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Abstract — Soundscape studies evaluate the subjective and objective qualities of an environment and attempt
to develop a holistic view of the interplay between the acoustic scene and the listener’s experience. Descriptors
are used to express the perception of the acoustic environment, while further subjective and quantitative mea-
sures are used as indicators that represent features of the acoustic environment. The relationships between
descriptors and indicators for a particular soundscape study are often identified by developing linear statistical
models. This work describes an experiment to assess heart rate measures, including ultra short term heart rate
variability, within the context of the predictor descriptor framework of a soundscape study. The aim of this
work is to provide evidence in support of the psychophysiological basis of measures of affect in soundscape eval-
uation. In this study 15 participants evaluated a randomly ordered set of 8 soundscape recordings in a repeated
measures directed listening experiment. Subjective evaluation of the soundscapes was performed using the self-
assessment manikin and a sound classification survey. Participants’ heart rate was measured throughout the
experiment with a Polar H10 ECG heart rate monitor. Statistically significant relationships were identified be-
tween indicators and descriptors that reflect results present in the literature. However, there were no significant
interactions between heart rate measures and self-reported affect or classification scores. Future studies should
focus on improving the selection of stimuli and the experiment methodology to boost the sensitivity of the

experiment in light of small effect sizes.
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1 Introduction

Environmental noise has been identified as a critical
pollutant. The European Environment Agency estimate
that in the European region environmental noise con-
tributes to 12,000 premature deaths and 48,000 new cases
of ischemic heart disease each year [1]. Traditional environ-
mental noise management strategies target key sources of
environmental noise through a cyclical process of strategic
identification and mitigation, measuring and modeling the
levels of environmental noise from certain sources within
agglomerations [2]. However, critics of these strategies of
noise abatement suggest that they are insufficient to
address the greater issues of environmental noise, being fun-
damentally reactionary and restricted to a few specific types
of noise. The field of soundscape research focuses on under-
standing the perceptual quality of the acoustic environment
from the perspective of the experience of the listener, within
the context of the whole environment. Soundscape research
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has been associated with developments in approaches to
both urban planning and noise abatement, attempting
to change the preconception of noise as a waste product to
sound as a resource for urban designers to manage. Sound-
scape was reputedly conceived in the context of urban design
by Michael Southworth, and was later popularized by R.
Murray Schafer who founded the World Soundscape Project
[3]. More recently soundscape has come to be more broadly
associated with interdisciplinary approaches for environ-
ment evaluation and sound management in urban planning.
A soundscape is defined in BS ISO 12913-1:2014 as the
acoustic environment as perceived or experienced and/or
understood by a person or people, in context [4].

Primary focuses of soundscapes research include identi-
fying relationships between subjective and objective mea-
sures of the soundscape, and the the development of
experimental methodologies that can be used to assess
soundscapes from different perspectives [5-7]. The interdis-
ciplinary nature of soundscape has resulted in a variety of
methodologies for soundscape evaluation, suggesting that
the field is still in the early stages of its development as a
scientific field [8]. This is reflected in the inclusion of three
different soundscape evaluation methodologies within the
standards for soundscape [4, 9, 10]. The ISO/TS 12913-
2:2018 technical specification for soundscape evaluation
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identifies that descriptors and indicators should be used to
reflect the evaluation and assessment of the concerned indi-
viduals [9]. A descriptor in this instance is a measure of how
an individual experiences a soundscape, often through self-
report of emotion or by the use of semantic descriptors of
the soundscape [11]. An indicator is a measure of a feature
of the soundscape, such as the subjective presence of a class
of sound, or a measure of the average sound level, loudness
and prominence ratio [12, 13].

The effective ground truth of the quality of the sound-
scape is implicit in the emotions and attitudes of the people
within the environment, and so the primary tools available
to evaluate soundscapes involve subjective estimation.
Soundscape descriptors often include measures such as the
subjective pleasantness and vibrancy of the environment,
which some have equated to states of affect [14]. Affect in
this context is the psychological definition as referring to
the experience of feeling, emotion and mood [15].

In the fields of psychology and engineering there is a
growing body of evidence identifying that changes in emo-
tional state can be identified through physiological mea-
sures [16], and this has been extended into evaluating the
experience of sounds and soundscapes [14]. The use of phys-
iological measures that are influenced by emotional state
may provide soundscape researchers with evidence of the
psychophysiological basis for changes in affect in response
to different soundscapes. Such evidence could be used to
establish a ground-up theory of the perception of sound-
scapes. Several theories in psychophysiology support the
relationship between states of affect and the behavior of
the autonomic nervous system [17], including changes in
heart rate variability and the regulation of emotions. The
aim of this study is to understand whether participants
exhibit changes in physiological behavior when listening
to recordings of soundscapes in the context of a directed lis-
tening experiment under laboratory conditions.

1.1 Soundscape study methodologies

Soundscape studies are typically performed on location
for the purposes of environment evaluation. However, in cir-
cumstances where experimental control is critical or the
environment under evaluation does not yet exist, research-
ers have used virtual approximations of environments [18,
19]. The goal of a soundscape study might be to identify
how the sounds of road-traffic, water features and acoustic
mitigation might change the subjective quality of the
soundscape [19-22]. The soundscape standards recommend
three different methodologies for soundscape study [9]:

e Method A: A general questionnaire taken on location.

e Method B: A soundwalk where participants are
guided between locations and are surveyed at those
locations.

e Method C: A guided interview methodology.

Variations of the soundwalk methodology have been
previously used in laboratory conditions as a virtual sound-
walk [19, 23]. Surveys are often used in soundscape studies,

utilizing Likert or categorical scales that measure a subjec-
tive estimate of a quantity in ordinal levels. As the subjective
ordinal data is specific to the participants’ internal reference
and participants often perform several assessments, data
analysis often includes non-parametric statistical tests and
procedures that allow the researchers to accommodate for
the violation of the assumptions of statistical models.
Principal component analysis has been used to identify the
minimum effective dimensionality of soundscape perception,
resulting in three dimensions of pleasantness, eventfulness
and familiarity representing 78% of the variance in results
of soundscape quality estimation across 116 attribute scales
[24]. This three dimensional representation of the variance in
the semantic-differential data reflects theories of affect being
represented by three primary dimensions. Researchers have
previously identified that three dimensions often represent a
high proportion of variance in affect self-report and these are
labelled valence, arousal and dominance [25-27|. The self-
assessment manikin (SAM) is a pictographic form of survey
that is used to evaluate these three most common dimensions
of affect, providing a simplified form of affect self-report that
has also been used in soundscape research [27, 28]. A para-
digm often used as a measure of quality in soundscape
research is the model of pleasantness and vibrancy [10],
which is considered comparable to the affect dimensions of
valence and arousal [14]. The SAM was extended from the
semantic differential analysis procedure proposed by Mehra-
bian and Russell [15, 26], and has been used in studies of
physiological responses to auditory stimuli [29].

Another aspect that is considered in soundscape evalu-
ation is that of the classification of sound sources and
soundscapes. As soundscape is a perceptually driven con-
cept, the ground truth of the types of sounds perceived
within an environment is also defined by those experiencing
the environment. To compare the effect of sounds in differ-
ent instances of a given context, researchers might compare
the presence or absence of different sound classes to differ-
ences in affect in order to find evidence of a causal relation.
Identifying classes of sounds requires the definition of a tax-
onomy of sound sources. Several forms of soundscape taxon-
omy have been proposed such as those by Bones et al. [30]
and Trudeau and Guastavino [31]. The soundscape stan-
dards include a recommended taxonomy to be used for
soundwalks in Annex C of the data collection technical
specification [9]. Despite the development of these tax-
onomies, researchers often used a simplified taxonomy that
is reduced to the three classes of natural, mechanical and
human sounds [32].

1.2 Psychophysiological response studies in soundscape
research

Several studies have attempted to identify physiological
responses to sounds and soundscapes. Erfanian et al. pub-
lished a systematic review of research studying psychophys-
iological factors in the context of soundscape [14]. Six
relevant studies were identified from the literature search,
most of which used a stimulus-locked repeated measures
design. In this type of experiment design all participants
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are exposed to a set of stimuli following a particular proto-
col of exposure, response and recovery. All of the studies
included an evaluation of perceptual attributes related to
experiencing the stimulus, and more specifically emotional
or affective attributes. Some studies included the evaluation
of participants’ emotional state through the survey of affec-
tive dimensions [33], though in studies such as [34] affective
evaluation is performed separately to physiological evalua-
tion. Some studies evaluate the subjective quality of the
stimuli by surveying with measures that describe the sound-
scape itself, as opposed to the participants’ experience,
including measures such as eventfulness, pleasantness and
vibrancy [24]. These scales are identified by Erfanian
et al. as analogous to the affective dimensions of valence
and arousal.

The studies include a variety of different physiological
measures and measurement equipment, including galvanic
skin response [35] and functional magnetic resonance imag-
ing [34]. Average heart rate measurement was included in all
studies but one, in which high frequency heart rate variabil-
ity measures were included [36]. The outcome of this review
was that results from the studies discussed were generally
weak or conflicting when relating physiological responses
to one emotional state. These conflicting results may be
unsurprising, given the range of psychophysiological studies
in the music psychology literature that come to similarly dis-
parate conclusions [37]. However, it could also be that the
size of the effect of the manipulation was insufficient for
the given sample sizes in the presence of the other confounds
that are likely to influence physiological measures. For
example, Irwin et al. included 150 stimuli that were only
8 sinlength, and used only 16 participants for the physiolog-
ical experiment [34]. The heart rates of these participants are
likely to have been strongly influenced by the experimental
procedure, that is being in an fMRI scanner. Irwin et al. sub-
sequently did not find evidence of a statistically significant
effect of the stimuli on heart rate.

1.3 Heart rate variability measures in emotion
estimation

Heart rate variability (HRV) analysis is becoming
increasingly popular in affective computing and psycholog-
ical research, in part thanks to the improvements in the
availability and affordability of electrocardiogram (ECG)
heart rate monitors [38, 39]. Heart rate variability measures
are interpretations of a series of inter-beat intervals, the
time periods between successive heart beats. There are sev-
eral proposed theories that describe how HRV might reflect
the psychophysiological state of an individual, suggesting a
causal link between changes in emotional state and the
behavior of the systems that regulate the heart. This causal
link is facilitated by the balance between the sympathetic
and the parasympathetic nervous systems (PNS), and it
is theorized that the periodicity of the activation of the
Vagus nerve or vagal tone is an indicator of the activity
of the parasympathetic nervous system. The parasympa-
thetic nervous system in turn is theorized to be representa-
tive of cognitive and emotional function [40]. Two key

theories that support the connection between emotion reg-
ulation and the function of the autonomic nervous system
are the Polyvagal and Neurovisceral Integration theories.
The Polyvagal theory was proposed by Porges [41] as a
model of the neural regulation of the autonomic nervous
system that also supports the relation between autonomic
function and primary emotions [42]. This theory suggests
that the adaptive mechanism of heart rate regulation are
mediated by neurological mechanisms that are influenced
by the environment and associated with behaviors include
fight-or-flight and social interactions. The Neurovisceral
Integration theory proposed by Thayer and Lane provides
a model of a network of neurological systems that is theo-
rized to be important for system regulation. This network
is used to control several systems including the regulation
of heart rate including heart rate variability [40]. Shaffer
et al. suggest that healthy natural heart beat regulation is
both periodic and highly complex [17]. Alternatively, under
stress heart rate increases and HRV decreases as the vagal
breaking mechanisms releases, allowing the heart rate to
increase. Decreased HRV has also been associated with
reduced PNS activation and has been observed in people
suffering from stress, anxiety and panic [17]. There are sev-
eral HRV metrics that reflect different statistical properties
of the inter-beat interval series. Time domain measures are
more suited to very-short-term and ultra-short-term HRV
analysis (generally considered less than 5 min periods under
analysis), as spectral methods require longer measurement
periods to accurately reflect low frequency and very low fre-
quency phenomena [43].

2 Methods

The aim of this study is to understand whether partici-
pants exhibit changes in physiological behavior when listen-
ing to recorded soundscapes, in the context of a directed
listening experiment under laboratory conditions. To this
end, heart rate measures (such as average heart rate and
heart rate variability) were the chosen physiological mea-
sures, as they are theorized to reflect changes in affect. It
therefore remains to identify if such heart rate measures
are appropriate indicators of soundscape experience in the
context of a seated lab based experiment, by identifying
changes in these measures when experiencing different
soundscapes. The experiment included the assumption that
soundscapes reported as having a higher proportion of
mechanical or natural sound sources would be reputed as
having subjectively different qualities, such as the presence
or absence of environmental noise. Under this assumption,
the expectation would be that stimuli with differing classi-
fication scores would elicit different states of affect which
would be reflecting in the physiological measures. Based
on the reports of natural soundscapes being restorative or
eliciting positive valence, a further expectation would be
that soundscapes classified as being more natural would
elicit higher valence. Another assumption was that ultra-
short-term time domain heart rate measures are represen-
tative of changes in mood and emotion elicited by
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Table 1. Stimuli selection summary.

Location type Recording number Clip NDSI group NDSI score Stimuli Player
Woodland 5 5 High 0.90 1 )
Woodland 7 1 Low —0.86 5 )
Train station 4 5 High —0.27 2 )
Train station 6 3 Low —0.81 6 o)
Park 3 3 High 0.41 3 o)
Park 2 2 Low —0.75 7 L))
Beach 7 4 High —0.03 4 )
Beach 2 3 Low —0.85 8 o)

experiencing soundscapes. The methodology used in this
experiment follows on from Stevens et al. [11, 44] by per-
forming a descriptor indicator comparison of changes in
heart rate, affective report and classification score.

2.1 Participants

Participants were recruited from groups of audio engi-
neering students via email. All participants had training
in subjective testing, and could be considered expert listen-
ers (see Section 5.4.1 of [45] for a discussion on the definition
of expert listeners). A total of 15 participants were recruited
to take part in this experiment. Of the participants 12 iden-
tified as male, 1 as female and 2 preferred not to say. The
average age of participants was 26 and the standard devia-
tion of the age was 5. The participants were screened by
self-report for the following exclusion criteria:

e Abnormal or damaged hearing.

o Skin damage or known reactions to materials on the
heart rate monitor.

e Known heart conditions, ailments or using medica-
tions that might directly effect heart rate.

2.2 Experimental stimuli

The experimental stimuli were selected from the FEigenS-
cape dataset, a set of high-order Ambisonic B-format
recordings made in various locations around the UK [46].
The version of the dataset used in this experiment is com-
prised of first order ambisonic recordings, and is available
from Zenodo [47]. The stimulus lengths used in the litera-
ture identified by Erfanian et al. [14] ranged from 8 s to
4 min, however the stimulus length used by Stevens et al.
was 30 s [11]. A stimulus length of 40 s was chosen for this
experiment in order to maximize the length of stimulus and
the proportion of recall and recovery time for each test
interval, while keeping the length of the test to within
30 min to avoid listener fatigue.

The EigenScape dataset was sliced into contiguous clips
from which the test stimuli were then selected. All of the
stimuli were screened for markers that could be used to
identify individual people such as clear discernible speech.
Stimuli were selected by algorithmically evaluating the pro-
portion of natural and mechanical sounds in each clip,
which was calculated using the Normalized Difference
Soundscape Index (NDSI). NDSI is an acoustic index that

is intended to identify the proportions of natural and
mechanical sound sources in a recording by comparing
the proportions of spectral energy in two frequency bands,
1-2 kHz for mechanical sounds and 2-11 kHz for natural
sounds [48-51]. NDSI scores range from +1.0 to —1.0,
where a positive score indicates the presence of a higher pro-
portion of natural sounds, and a negative score a higher
proportion of mechanical sounds. The NDSI score was cal-
culated for the Oth order omnidirectional W-channel of each
soundscape sample by using a Python3 implementation of
the R Acoustic Indices package [52].

The dataset contains soundscapes from 8 location types,
this was reduced down to only include clips from the 4 loca-
tions with the greatest variance in NDSI. From each of
these four locations, the 2 clips at the limits of the centre
quartiles of the NDSI scores were selected as test stimuli.
From each location type the clip at the limit of the positive
quartile of NDSI score is an example from the set that is
maximally natural and minimally mechanical and is there-
fore considered a high NDSI example. Conversely the clip at
the limit of the negative quartile of NDSI scores is an exam-
ple of a soundscape from that location type that is maxi-
mally mechanical and minimally natural, this clip is
therefore a low NDSI example of that location type. The
two training stimuli were the two samples in the data set
with an NDSI score closest to zero. The selected test stimuli
are summarized in Table 1. In the dataset recordings are
organized by location type i.e., beach, woodland etc. Indi-
vidual recordings and locations can be identified using a
map provided by the author [47]. In Table 1 the location
type and recording number are both from the dataset struc-
ture. The clip number identifies which contiguous 40 second
slice of the recording number is used. The NDSI group is
provided to identify whether the clip has a higher propor-
tion of natural sounds (a more positive NDSI score) or
mechanical sounds (a more negative NDSI score).

The selected stimuli were converted from B-format first
order ambisonic to 2 channel binaural which could be easily
reproduced over headphones. The B-format to binaural
conversion was performed using the Binaural Decoder
VST plugin that is part of the IEM plug-in suite, which is
a selection of free tools that can be used for spatial audio
processing [53]. The Binaural Decoder plug-in settings were
set to SN3D normalization and 1st order Ambisonics, with
headphone equalization disabled. The head related transfer
functions used in the Binaural Decoder plug-in were
recorded using a Neumann KU 100 dummy head, and the
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Table 2. Stimuli loudness information.

Stimuli 1 2 3 4 5 6 7 8
Momentary —43.35 —37.92 —38.04 —44.53 —51.19 —35.14 —36.35 —39.89
(LUFS) (2.76) (5.56) (1.59) (2.79) (7.09) (2.39) (1.58) (1.74)
Short-term —42.61 —37.70 —37.76 —44.24 —49.76 —34.76 —36.11 —39.66
(LUFS) (1.75) (5.43) (0.87) (1.91) (8.45) (0.83) (1.04) (0.48)
Integrated —43.32 —32.11 —38.14 —43.21 —42.44 —35.16 —36.71 —39.52
(LUFS) (1.18) (1.81) (1.20) (2.14) (14.15) (2.40) (0.69) (0.23)
Range 3.31 7.72 2.66 3.51 12.85 1.54 1.83 0.97
(LU) (1.72) (5.32) (1.21) (1.82) (13.62) (0.70) (1.06) (0.40)
Peak —36.65 —31.57 —32.00 —38.10 —43.96 —28.36 —30.47 —33.67
(dBTP) (2.77) (5.33) (3.00) (3.32) (6.19) (3.20) (2.74) (2.70)

binaural rendering was performed using a magnitude least
squares approach [54]. The stimuli were peak normalized
to ensure a consistent relative level is maintained. No fur-
ther processing was performed, and any low frequency rum-
ble or wind noise in the recording was not compensated for.

The loudness of each stimuli is presented in Table 2.
The loudness of each stimuli is given in loudness units full
scale (LUFS) which is a standardized time-weighted and
gated unit of the loudness of a signal relative to digital
full-scale representation. The standard suite of loudness
meters is calculated for each stimulus according to the
algorithm defined in ITU-R BS.1770-4 [55], using the loud-
ness meter that is built into Matlab. Table 2 presents each
of the loudness metrics in the form mean (standard
deviation).

2.3 Data collection instruments

Two forms of data gathering were used in the experi-
ment, physiological sensing and self-report. For each test
interval participants were asked to complete a survey based
on their experience of the soundscape. Figure 1 presents the
test page of the user interface. The survey featured two com-
ponents as represented in Figure 1:

e A five-point self-assessment manikin in which partici-
pants report their affect.

e A classification task in which participants are tasked
to report the proportions of sound sources present in
the soundscape.

The self-assessment manikin featured three sets of
graphics with 5 elements in each set, representing the three
primary dimensions of affect; valence, arousal and domi-
nance. The participants were instructed to select which of
the five levels of each dimension affect reflected their state
when listening to each soundscape. The dimensions were
described to participants as follows:

o Valence: positive or negative emotions, analogous to
feelings of pleasantness and happiness.

o Arousal: analogous to excitement and apathy.

e Dominance: analogous to the participants feeling or
control or presence within the situation.

These descriptions were based on those from Stevens
et al. [28]. The classification task included three sound

source classes from a typically used taxonomy of sound
sources [14, 22]:

e Natural e.g. animal sounds, bird song and environ-
mental sounds such as the wind or the ocean.

e Mechanical e.g. air, rail and road traffic, as well as
construction and industrial sounds.

e Human e.g. foot fall, masked speech and laughter.

Each class was represented by a continuous linear slider,
as opposed to the 5 point scale used by Stevens et al. [11].
The participants were instructed to consider the collection
of sounds they could identify when listening to a soundscape,
and position the three sliders to indicate the general propor-
tionality of the different classes of sounds. Participants were
given the following example scenario for a soundscape. A
soundscape that is primarily composed of mechanical
sounds, with no natural sounds and few human sounds,
participants should move the slider associated with mechan-
ical sounds toward the top position, the natural slider to the
bottom position, and the human slider to somewhere
between the bottom and middle position. Participants were
directed to disregard any numerical value associated with
the sliders, and instead use the slider’s position to indicate
the proportionality of sounds from each class.

2.4 Physiological measurement

The heart rate monitor used in the experiment was a
Polar H10 ECG based chest strap monitor [56]. The H10
is popular, robust, relatively low cost, and has been shown
to provide data of a quality similar to Holter style monitors
[57]. Polar have published a white paper article suggest-
ing that the H10 has an overall 95% accuracy in reporting
R-R intervals during sports, which is an improved error
rate in comparison to the group of Holter monitors tested
in the same sporting activities [56]. Though the exact pro-
cessing used in the Polar H10 is not disclosed, it could be
inferred that some correction processes are used to ensure
that the R-R series remains stable and accurate during
these sporting activities [56, 58].

Heart rate data was streamed from the Polar H10 via
Bluetooth to an Android mobile device (A Google Pixel 4
XL wusing version 10.0 of the Android operating sys-
tem), which was running the Polar Sensor Logger App
(version 6) [59]. The app records time-stamped heart rate
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Figure 1. Listening test user interface.

and inter-beat interval estimates into comma-separated
value (CSV) files. In post-processing of the heart rate data,
sections of recorded heart rate that correspond to each
interval of the test were indexed and sliced by the times-
tamps that were recorded by the listening test user inter-
face. As the sensor sent data to the mobile device at a
regular 1 s interval, a variable number of inter-beat inter-
vals were reported with each message step. The inter-beat
intervals were subsequently rearranged in post-processing
before HRV analysis was performed.

In HRV analysis the inter-beat intervals need to be pre-
processed to remove anomalous artifacts and ectopic beats
[43]. All processing of inter-beat interval data was performed
in Matlab using the HRVTool toolbox [60]. The data was
first filtered to remove artifacts using the default thresholds
provided by the toolbox. Where several false beats had been
replaced by empty values, linear interpolation was per-
formed to recover an estimate of the missing inter-beat inter-
vals. The test data was subsequently sliced into the periods
that align with each of the test intervals. Five HRV mea-
sures were computed using the HRVTool toolbox [61]:

« Root mean square of successive differences (RMSSD)

¢ Standard deviation normal to normal inter-beat inter-
vals (SDNN)

e Percentage of successive normal intervals of more
than 50 ms (pNN50)

(") Very High

e The median distance to the centre of the RR interval
return map (rrHRV)

e The triangular interpolation of the NN interval his-
togram (TINN)

RMSSD has been indicated as a representative of vagal
tone and is reputed to have good correlation with high fre-
quency HRV [38]. SDNN is representative of the median
variability in inter-beat intervals [62]. pNN50 is reported
to be closely correlated with vagal tone and the the activity
of the PNS [43]. rrHRV is a robust geometric measure of
HRYV that can be applied to short measurements [61]. TINN
represents the spread of the histogram of inter-beat intervals
by approximating the spread of the data with a triangle,
greater variance is represented with a larger triangle [63].

2.5 Experimental design and procedure

After the initial screening and survey stage, participants
were invited to fit the heart rate monitor as per the manu-
facturer’s instructions, in privacy. Once fitted and tested,
participants were guided to a waiting area to acclimatize
to wearing the heart rate monitor. After the acclimatization
period of 10 min participants were guided back to the
formal test environment. The experiment followed a
repeated measures design as used in the literature [11, 14].
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Figure 2. Signal chain of playback system.

Participants blindly listened to the randomly ordered stim-
uli, after which they reported their affect and performed the
classification task. The experiment procedure featured a set
of 2 training intervals followed by a set of 10 test intervals.
In the first 8 test intervals all test stimuli were presented to
participants. Two of the 8 test stimuli were randomly
selected and were re-played in the last 2 test intervals.
The test process was managed by a participant facing user
interface that was presented via computer. The timing of
the test was kept uniform across all test intervals, following
the format:

e 40 s of listening to a soundscape.

¢ 30 s of reporting via the user interface.

e 60 s of rest.

As the test progressed a timestamp was recorded at
each step in the procedure to allow for later synchronization
between the stimuli playback and heart rate measurements.
The listening portion of each test took approximately
26 min to complete. A further 15 min was required for
the preparation and debrief stages.

Throughout the experiment a safe playback system level
was maintained. The experiment was always performed in
the same listening room and with the same equipment. The
audio playback system signal chain is presented in Figure 2.

The playback system level was set to 90 dB sound pres-
sure level (SPL) at full scale. The system was calibrated
using a Behringer ECM8000 measurement microphone,
which itself was calibrated using a Tenma 72-7260 sound
level meter calibrator.

3 Results

To accommodate for the repeated measures design and
the expected individual differences in responses, linear mixed
effects models were used in the analysis below. The models
included participant and stimuli as random intercepts to
satisfy the assumptions of independence between samples.
Statistical analysis was performed using Matlab [64],
including the statistics and machine learning toolbox, the
econometrics toolbox, the curve fitting tooblox, the normal-
itytest toolbox [65] and the HRV toolbox [60]. The fitting
method used in the model was the restricted maximum
likelihood estimate, meaning the models are less sensitive
to outliers and biased estimates of the random effects terms.

Windows
10 audio
subsystem

e Tey )
RME UFX

\ audio interface )

Sennheiser
HD650
open-back

headphones

3.1 Subjective estimates

The distribution of the subjective responses of partici-
pants with respect to the stimuli are summarized by the ser-
ies of box plots in Figure 3. Figures 3a-3c summarize the
distribution of affect scores from all participants across
the stimuli. Figures 3d-3f summarize the distribution of
classification scores from all participants across the stimuli.
The box plots of Figures 3a—3c indicate considerable simi-
larities in the state of affect elicited by the different stimuli,
particularly for the dimensions of arousal and dominance.
Figures 3b and 3c give little evidence of a significant rela-
tionship between the stimuli and self-reported arousal or
dominance, with the median of affect scores generally sit-
ting at 0 or indifference. However, there was a larger range
in valence scores across the stimuli leading to an identifiable
positive relationship between the stimuli and self-reported
valence F(1,118) = 12.099, p < 0.001, 15 = 0.46. Compar-
ing Figures 3a and 3b it appears that decreased valence
scores are associated with increased arousal scores, and a
significant interaction was identified F(1,118) = 9.125,
p = 0.003, 1> = 0.08. Figures 3d and 3e highlight that nat-
ural and mechanical scores were generally in opposition,
with the notable exception of stimuli 5 which was consid-
ered to have a high proportion of both natural and mechan-
ical sounds. Natural scores varied significantly between
stimuli F(7,98) = 56.72, p < 0.001, ;7[27 = 0.8 as did mechan-
ical scores F(7,98) = 35.18, p < 0.001, > =0.72 and
human scores F(7,98) = 19.91, p < 0.001, n; = 0.59, sug-
gesting that the selection of stimuli included a reasonable
variety of content.

Of the classification scores, two stimuli have elicited
results of particular interest, stimuli 8 and 5. Stimulus 8 eli-
cited a wide range of natural and mechanical scores, sug-
gesting that in this context participants disagreed on
whether the soundscape was explicitly highly mechanical
or highly natural sounding. Stimulus 8 «) was a beach
soundscape with the sound of people walking and talking,
the jangle of metal and the rolling of a pram. Stimuli 5

) was a woodland soundscape with the sound of a
steam locomotive, eliciting both highly mechanical and
highly natural scores. The participants reported positive
valence for this stimuli, giving a context in which highly
mechanical sounds in a highly natural setting elicit positive
valence. This provides a counter point for the expectation
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Figure 3. Distribution of subjective estimates for each stimuli across all participant.

that mechanical sounds in the context of highly natural set-
tings would lead to reports of negative valence.

3.2 Physiological responses

Heart rate measurements were averaged across each test
interval. The average resting heart rate of each participant
was calculated by averaging across the heart rate recorded
in the pre-test rest condition. Each participant’s average
resting heart rate was then subtracted from each respective
test interval in order to normalize the data, giving the

average heart rate A. Figure 4 presents the mean and stan-
dard deviation of average heart rate A across all partici-
pants per stimuli.

It is clear from Figure 4 that the mean normalized aver-
age heart rate is similar across the stimuli, and there is an
obvious overlap in the distribution of heart rates across
the stimuli. It is clear from Figure 4 that there are no
instances where a stimulus has elicited a consistent large
change in average heart rate from rest.

Figure 5 presents boxplots of the distribution of heart
rate metrics per stimuli across all test intervals. It is clear
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Figure 4. Average heart rate A across all participants for each stimulus.

from all of the subplots of Figure 5 that there are no large
differences in the effect of any stimuli for any HRV mea-
sure. Though there appears to be differences in the medians
for several of the measures, the differences appear very
small suggesting any effect size would in turn be very small.
The analysis of HRV measures are often performed on data
recorded over much larger periods of time. To identify if
any experimental effect may be present at all, a comparison
is presented for an HRV measure between the pre-test and
test conditions for all the participants. Figure 6 presents the
absolute mean log RMSSD for each participant across the
test and rest conditions. The height of the bars presented
the absolute mean, and the size of the error bars represents
the standard deviation.

The data presented in Figure 6 shows there are no large
differences between these HRV values between the pre-test
and test condition. This indicates that the test condition is
unlikely to have have had a consistent, systematic or distin-
guishable effect on heart rate variability compared to the
pre-test condition of rest. However, the lengths of the pre-
test and test periods used in the data from Figure 6 are
not the same, the test period was significantly longer than
the pre-test period. The data was log transformed to
improve the visibility of differences on the chart, given
the small scale of the RMSSD data.

Table 3 presents the mean and standard deviation of the
difference of average heart rate between test intervals and
the pre-test period for each participant.

The data in Table 3 shows a large variation in the
change of heart rate from pre-test and test intervals across
the participants. However, most participants’ heart rates
decreased in the test compared to the pre-test condition.
Though no statistically significant effect of the stimuli on
heart rate was detected, in most cases participants may
have relaxed when sitting down to perform the test.

3.3 Correlation

A correlation table comparing measures is presented in
Table 4. The correlation coefficients were calculated using

Spearman’s rank correlation which was chosen due to the
nature of the types of data being analyzed. Only correlation
coefficients with a p value of less than 0.05 are presented in
the table.

The correlation coefficients presented in Table 4 show
that natural, mechanical and human scores are correlated
with valence, arousal and dominance reports respectively.
Natural scores are correlated with mechanical scores and
share collinearity, and as such different models are pre-
sented below to evaluate these indicators independently.
Only two correlations appear between HRV measures and
other variables. SDNN is positively correlated with test
interval number, suggesting this value may increase over
the course of the experiment. rrfHRYV is positively correlated
with valence report, suggesting that the variance of inter-
beat intervals might increase when experiencing more pleas-
ant soundscapes.

3.4 Linear mixed-effects models

Given the correlations present within the sets of subjec-
tive indicators, descriptors and HRV measures, single factor
linear mixed-effects models were computed for pairwise
descriptors, indicators and HRV measures. The statistics
of these models are presented in Table 5, including the
model estimates, standard errors for the primary effects
and the upper and lower bounds of the 95% confidence
intervals. The model residuals were tested for normality
using the Shapiro—Wilk test, and plots were evaluated for
heteroscedasticity.

Analysis of variance was performed on the fixed effects of
the models presented in Table 5 that resulted in statistically
significant estimates. From these results we find that valence
varied significantly with natural scores F(1,118) = 44.8,
p < 0.001 and mechanical scores F(1,118) = 25.05,
p < 0.001. Arousal varied significantly with natural scores
F(1,118) = 14.2, p < 0.001, mechanical scores F(1,118) =
12.1, p < 0.001 and human scores F(1,118) = 8.37,
p < 0.01. These relationships are summarized in the subplots
of Figure 7. Figure 7 presents the classification scores with
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Figure 5. Distribution of heart rate metrics for each stimuli across all participants.

respect to the fitted values of valence and arousal across the
respective models. The models are presented with lines of
best fit to make the data more clear.

Both Figures 7a and 7b show clear trends between the clas-
sification scores and affective report scores for the associated
models. The only HRV metric to vary significantly with
valence was rTHRV F(1,118) = 5.04, p = 0.026. No other sta-
tistically significant relationships were observed between a

HRYV measure, a descriptor or an indicator. Figure 8 presents
the rTfHRV measures with respect to the fitted values of
valence, including a line of best fit to make the data more clear.

There appears to be a trend in the rrHRV data pre-
sented in Figure 8 with respect to the fitted values of the
model for rrTHRV and valence, though given no other rela-
tionships were found this effect should be confirmed in a
study with a larger sample size.
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Table 3. Average difference in mean heart rate between pre-test and test conditions. Below the mean differences, the standard

deviations are presented within the parentheses.

Participant 1 2 3 4 5
—6.57 -3.70 —2.88 0.72 —6.33
(1.36) (2.25) (1.27) (1.40) (1.68)

Participant 6 7 8 9 10
—2.80 —4.44 —9.02 —10.93 —3.40
(2.69) (1.91) (1.09) (2.33) (1.19)

Participant 11 12 13 14 15
—10.23 —15.90 —11.56 —0.62 3.017
(1.18) (2.93) (2.42) (3.22) (1.39)

Table 4. Correlation coefficients between subjective estimates and HRV measures.

Factor Interval Stimulus Valence Arousal Dominance Natural
Arousal —0.36 —0.34
Dominance 0.44 —0.34
Natural 0.19 -0.23 0.63 —0.31 0.35
Mechanical —0.24 0.25 -0.57 0.28 —0.38 —0.76
Human —0.38 0.22 —0.38
Heart rate
RMSSD
rrtHRV —0.22
SDNN 0.23
TINN
pNN50

4 Discussion

In this experiment 15 participants evaluated a ran-
domly ordered set of 8 soundscapes, performing a survey
of classification scores and self-reported affect. Heart rate
and heart rate variability measures were recorded through-
out the experiment. Statistically significant relationships

between soundscape classification and affect self-report
were identified, with higher natural and lower mechanical
scores reflecting higher reported valence and lower reported
arousal. The subplots of Figure 7 visualize the relation-
ships between classification scores, valence and arousal
respectively. Interestingly the classification of human
sounds follows a similar trend to mechanical sound classifi-
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Table 5. Linear mixed-effects models.
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Factor Valence Arousal
Estimates Std. error 95% CI Estimates Std. error 95% CI
Natural 0.0189™" 0.0028 ~1.289  —0.471 —0.0091""" 0.0024 —0.0140  —0.0043
Mechanical —0.0162""" 0.0032 —0.022  —0.0098 —0.0089""" 0.0025 0.0038 0.0140
Human —0.0062 0.0035 —0.013 0.7e—3 —0.0094™" 0.0032 0.0029 0.0158
Heart rate 0.0059 0.0096 —0.013 0.025 —0.0099 0.0097 —0.0291 0.0092
RMSSD -3.329 3.75 —10.82 4.034 2.837 3.98 —5.04 10.72
rrfHRV —0.123" 0.055 —0.232 —0.146 0.0039 0.065 —0.124 0.1327
SDNN 5.313 3.49 -1.613 12.24 —1.305 3.97 —9.23 6.5
TINN —0.2189 1.145 —2.486 2.048 2.188 1.26 —0.32 4.7
pNN50 —0.708 0.613 —1.924 0.506 0.367 0.674 —0.968 1.7
Model information
Observations 120
Fixed effects coeffs 2
Random effects coeffs 23
p < 0.01.
VS 0.05.
p < 0.1.
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Figure 7. Distribution of subjective estimates for each stimuli across all participants.

cation with respect to arousal responses. These results
reflect similar findings to previous research, highlighting
the context independent effect of natural sounds on valence
and arousal. Stevens et al. identified a position correlation
between natural scores and valence scores, and a negative
correlation between mechanical and human scores and
valence scores across two experiments focussed on sound-
scape assessment [11, 28].

Only one relationship between a descriptor and an HRV
metric was identified in statistical modeling. This relation-
ship between rTfHRV and self-reported valence is presented
in Figure 8 and reflects a trend of a lower rTHRV with
increased valence. This result is contrary to the suggestion
that HRV would increase under more relaxed conditions
such as listening to a more pleasant soundscape. As rrHRV
is intended to be a more suitable and robust HRV measure
with respect to outliers and shorter time periods, it could be
that the other HRV measures would exhibit similar rela-
tionships if the stimuli were longer or the effect size was
increased. However, as no other HRV metric presented a
similar relationship to any descriptor, this result is likely

to be anomalous and warrants further investigation with
a larger sample size. These findings or lack there-of are sim-
ilar to those reported by Irwin et al. and Medvedev et al.,
their of whom reported finding statistically significant rela-
tionships between environmental sounds or soundscapes
and heart rate or HRV measures [14, 34, 66|.

4.1 Limitations and further research

This experiment had several limitations that should be
addressed when designing further studies of physiological
responses to soundscapes. Though the sample size in this
experiment was sufficient to identify the effects of sound-
scape classification on emotional affect, the sample size
was insufficient to develop confident conclusions on the
presence of an effect of soundscape on HRV measures.
Future work should focus on improving the methodology
of the experiment in order to maximize the effect size. Ciuk
et al. previously identified that physiological measures were
significantly weaker than self-reported affect at estimating
the influence of attitudes on policy agreement in a study
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Figure 8. Distribution of rrHRV with respect to valence scores.

of the influence of affect on policy making decisions of fed-
eralism [67]. Though the sample size of 106 undergraduate
students used in the study was large compared to those typ-
ically used in psychophysiological evaluations of sound-
scape, the researchers concluded that physiological
measurements were not appropriate replacements for self-
report in studies of political science, and that the stimuli
required for an effective study must elicit a very strong emo-
tional reaction. Though large sample sizes are desirable for
robust statistical analysis, a greater focus on managing con-
founds and improving the stimuli may yield more signifi-
cant results than larger sample sizes alone.

This experiment was designed to minimize external fac-
tors that might elicit changes in heart rate. The experiment
always took place seated, in a warm insulated environment,
with minimal participant engagement. These experimental
conditions may have primed participants to be significantly
relaxed, indifferent and even bored. Static binaural render-
ing was utilized to improve the ecological validity of the
soundscape reproduction, but there was little impetus for
participants to engage in the evaluation and suspend their
disbelief. Perhaps the effect size of soundscape experience
on HRV can be boosted by significantly improving the
experiment design to be more ecologically valid. Recent
studies have suggested that the use of VR technologies
can improve the immersive nature of such experiments
[68]. Future research should utilize advanced environment
rendering technologies to improve ecological validity and
participant engagement within the experiment.

Another factor in the quality of the study was the demo-
graphics of the participants. Future studies should include a
greater diversity of the population being sampled in the
study design, with the intention of ensuring the sample of
participants is representative of the wider population under
consideration. The participants in this experiment were not
surveyed for factors that could reflect the prior context of
their experience such as their nationality and the type of
environment they grew up in. Researchers have reported
differences in responses to soundscapes that are related
to the nationality of the participants [69]. Further, the

participants were not surveyed for their affect and attitudes
prior to performing the study. There is evidence that phys-
iological measures might be sensitive to several confounds
including a participants’ disposition, hydration level and
alcohol intake prior to the experiment. Future studies
should make appropriate steps to ensure these confounds
do not influence the experimental results [70].

The strategy for the selection of stimuli was developed
with the intention of avoiding systematic bias. The stimuli
were selected through a process of algorithmic evaluation,
taking advantage of an established metric for evaluating
soundscape ecology [48]. However, researchers using a sim-
ilar stimuli selection strategy should attempt to compare
several metrics that are intended for similar purposes,
instead of limiting the range of metrics to one. A further
limitation of the stimuli selection procedure was that no fur-
ther pre-processing was used, and several of the recordings
include strong low frequency rumbles that are likely caused
by wind noise. This low frequency noise is quite obvious in
some playback systems, and a researcher improving on this
study should consider using appropriate high pass filtering.

5 Conclusions

In this study fifteen participants took part in a directed
listening experiment that was intended to identify if psy-
chophysiological responses would occur when listening to a
variety of soundscapes. These responses were measured using
a survey and a Polar H10 ECG based heart rate monitor.
Results for the objective classification of soundscape compo-
sition (indicators) and subjective self-report (descriptors)
were similar to previous works such as Stevens et al. [11],
indicating that there were appropriate differences in affective
report and classification between stimuli. However, no statis-
tically significant changes in heart rate or heart rate variabil-
ity measures were identified. Heart rate in this case does not
appear to be an effective descriptor of differences between the
stimuli, given the small sample size used in this repeated
measures experiment. Further research should attempt to
identify alternative methodological approaches that could
elicit and detect such psychophysiological responses.
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