment, we determined the effects of an 
NK1 receptor antagonist when rats continued to performed a 
well-learned action sequence after achieving stable performance. 
Then, we developed a reinforcement learning model reproducing 
sequence learning under control conditions (i.e., without an NK1 
receptor antagonist present), which gave us an in silico replica-
tion of our experimental tasks and allowed us to test hypotheses 
about the role of SP in the reinforcement learning algorithm. Our 
results suggest that SP could play a role in the maintenance of a 
sequence representation through a modulatory effect on the 
dopaminergic reward prediction error.

Materials and methods

Subjects

Twenty-one female Lister Hooded rats (200–300 g) purchased 
from Charles River (Kent, UK) were used. They were housed 
two or three per cage and kept on a 12-h light/dark cycle with free 
access to water at all times. Their weights were maintained at 
around 90% of their free-feeding weight by feeding them approx-
imately 1 h every day after each experimental session. During the 
weekend, rats were allowed to free feed. All procedures were per-
formed under the Scientific (Animal Procedures) Act 1986, as 
updated in 2010; Directive 2010/63/EU, and in accordance with 
the ethical guidelines of The University of Sheffield.

Apparatus

All behavioral training and testing were carried out in Skinner-
type operant chambers. Each chamber had two retractable levers 
on the frontal panel, one on the left (L) and one on the right (R). 
Above each lever there was a light that could be turned on and 
off. A food magazine was located between the two levers and had 
an infrared photobeam to register head entries. A 45 mg grain 
pellet (MLab Rodent Tablet 5TUM, TestDiet, Sawbridgeworth, 
UK) was used as a reinforcer and Arduino Microprocessors 
equipped with SD cards were used to control the operant 

chambers and to record levers presses and head entries. Each 
chamber had a ventilation fan, and an external white noise gen-
erator was used to mask extraneous sounds during all sessions.

Experimental design

Two experiments were performed to test the effects of an NK1 
receptor antagonist on reversal learning and performance of 
action sequences. In the first experiment, rats (n = 11) were 
trained to perform a heterogeneous sequence of two lever presses, 
either left-right (LR) or right-left (RL), for at least 25 sessions 
and until they displayed stable performance for five consecutive 
sessions. In a second phase, the reinforced sequence was 
switched, either from LRRL or from RLLR. On the first 
3 days of this second phase, half of the rats (n = 6) were injected 
via an intraperitoneal route with saline, and half (n = 5) with the 
NK1 receptor antagonist L-733,060 (Tocris Bioscience, 
Abingdon, UK) at a dose of 2 mg/ml/kg. The waiting time 
between the injection and the experiment was 20 min. Both the 
dose and the waiting time were selected based on a previous 
study in which we found effects on innate sequential patterns 
with such dose and waiting time (Favila et al., 2021). The time 
the rats spent in the operant box after the injection depended on 
how long they took to obtain 50 reinforcers, with a maximum of 
30 min. The second phase lasted 20 sessions in total, and on the 
last session a devaluation test was performed.

The second experiment was designed to test the effect of an 
NK1 receptor antagonist on the stable performance of a crystal-
lized action sequence. In the first phase, rats (n = 10) were 
trained to perform a heterogeneous sequence of two lever 
presses, either LR or RL, for at least 25 sessions and until they 
reached stable performance for five consecutive sessions. In 
the second phase, the same action sequence continued to be 
rewarded, but on the first 3 days, half of the rats were injected 
via an intraperitoneal route with saline (n = 5) and half with 
L-733,060 (n = 5) at a dose of 2 mg/ml/kg. The second phase 
lasted 11 sessions, and a devaluation test was performed on the 
last session. A summary of the experimental designs of both 
experiments is shown in Table 1.

To control for any effects due to differences in the operant 
chambers or levers, rats were pseudo-randomly allocated to the 
operant chamber used (box 1 or 2), the reinforced sequence (LR 
or RL), and the experimental group (saline or L-733,060). 
Allocation to box and sequence were restricted such that each 
experimental group had rats distributed between the two operant 
chambers and the two possible sequences.

Task and behavioral analysis

Behavioral training took place from Monday to Friday, with one 
session per day at approximately the same time every day. A free-
operant approach was used, in which the length of the trials was 
not set a priori; thus rats could make different numbers of 
responses until the correct sequence of two responses was exe-
cuted and the reinforcer was delivered. Training consisted of the 
following phases:

Magazine training. Rats were given two sessions of magazine 
training to allow them to learn where the pellets were delivered. 
Each session lasted until 20 reinforcers were randomly given or 
20 min had elapsed without the need of any response.
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Single lever training. Rats were initially trained to press each 
lever separately. To do so, every time the lever was pressed, the 
light above it was turned on and a reinforcer was delivered. Rats 
were kept in this phase until they had obtained 50 reinforcers in a 
single session with each lever. Which lever was trained first was 
randomized. This was the only phase of training in which exter-
nal stimuli were used to guide behavior.

Switching training. Rats were reinforced for switching between 
the left and right levers with no specific order. Both LR and RL 
sequences were reinforced until rats had obtained 50 reinforcers 
per session in three sessions.

Sequence training. Finally, rats were trained to perform a sin-
gle heterogeneous two-action sequence, either LR or RL, which 
sequence was reinforced was randomly assigned to each rat. 
When the correct sequence was performed it was followed imme-
diately by the delivery of the reinforcer. A trial ended after the 
collection of the reinforcer, thus responses made before the col-
lection of the reward were considered part of the trial (as shown 
in some trials in Figure 2(f)). All training sessions lasted until 50 
reinforcers were delivered or 30 min had elapsed, whichever hap-
pened first. In the first five sessions of sequence training, rats 
were allowed to check the magazine between lever presses, but 
for the rest of the sessions, rats had to perform the correct 
sequence uninterruptedly without checking the magazine in the 
middle of the sequence. Training lasted for at least 25 sessions, 
and until the following performance criteria were met for five 
consecutive sessions:

1. The proportion of perfect trials was above 0.40. A trial 
was considered to be perfect if only one left and one 
right lever press were performed in the correct order.

2. The average number of lever presses per trial was 
between 2 and 3. Our target sequences were of two 
actions, thus we wanted to give little room for error.

3. The time between the responses of the reinforced action 
sequence was below 2 s, to ensure that rats were not 
doing other behaviors in between lever presses.

4. We used the ratio between the distal and proximal 
responses (DPratio) to capture preference for one of the 
levers. The responses of an action sequence can be clas-
sified with reference to how close in time they are from 
the reinforcer delivery. For example, in the sequence 

left-right, the left lever press would be the first response, 
and thus distal with respect to the reinforcer delivery, 
and the right lever press would be the second response 
and thus proximal to the reinforcer delivery. Thus, the 
ratio was calculated as:

 DPratio= 
Distal lever presses

Proximal lever presses

A ratio <1 indicates a preference for the temporally close 
response to the reinforcer, whereas a ratio >1 indicates a prefer-
ence for the temporally distal response. Our criterion was that the 
ratio had to be 1 ± 0.25 to make sure that rats were not clearly 
favoring one of the levers.

Outcome devaluation test. At the end of the experiments, we 
performed an outcome devaluation test in which rats were free-
fed for 1 h before being placed in the operant chamber for a 5 min 
extinction test, in which both levers were available but unrespon-
sive and no reinforcers were delivered. Devaluation tests were 
performed with no feedback of any type so that rats’ performance 
relied solely on what was learned during training. The hypothesis 
was that if the rats had chunked the sequence, both levers would 
be equally affected by the devaluation as they would be inte-
grated as a unit; on the other hand, if the rats had not chunked the 
two actions as a unit, the proximal lever would be more sensitive 
to the devaluation treatment because it is closer in time to the 
reinforcer, and thus, its press rate should be more depressed 
(Ostlund et al., 2009).

Statistical analysis

We performed two-factor mixed analyses of variance (ANOVAs) 
to analyze how the between variable Treatment (saline vs 
L-733,060) and the within variable Session (1, 2, 3, . . .) affected 
the following performance metrics: proportion of perfect trials, 
inter-response times, actions or presses per trial, presses per min-
ute, and distal/proximal ratio. Given that rats could spend a vari-
able number of sessions in the first phase depending on how fast 
they reached our criteria, and we were mainly interested in the 
rats reaching a similar stable performance, for the statistical anal-
ysis we only considered the first five and last five sessions of the 
first (pre-drug) phase of both experiments.

For the second phase of the first experiment, we observed that 
from session 1 to 8, learning occurred quickly; whereas, from 

Table 1. Experimental design.

Phase 1: Training Phase 2: Testing Devaluation test

Experiment 1

Reversal learning

Sequence training

approx. 30 sessions

(n = 11)

Switch to a new sequence

19 sessions

20th session

Saline

(n = 6)

L-733,060

(n = 5)

Experiment 2

Performance

Sequence training

approx. 30 sessions

(n = 10)

Stay with the same sequence

10 sessions

11th session

Saline

(n = 5)

L-733,060

(n = 5)

Two experiments were performed to test the effects of the NK1 receptor antagonist L-733,060 on reversal learning of an action sequence (experiment 1) and on perfor-

mance of a well-learned sequence (experiment 2).
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session 9 onwards the changes in performance were much slower. 
Thus, we divided our analysis of the second phase into early (ses-
sions 1–8) and late (sessions 9–19) learning as has been done 
previously (Nakamura et al., 2017). Furthermore, we performed 
one-way ANOVAs to compare the number of sessions rats spent 
learning the first action sequence, to ensure there were no sys-
tematic baseline learning differences between our control and 
experimental groups. Whenever an interaction was found signifi-
cant, post hoc pairwise t-tests with Bonferroni corrections were 
performed. For all tests performed p < 0.05 (two tailed) was con-
sidered significant. Effect sizes were calculated using Cohen’s d. 
Results are presented as mean ± standard error of the mean. All 
statistical analyses were performed using software R studio 
(https://www.rstudio.com/).

Reinforcement learning model

Model description

We developed a reinforcement learning model to test biologically 
constrained hypotheses about the role of SP in reinforcement-
based sequence learning. We used temporal difference learning 

with an actor-critic paradigm as an overarching architecture (Joel 
et al., 2002; Sutton and Barto, 1998). A summary of our model is 
presented in Figure 1(a).

Learning. Reinforcement learning agents learn to estimate the 
value of actions and states through trial and error in order to max-
imize reward (Sutton and Barto, 1998). Thus, let V st

 ( )  be the 

estimated value of state st  at time t; V st


+( )1 the estimated value 
obtained in the next state st+1  reached after taking action ai  at 
time t; r  the reinforcer procured after taking action ai , and γ the 
discount factor, accounting for the fact that future states are tem-
porally distant and thus less valued. Then, the reward prediction 
error (RPE), δt , is calculated as follows:

δt t tr V s V s= + ( )−+γ 
1 ( )

This term is coding the difference between the expected value, 
V st
 ( ),  and the discounted value of the state reached, γV st


+( )1 ,  

plus the reward obtained, r . Thus, informally, δt  tells the agent 
whether there was an improvement or not after taking action ai  
in state st .

Let α <1  be a learning rate for updating state values, and 
β <1  the learning rate for updating a set of action preferences, 

Figure 1. Model-free reinforcement learning algorithm for a two-action sequence task. (a) Summary of the model used with an actor critic paradigm 

as overarching architecture. The critic is in charge of updating the value of the states and calculating the reward prediction error, while the actor 

is in charge of updating action preferences and selecting actions based on a softmax selection policy (see main text for symbol definitions). 

(b) Division of the state space of the model into biologically significant states to learn a two-action sequence. (c) Simulations performed to 

replicate the two empirical experiments. In the first simulation agents were trained to perform the action sequence LR for 30 sessions until stable 

performance was achieved; in a second phase they were switched to do the reverse sequence RL. In the second simulation, agents were trained to 

perform the sequence LR until stable performance was achieved, and in the second phase they continued to perform the same sequence. In both 

simulations, different parameters were modified during the first 100 trials of the second phase to try to simulate the effects of the substance P 

antagonist injected in the experiments.
LR: left-right; RL: right-left.
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z a si t,( ) , which are used to choose between actions according to 
the policy defined below. The RPE is used to update the esti-
mated value of the states and action preferences in the following 
way:

V s V st t t
 ( ) = ( )+ αδ

z a s z a si t i t t, ,( ) = ( )+βδ

Thus, if the agent ended up obtaining a reward or in a better state 
than it was expecting, δt  will be positive and the estimated value 
of the state and action previously taken will increase proportion-
ally to α  and β .

Choice. Action selection was performed via a policy of soft-
max selection using the action preferences. In this policy, the 
probability of an action is given by:

π a s
e

e
i t

z a s

z a s

i t

i t

,
( , )

( , )
( ) =

∑

such that actions with higher values are more likely to be selected, 
but not in a deterministic way, so there is still a small probability 
that other actions will be picked, promoting exploration.

Credit assignment. To capture the credit assignment problem, 
in which rats initially assign credit to the proximal response per-
formed right before the delivery of the reward rather than to the 
whole action sequence, we added eligibility traces to the action 
preferences (Sutton and Barto, 1998). Eligibility traces account 
for the fact that temporally distant actions from the reinforcer are 
less affected by the RPE than those closer to it.

To implement them, we added a memory variable, e a si t( , ) , 
associated with each action-state pair. Let λ  be a decay param-
eter, controlling how much previous actions are affected by the 
current RPE, and γ  the discount factor previously mentioned. 
Then, at each time step, if an action is performed, its eligibility 
trace increased to 1 and the eligibility trace of the other action 
decayed by a factor of γλ . That is:

e a s
e a s if a wasnot perfomed

if a was perfomed
i t

i t i

i

,
,( ) = ( )






γλ

1

If λ =1 , all previously performed actions are remembered per-
fectly and all are given credit for the reward. If λ = 0,  then only 
the most recently performed action is given credit, and it is the 
only one affected by the RPE.

The addition of the memory variable e a si t( , )  makes the 
update of the action preferences in the following way:

 z a s z a s e a si t i t t i t, , ( , )( ) = ( )+αδ

Thus, eligibility traces modulate which actions performed are eli-
gible to undergo learning changes produced by RPE δt .

Model space

Previous work has divided the state space of reinforcement learn-
ing models into a large number of equal time slots and states, to 
capture some of the continuity of time and space, for example, 
Schultz et al. (1997) divided their trials into 60 time-states. To 
capture the nature of the tasks of our learning experiments, we 
decided to perform the division of the states into what seemed 

biologically significant, according to the task our subjects per-
formed when learning an action sequence (Figure 1(b)).

Thus, the simulations’ states were divided into (1) a pre-
sequence state (S0), (2) a state for performing the first action 
(Sa1), (3) a state for performing the second action (Sa2), (4) an 
evaluative state (Se), and (5) a reward state (Sr), as shown in 
Figure 1(b). Given that different actions can take the agent to dif-
ferent states, there were two separate evaluative and reward 
states, depending on the actions performed in the two previous 
states. If the correct action sequence had been performed in Sa1 
and Sa2, then the agent moved toward an evaluative and reward 
state associated with a positive reward of one. If the agent 
selected any other combinations of two responses that was incor-
rect, it ended up in a no-reward state, and a small penalty of 
−0.05 was given, representing energy costs of performing incor-
rect actions. The logic behind this division was that the reinforce-
ment program used in the real experiments was continuously 
evaluating the last two responses the rat had performed, and, if 
the correct sequence had been executed, it delivered a food pellet. 
On the other hand, if the last two responses were not the rein-
forced sequence, no-reward was given. Although it might take a 
while for the rats to actually get to this representation of the envi-
ronment, it was not the main purpose of this study to formalize 
the development of the representation of the states per se.

Parameter optimization

To select the parameters of the model, we optimized the model 
against the behavioral data of rats learning a sequence without 
the NK1 receptor antagonist injection, that is, using the learning 
data from the first pre-drug phase. Then, we used this model to 
test hypotheses about the step in the reinforcement learning 
model at which SP could be acting by modifying the model 
parameters and analyzing whether we could replicate the results 
when the NK1 receptor antagonist was injected. To do this, the 
initial values of the parameters of the model were picked based 
on minimizing the distance between the sequence learning data 
obtained from 21 rats and the data obtained from simulated 
agents learning a two-action sequence.

Given that in the experiments rats needed a variable number 
of sessions until displaying stable performance, to tune the 
parameters of the model we used 25 sessions of the rats’ data, 
consisting of their first 20 sessions and the last five sessions of 
training of each rat. For the simulated agents, we sampled the 
parameter space for the learning rates (α and β), the discount fac-
tor (γ), and the eligibility trace parameter (λ), in a range from 0 to 
1 in steps of 0.1. Two performance measurements were calcu-
lated for each combination of parameters: proportion of perfect 
trials and distal/proximal ratio. The final parameter values were 
selected based on the minimum mean square error obtained from 
the difference between the rats’ learning data and the simulated 
agents’ data.

We ended up picking the parameters that minimized the dif-
ference between the real and simulated distal/proximal ratio 
measurement, given that this provided on average the smallest 
mean square error for both performance measurements and, 
although it gave a slightly higher error for the proportion of per-
fect trials, the shapes of the learning curves were similar. The 
final parameter values of the model are displayed in Table 2. 
Finally, the model of all simulated agents was initialized such 
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that all state values and eligibility traces were set to zero and the 
action preferences were set to 5 to make sure that they were not 
biased toward any of the actions at the beginning of training.

Replicating the experimental structure in 
simulations

We ran two groups of simulations to reproduce the structure of 
the experiments performed. Figure 1(c) shows an illustration 
of the structure of the simulations. In the first simulation, rep-
licating our first learning experiment, simulated agents were 
trained to perform a two-action sequence for 30 sessions, and 
then, in a second phase, the learning contingency was reversed, 
such that the agents had to reverse the order of the actions to 
obtain the reward for another 30 sessions. In the second simu-
lation, replicating our second experiment, simulated agents 
were trained to perform a two-action sequence for 30 sessions, 
and then, in the second phase they were kept performing the 
same sequence for another 20 sessions. During the first 100 
trials of the second phase of both simulations, different param-
eters of the model were modified to try to simulate the effects 
produced by the NK1 receptor antagonist injection on the 
experimental animals’ performance. All sessions in both simu-
lations lasted until 50 rewards were obtained, just as in the real 
experiment.

Code availability. The code for the reinforcement learning 
model is in Matlab and is freely available at https://github.com/
NataliaFavila/RL_model_action_sequences.git.

Data availability. The behavioral datasets generated and ana-
lyzed during the current study are available from the correspond-
ing authors upon request.

Results

NK1 receptor antagonist enhances 
performance in learning a new sequence

We began by checking that rats actually learned the trained 
sequence and that there were no significant differences between 
saline and L-733,060 animals in learning the first (pre-drug) 
sequence. A 2 × 10 mixed ANOVA performed on the first phase 
showed that there was a significant Session effect in all per-
formance measurements, with a significant increase in the pro-
portion of perfect trials (F(9,81) = 57.77; p = 2e-13; Figure 2(a)), 
a decrease in the mean number of actions performed per trial, 

approaching two actions (F(9,81) = 33.21; p = 2e-16, Figure 2(b)), 
a shift toward 1 in the distal/proximal ratio (F(9,81) = 46.11; 
p = 2.8e-09, Figure 2(c)), and a significant reduction in the mean 
time between responses of the reinforced sequence, reaching an 
average of 1 s (F(9,81) = 8.89; p = 8.6e-09; Figure 2(d)). However, 
there were no significant main effects of Treatment or 
Treatment × Session interactions in any of the performance 
measurements, nor a significant Treatment effect (F(1,9) = 0.26; 
p = 0.62; Figure 2(e)) in the number sessions needed to reach the 
performance criteria between the two groups, confirming that 
there were no differences in how both groups learned the first 
(pre-drug) action sequence.

Furthermore, our training regime led animals to perform the 
learned action sequences in a very precise pattern. Figure 2(f) 
shows an example of the behavior of a rat in the first and last ses-
sion of training of the first phase (pre-drug). Each dot is a behav-
ioral response either to the left (red) or right (black) lever, and 
each row represents one trial. Time zero is the moment when the 
rat put its head in the magazine to collect the reinforcer. In the 
first session (left panel Figure 2(f)) this rat performed many more 
responses than the two needed to obtain the reward. While in the 
last session (right panel Figure 2(f)), with the odd exception, the 
rat had crystallized its performance into a very stable spatio-tem-
poral sequence, suggesting that our training program led to 
highly accurate performance.

Once the first sequence had been learned, rats were moved on 
to the second phase, in which to obtain the reward they now had 
to perform the reverse sequence, and during the first three ses-
sions of this second phase they were injected with either L-733,060 
or saline. Figure 3 shows the results from the first 10 days and the 
last session of this second phase. A 2 × 8 mixed ANOVA showed 
a significant main Treatment effect (F(1,9) = 9.46; p = 0.013), 
Session effect (F(7,63) = 13.21; p = 2.4e-10) and a marginally sig-
nificant Treatment × Session interaction (F(7,63) = 2.15; p = 0.05) 
on the proportion of perfect trials (Figure 3(a)), suggesting a bet-
ter performance for the rats injected with L-733,060. Post hoc 
t-tests indicated that the rats injected with L-733,060 actually 
learned the new sequence faster than saline rats, with significant 
differences in session 3 (t(9) = −2.50, p = 0.03, d = 1.51), session 4 
(t(9) = −2.85, p = 0.01, d = 1.73), session 6 (t(9) = 3.06, p = 0.01, 
d = 1.85), and session 7 (t(9) = −2.27, p = 0.04, d = 1.37).

This faster increase in the proportion of perfect sequences 
when L-733,060 was injected was accompanied by a better per-
formance in other performance measurements as well. There was 
a significant Treatment × Session interaction in the mean actions 
per trial (F(7,63) = 4.59; p = 0.0003, Figure 3(b)) and in the distal/
proximal ratio (F(7,63) = 2.43; p = 0.03, Figure 3(c)). However, 
we did not find a significant differences in the time between 
responses (F(7,63) = 0.31; p = 0.59, Figure 3(d)) or in the total 
time rats took to complete each session (F(7,63) = 2.0; p = 0.07, 
Figure S1). Thus, the rats injected with L-733,060 learned the 
reverse sequence faster than control rats, but without effects on 
the speed at which they performed the responses or on how 
much time overall they spent on the task. The effect of 
L-733,060 seems to fade after session 8, since there were no 
significant Treatment or Treatment × Session interactions in the 
last 11 sessions in any of the behavioral metrics. The last data 
point of all plots of Figure 3, belonging to the last session of the 
second phase, shows that eventually both groups reached simi-
lar performance.

Table 2. Parameter values of the reinforcement learning algorithm.

Parameter Value

α 0.1

β 0.1

γ 0.9

λ 0.1

α: state learning rate; β: action learning rate; γ: discount factor; λ: eligibility 

trace decay.
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We then further analyzed whether the NK1 receptor antago-
nist differentially affected the extinction of the first sequence 
learned versus the learning of the new reverse sequence. A 2 × 8 
mixed ANOVA showed a significant Session effect (F(7,63) = 4.53; 
p = 0.0004) and Treatment × Session interaction (F(7,63) = 2.35; 
p = 0.03) on the rate at which rats extinguished the first learned 
sequence (Figure 3(e)). Post hoc pairwise t-test revealed signifi-
cant differences in session 5 (t(9) = 2.44, p = 0.04, d = 1.47), and 
marginally significant differences on sessions 4 (t(9) = 2.91, 
p = 0.05, d = 1.32) and 7 (t(9) = 1.96, p = 0.08, d = 1.19), suggest-
ing that rats injected with L-733,060 stopped performing the pre-
vious sequence faster. On the other hand, the rate at which the 
new sequence was performed consistently increased, with a sig-
nificant Session effect (F(7,63) = 11.47; p = 2.7e-09, Figure 3(f)); 
but with no significant Treatment effect (F(1,9) = 0.05; p = 0.83) 
or Treatment × Session interaction (F(7,63) = 1.45; p = 0.20), 
indicating that the effect of L-733,060 seems to be limited to 
extinguishing the first learned sequence.

A devaluation test was performed to assess whether rats from 
each group had similar representations of the second learned 
sequence at the end of the experiment. Figure 4(a) shows for the 
distal and proximal actions the change in press rate from the last 
session of training to the extinction session for the saline and 
L-733,060 rats. Both groups displayed a similarly decreased 
press rate in both levers during extinction with no significant 

Treatment (F(1,9) = 0.21; p = 0.65) or Lever effect (F(1,9) = 0.12; 
p = 0.73), suggesting that both groups performed similarly in the 
devaluation test. Overall, the devaluation test results suggest that 
the effects of the NK1 receptor antagonist were limited to the 
moment in which the contingencies were switched and to the 
extinction of the first learned sequence.

NK1 receptor antagonist does not affect 
performance of well-learned action sequences

The second experiment was performed to test the effect of an 
NK1 receptor antagonist on the stable performance of a well-
learned sequence. We first trained two groups of rats to perform 
a two-action sequence until they had stabilized their performance 
according to our criteria. There was no significant difference in 
the number of sessions needed to learn this first (pre-drug) 
sequence (F(1,8) = 0.02, p = 0.87), with both groups of rats 
reaching stable performance in 29 sessions in average. 
Furthermore, we found a significant Session effect on the pro-
portion of perfect trials (F(9,72) = 50.21, p = 1.2e-11, Figure 
5(a), left panel), the actions performed per trial (F(9,72) = 32.71, 
p = 2.7e-14, Figure 5(b) left panel), the distal/proximal ratio 
(F(9,72) = 34.60, p = 4.8e-08, Figure 5(c) left panel), and on the 
inter-response times (F(9,72) = 17.13, p = 1.8e-07, Figure 5(d) 

Figure 2. First phase (pre-drug) action sequence learning. Average performance of the control group (black line) and the L-733,060 group (green 

line) in the first (pre-drug) phase. All plots depict the first five and last five sessions of the first phase of the following performance metrics: (a) 

Proportion of perfect trials. (b) Mean number of actions performed per trial. (c) Distal/proximal ratio. (d) Mean inter-response times between the 

actions of the reinforced sequence. (e), Number of sessions needed to learn the first action sequence. (f) Trial by trial example of a rat learning to 

perform the sequence Left-Right in the first (left panel) and last (right panel) session of training. Behavior was aligned to the moment in which the 

rat collected the reward (blue line). Data are shown as mean ± standard error of the mean.
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left panel), suggesting that as sessions progressed rats were able 
to correctly learn to perform the reinforced sequence. However, 
no significant Treatment or Treatment × Session interaction 
effects were found in any of the performance measures during the 
first phase, indicating that all rats from the control and the 
L-733,060 group learned the (pre-drug) sequence in a similar 
fashion.

Once rats had learned the action sequence, they were moved 
to the second phase, in which the same sequence was reinforced, 
but rats were injected with either saline or the L-733,060 (2 mg/
kg) for three consecutive days. Results for this second phase are 
shown on the right panels of Figure 5(a), (b), (c) and (d). No 
significant Session, Treatment, or Treatment × Session interac-
tion effects were found in the proportion of perfect trials 
(F(9,72) = 1.75, p = 0.09, n. s.), actions per trial (F(9,72) = 1.32, 
p = 0.24, n. s.), distal/proximal ratio (F(9,72) = 0.61, p = 0.78, n. 
s.), or inter-response times (F(9,72) = 1.18, p = 0.31, n. s.). There 
was also no effect on the rate at which the reinforced sequence 
was performed (F(9,72) = 1.33, p = 0.23, n. s.), or in the other pos-
sible sequence (F(9,72) = 0.53, p = 0.84, n. s.), indicating that 
injecting L-733,060 had no effect on the stable performance of 
the learned action sequence.

At the end of the second phase, we performed a devaluation 
test. There was no significant Treatment effect (F(1,8) = 0.04, 
p = 0.85) or Lever effects (F(1,8) = 2.66, p = 0.14, Figure 4(b)) on 
the change in press rate, suggesting that by the end of the 

experiment both groups had similar representations of the learned 
sequence. Furthermore, in contrast to the first experiment, the 
changes in press rate were closer to zero for both levers, indicat-
ing that in the second experiment rats kept pressing both levers 
under extinction conditions at a similar rate as in the last session 
of training, even though no reinforcers were given. In this second 
experiment rats were trained in the same sequence for a longer 
time, thus, it makes sense that their press rates were less sensitive 
to the devaluation of the reinforcer.

Computational modeling: Validating the 
model

We first validated that our reinforcement learning agents learned 
a two-action sequence in a similar way to the experimental rats. 
Just as in the experiments described earlier, our simulated agents 
were only reinforced when the correct actions were performed in 
the correct order in session that lasted until 50 reinforcers were 
obtained. Figure 6 shows the mean proportion of perfect trials 
(Figure 6(a)), mean distal/proximal ratio (Figure 6(b)), and the 
mean actions per trial (Figure 6(a)) for 21 rats in the top panels 
and for 100 simulated agents in the bottom panel. Figure 6(a) 
shows that similarly to rats (top plot), the simulated agents (bot-
tom plot) gradually increased the proportion of perfect trials, 
until reaching stable performance. Furthermore, in Figure 6(b), 

Figure 3. Effects of L-733,060 on learning a new sequence. Average performance of the saline and L-733,060 groups on the second phase of 

experiment 1, when the reverse sequence had to be learned. The performance metrics analyzed were (a) proportion of perfect trials; (b) mean 

actions per trial; (c) distal/proximal ratio; (d) inter-response times between the actions of the reinforced sequence; (e) press rate (sequences per 

min) at which rats stopped performing the first learned action sequence; (f) press rate at which rats performed the new reinforced sequence. Only 

the first eight sessions and the last session of the second phase are displayed. Data are shown as mean ± standard error of the mean. Black arrows 

indicate the sessions in which L-733,060 was administered.
*p < 0.05, •p < 0.10.
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bottom plot, we show that simulated agents displayed a strong 
credit assignment error, shown at the beginning of training by a 
distal/proximal ratio below one, which indicates a preference for 
the proximal action. However, as sessions progressed, agents 
were able to perform both actions at a similar level, indicated by 
a distal/proximal ratio that gradually approached a value of one. 
Furthermore, in a similar way to rats, our simulated agents 
gradually decreased the mean number of actions until approach-
ing two actions, which was the length of the target sequence 
(Figure 6(c)). Finally, it is worth noting that the model was 
trained in approximately the same number of sessions as the rats, 
with rats needing between 25 and 45 sessions to achieve our per-
formance criteria, and the model around 25 sessions to reach sta-
ble performance.

In summary, as learning occurred, both simulated and experi-
mental data showed a gradual increase in proportion of perfect 
trials, a refinement in the number of actions performed to obtain 
the reward, and a credit assignment problem that gradually dis-
sipated as learning was crystallized, suggesting that our rein-
forcement learning model was able to replicate, in general terms, 
the basic behavioral phenomena observed when rats learn a two-
action sequence. However, it is worth noting that although we 
look for a combination of parameters that led to the smallest root 
mean square error in the performance measurements, the rein-
forcement learning agents did eventually get to a better perfor-
mance level than the experimental rats, performing almost all 
trials perfectly. Such small discrepancies are to be expected since 
it is not possible to capture every variable acting on the perfor-
mance of the rats. Nevertheless, the shape of the three perfor-
mance measurements used here display the same basic trends of 
action sequence acquisition.

SP modulation of the reward prediction error 
through the state learning rate

We then used the developed model to test hypotheses about SP’s 
role in sequence learning. It is well known that dopamine is a 

very important neurotransmitter for learning new behaviors, and 
Brimblecombe and Cragg (2015) have reported that SP modu-
lates dopamine release in the striatum’s striosomes but not on the 
matrix. Interestingly, given their input-output structure, striatal 
striosomes have been suggested to encode state values (Amemori 
et al., 2011; Doya, 2002). Thus, we hypothesized that the injec-
tion of the NK1 receptor antagonist in our experiments might 
have downregulated the learning rate of the state values, α, which 
modulates the effect of the RPE, believed to be encoded by dopa-
mine (Schultz et al., 1997).

To simulate the learning experiment, we first trained two 
groups of 100 agents to perform a two-action sequence (LR). 
This first sequence was learned similarly in both groups of agents 
(Fig. S2, Supp Mat). Then, in a second phase we flipped the rein-
forced sequence, from LRRL, and during the first 100 trials of 
the second phase we decreased parameter α from 0.1 to 0.03 for 
one of the groups of simulated agents, we called this the α model, 
while the model with no parameter modification is called the 
control model. Figure 7 shows the results of this manipulation on 
the second phase of the learning simulation, that is, when agents 
had to forget the first learned sequence and learn a new one. This 
simple manipulation was able to replicate the trends of our first 
experiment (see Figure 3(a), (b) and (c)). Similar to our rats 
injected with an NK1 receptor antagonist, our simulated agents 
with decreased α learned the reverse sequence faster, with a 
faster increase in the proportion of perfect trials (Figure 7(a)), a 
faster dissipation of the credit assignment problem (Figure 7(b)) 
and a faster approach to the target length of the sequence (Figure 
7(c)). Interestingly, just as with the rats (Figure 3(e)), the agents 
with a reduced α extinguished the first learned sequence faster 
than the control agents (Figure 7(d)).

To understand why the simulations learned the new sequence 
faster, we plotted the action preferences when the distal and prox-
imal actions were performed to see how they changed through 
both phases of the simulation (Figure 7(e) and (f)). We can see 
that all agents learn to increase their preference for the correct 
distal and proximal action in the first phase. This led to very high 

Figure 4. Devaluation tests. Change in presses per minute between the last session of training and the extinction test for the distal (white) and 

proximal (black) lever during the 5 min extinction test. (a) Results from the learning experiment. (b) Results from the performance experiment. Data 

are displayed as mean ± standard error of the mean.
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Figure 5. Effects of L-733,060 on sequence stable performance. The first phase (first and last five sessions) is shown on the left panel and the 

complete second phase on the right panel. L-733,060 was injected in the first three sessions of the second phase. Performance metrics analyzed 

were (a) proportion of perfect trials; (b) mean actions per trial; (c) distal/proximal ratio; (d) inter-response times between the actions of the 

reinforced sequence. Data are shown as mean ± standard error of the mean. Black arrows indicate the sessions in which L-733,060 was administered.
*p < 0.05. •p < 0.10.
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probabilities of doing left action (blue line) in the distal position 
(Figure 7(e)) and the right action (magenta line) in the proximal 
position in phase 1 (Figure 7(f)), following a similar learning 
curve as the proportion of perfect trials (Figure 7(a)). In the sec-
ond phase, that is when agents had to reverse the learned action 
preferences in order to obtain the reward, we can see that while 
the control model (solid lines) showed a gradual flip of the action 
preferences, the downregulation of α produced a faster decay of 
the previously learned action preferences (dashed lines) at the 
beginning of the second phase. This is particularly visible in the 
distal position (Figure 7(e) and (f), signaled by an arrow). This 
decay made the preferences of both actions more similar to each 
other at the beginning of the second phase, which had the effect 
of “resetting” the agent’s previously learned values, such that the 
agents were able to unlearn the previously crystallized action 
preferences faster, and thus acquired the reverse pattern faster 
than the control group.

In this simulation, the contingencies were suddenly changed 
in the second phase, such that the sequence being performed so 
far no longer delivered a reinforcer. At this point, the agents, both 
in the model and in the real experiments, were expecting to end 
up in a high value state after performing the sequence learned, 
but given the change in contingencies, they were actually obtain-
ing nothing, which should produce a negative RPE. This negative 
RPE was being used to change the learned values of both states 
and actions so that eventually the RPE was positive again. 
However, in the α model, because the state value learning rate 

was decreased, states were not being updated as fast, causing the 
agents to continue to expect a high state value for longer, and thus 
producing a more negative RPE than in the agents that did not 
have their state learning rate parameter reduced. Figure 8 shows 
the RPEs for the distal and proximal actions at each trial for the 
control simulations, that is, without modifications to α, in the top 
plots (black lines), and for the α model in the bottom plots (green 
lines) for both phases. At the beginning of the second phase (right 
after the dotted line), both control and manipulated agents had 
negative RPE, caused by the change in the contingencies; how-
ever, for the simulations with a smaller α, the RPE was indeed 
more negative in the first trials than in the control simulations 
(Figure 8(a) and (b)), which allowed then a larger positive RPE 
as shown in the inset of Figure 8(b) which shows a zoom in on 
the trials around the transition from phase 1 to phase 2. Since the 
RPE is used to update both state and action preferences, this more 
negative RPE was what ended up producing the larger decay in 
the action preferences, allowing a faster extinction process of the 
first learned sequence.

With this finding, we moved on to test whether this same 
manipulation, decreasing α, would reproduce the results from the 
second performance experiment. To do this, we trained another 
two batches of 100 simulated agents to learn action sequence LR 
for 30 sessions. Then, in a second phase we continued to rein-
force the same sequence, but for the next 100 trials, α was set to 
0.03 for one of the batches (α model), and left unaffected for the 
other batch of agents (control model). Figure 9 shows that the 

Figure 6. Validation of the reinforcement learning algorithm versus experimental data. Performance of the simulated agents (bottom plots) and 

the experimental data (top plots) in the following performance metrics: (a) Proportion of perfect trials, (b) distal proximal ratio, and (c) Mean 

actions per trial. Experimental data (top plots) show the mean performance of the first 20 and the last five sessions of each rat. Data are shown as 

mean ± standard error of the mean.
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manipulation of α had no effect on the performance of a learned 
sequence, with no differences between the control and α agents’ 
performance of perfect trials (Figure 9(a)), distal/proximal ratio 
(Figure 9(b)) or actions performed per trial (Figure 9(c)), repli-
cating our second experiment, in which the NK1 receptor antago-
nist had no effect on the stable performance of the well-learned 
sequence (Figure (5)). In terms of the reinforcement learning 
model, it makes sense that no effect was observed, since modify-
ing the learning rates once the values of the state and actions have 
been already learned has little impact since there is not much left 
to learn, unless the contingencies changed.

Because the correlation between the model’s terms and the 
biological structures/functions are rather loose, we cannot reject 
a priori the possibility that other parameter variations could have 
led to the experimental effects observed. Therefore, to test that 
the effects we obtained in the simulations were specific to 
decreasing parameter α, we tested whether decreasing: (1) the 
action preferences learning rate, β; (2) the eligibility trace’s 
decay parameter, λ; and (3) the discount parameter, γ, would rep-
licate the effects found on both behavioral experiments. For each 
of these hypotheses we ran another 100 simulations of the first 
learning experiment. We did not find that any of these alternative 
hypotheses to be able to correctly reproduce our experimental 
results (Figure S3, Supplemental Material). In summary, manipu-
lating α was able to reproduce the counter-intuitive finding that 

administering an NK1 receptor antagonist led to learning a new 
sequence faster without affecting the stable performance of a 
crystallized sequence, replicating the results from both of our 
experiments through an effect on the RPE.

Discussion

As behavioral sequences are learned and their performance crys-
tallized, specific activity patterns emerge in the striatum (Jin 
et al., 2014; Rothwell et al., 2015), which have been suggested to 
contribute to the concatenation and representation of sequences 
as units (Jin et al., 2014; Wymbs et al., 2012). Striatal MSNs are 
known to interact with each other through extensive collaterals 
(Tepper et al., 2008; Wilson and Groves, 1980), through which 
they release not only fast-acting neurotransmitters such as 
GABA, but also more slowly acting neuromodulators such as SP, 
a neuropeptide with facilitatory effects on cortico-striatal syn-
apses and striatal dopamine release (Blomeley and Bracci, 2011; 
Brimblecombe and Cragg, 2015; Chen et al., 2001; Graybiel, 
1990). However, the role of SP in sequence learning is not fully 
understood. Here we show initial evidence that an NK1 receptor 
antagonist decreased the stable retention of a well-learned 
sequences, facilitating its extinction, which allowed the faster 
acquisition of a new sequence in a reversal learning task. 

Figure 7. Effects of modifying the state learning rate α on learning a new sequence. Results are only for the second phase of the simulation of 

experiment 1. In the first 100 trials of this second phase α was reduced for the α model (green line) and kept unaltered for the control model 

(black line). Results show performance of the two models in the: (a) Proportion of perfect trials, (b) distal/proximal ratio, (c) mean actions per 

trial, and (d) extinction of the first learned sequence. (e) and (f) Changes in the action preference in the distal and proximal positions throughout 

the two phases of the simulation of experiment 1 for the α model (dotted lines) and the control models (continuous line). Data are shown as 

mean ± standard error of the mean.
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Additionally, using a reinforcement learning model we propose 
that SP could be acting, at least in part, through the state value 
learning rate, modulating the size of the RPE, believed to be 
encoded in the dopaminergic signal.

Our proposal is consistent with electrophysiological findings 
and other reinforcement learning models. It has been shown that 
the NK1 receptor antagonist L-733,060 affects striatal dopamine 
concentration in rats’ striatum (Kraft et al. 2001; Noailles and 
Angulo, 2002). Furthermore, SP has been shown to interact with 
dopamine differently depending on the striatal compartment, 
upregulating dopamine in striosomes, while leaving it unaffected 
in the matrix (Brimblecombe and Cragg, 2015). Moreover, the 
striatum’s striosomal compartments have been suggested to 
encode state values, while matrix compartments, action values 
(Amemori et al., 2011; Doya, 2002; Shivkumar et al., 2017). 
Thus, injecting the NK1 receptor antagonist could have affected 
dopamine release only in striosomes, thereby only modifying the 

effects of the RPE on state values. This supports our hypothesis 
of mapping the effects of the NK1 receptor antagonist to decreas-
ing the learning rate of the state values in our model of sequence 
learning. Our model suggested that decreasing the state values’ 
learning rate produces a more negative RPE, leading to a “reset” 
of the action values, which is a plausible explanation as to why 
we observed facilitated extinction in the behavioral experiments. 
Nonetheless, there is a possibility that the effect of the NK1 
receptor antagonist was not solely based on NK1 receptors and 
dopamine, since there is evidence that some NK-1 antagonists 
display non-specific binding, in particular to L-type calcium 
channels (CP-96,345: Guard et al. 1993; RP-67580: Rupniak 
et al. 1993; Dudley et al. 2013, Weir et al. 2014) and that species 
differences in terms of binding exist, with lower affinity in rats 
than in gerbils and humans (Duffy et al., 2002; Griffante et al., 
2006). However, to our knowledge the binding of L-733,060 to 
L-type channels has not been described yet.

Figure 8. Effects of modifying the state learning rate α on the RPE. Changes in RPE in the distal and proximal positions through the first and 

second phase (indicated by the dotted line) in the simulations of experiment 1 for (a) control model and (b) α model. Data are displayed as 

mean ± standard error of the mean. Insets show a zoom in on the transition from phase 1 to phase 2 (which happens at trial 1500) displaying both 

the control and the α model for comparison of the differences in the RPE. These plots show the changes through the trials, not aggregated session-

wise as in the other results.
RPE: reward prediction error.
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Figure 9. Effects of modifying the state learning rate α on the performance of a well-learned action sequence. Results for the simulations of 

experiment 2, in which parameter α was manipulated in the first 100 trials of the second phase for the α model in comparison to the control model 

are shown for (a) proportion of perfect trials, (b) distal/proximal ratio, and (c) actions per trial. Data are shown as mean ± standard error of the mean.
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Our model suggests that striosomes play an important role in 
the calculation of the RPE. Brown et al. (1999) more than 20 years 
ago, already suggested the negative RPE encoded by a decrease 
in dopamine is dependent on the projections from striosomes to 
the substantia nigra pars compacta. Thus, the idea that striosomes 
are fundamental for the RPE has been around for a while (Joel 
et al., 2002). More recent models, like those of Amemori et al. 
(2011) and Shivkumar et al. (2017), have further suggested that 
striosomes have representations of state values, whereas the 
matrix, of action values. Our results support these proposals, 
but we add the particular interaction of SP with dopamine in 
striosomes reported by Brimblecombe and Cragg (2015), suc-
cessfully replicating the behavioral results from both of our 
experiments.

It is possible that our experimental result could have been due 
to differences in learning, motivation, or attention caused by the 
injection of the NK1 receptor antagonist; however, our data 
shows that this is unlikely. First, rats injected with saline and the 
NK1 receptor antagonist had similar pre-drug learning curves, 
suggesting that there were no baseline differences in their learn-
ing abilities. Furthermore, the NK1 receptor antagonist did not 
affect the inter-response times of the sequences, meaning that it 
did not affect the performance speed, suggesting that general 
motor abilities were not impaired. Likewise, the fact that we did 
not find any differences in the time between lever presses and the 
total time needed to perform the sessions up to completion, sug-
gests that the NK1 receptor antagonist administration did not 
cause the rats to become inattentive either at a small scale (in 
between the presses) or a large scale (the overall duration of the 
sessions). Finally, the faster extinction of the first sequence in the 
first experiment was not the result of an overall decrease in motor 
output given that there was no decrease in the performance of the 
new sequence being learned. This also indicates that the differ-
ences observed were not due to modifications in overall motiva-
tion, given that both groups were equally motivated to obtain the 
reinforcers, obtaining them at similar rates. Finally, injecting the 
NK1 receptor antagonist in a reversal learning task like our first 
experiment, allowed us to control for novelty effects, given that 
the rats were already familiarized with the task and chambers.

Nevertheless, there are several other mechanisms that could 
have played a part in our results. Besides the effect of SP on 
dopamine, SP is also known to have a facilitatory effect on cor-
tico-striatal synapses, which the model of Buxton et al. (2017) 
has recently proposed to be a key mediator of action chunking, 
and thus another mechanism by which NK1 receptor antagonism 
could have affected sequence learning. Additionally, NK1 recep-
tors are also found on cholinergic interneurons in the striatum 
(Chen et al., 2001), and SP is known to increase the response of 
these interneurons and thus the release of acetylcholine in the 
striatum in freely moving rats (Anderson et al., 1993; Aosaki and 
Kawaguchi, 1996). This is another important possible mecha-
nism by which NK1 receptor antagonism could have affected 
sequence learning since the activation of striatal cholinergic 
interneurons has been associated with habit substitution (Aoki 
et al., 2018). Given that we did a systemic intervention, other 
brain structures could have been involved. For example, some of 
the activity patterns that are believed to represent a learned 
sequence as a unit in the striatum, such as the start/stop signals, 
are known to have parallels in other areas, such as prefrontal cor-
tex (Fujii and Graybiel, 2003; Smith and Graybiel, 2016). Finally, 

it is worth noting that NK1 receptors have been extensively 
linked to attentional processes, and are believed to play a key role 
in ADHD (Yan et al., 2010; Weir et al., 2014; Porter et al., 2015; 
Porter et al., 2016); thus, it is possible that by antagonizing NK1 
receptors, we affected attentional processes in a way that pro-
moted the learning of a new sequence faster.

Although neuropeptides have been neglected in the study of 
sequence learning, recent findings have implicated SP in action 
sequencing (Buxton et al., 2017; Favila et al., 2021). Our results 
suggest that administering an NK1 receptor antagonist led to a 
faster disintegration of a well-learned sequence. With these 
results and our RL model we propose that SP could be involved 
in consolidating and maintaining the stability of the representa-
tion of an action sequence through an interaction with the dopa-
minergic RPE. Stability is just as important as plasticity for 
learning new information, playing a role in preventing constant 
forgetting (Mermillod et al., 2013). Our findings could have 
implications for breaking hard-wired habits, such as the behavio-
ral patterns related to the retrieval and use of drugs in addictions, 
which become “super habits” and thus very difficult to break 
(Graybiel, 2008).
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