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Abstract

Natural language processing (NLP) research

combines the study of universal principles,

through basic science, with applied science tar-

geting specific use cases and settings. How-

ever, the process of exchange between ba-

sic NLP and applications is often assumed

to emerge naturally, resulting in many inno-

vations going unapplied and many important

questions left unstudied. We describe a new

paradigm of Translational NLP, which aims to

structure and facilitate the processes by which

basic and applied NLP research inform one

another. Translational NLP thus presents a

third research paradigm, focused on under-

standing the challenges posed by application

needs and how these challenges can drive in-

novation in basic science and technology de-

sign. We show that many significant advances

in NLP research have emerged from the in-

tersection of basic principles with application

needs, and present a conceptual framework

outlining the stakeholders and key questions

in translational research. Our framework pro-

vides a roadmap for developing Translational

NLP as a dedicated research area, and identi-

fies general translational principles to facilitate

exchange between basic and applied research.

1 Introduction

Natural language processing (NLP) lies at the in-

tersection of basic science and applied technolo-

gies. However, translating innovations in basic

NLP methods to successful applications remains a

difficult task in which failure points often appear

late in the development process, delaying or pre-

venting potential impact in research and industry.

Application challenges range widely, from changes

in data distributions (Elsahar and Gallé, 2019) to

computational bottlenecks (Desai et al., 2020) and

integration with domain expertise (Rahman et al.,

2020). When unanticipated, such challenges can

be fatal to applications of new NLP methodologies,

leaving exciting innovations with minimal practical
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Figure 1: Interactions between linguistic theory, model

development, and applications in NLP research. Solid

lines indicate moving from basic research to applica-

tions, and dashed lines indicate how applied research

feeds back into basic study. Translational NLP devel-

ops processes to realize this exchange.

impact. Meanwhile, real-world applications may

rely on regular expressions (Anzaldi et al., 2017)

or unigram frequencies (Slater et al., 2017) when

more sophisticated methods would yield deeper in-

sight. When successful translations of basic NLP

insights into practical applied technologies do oc-

cur, the factors contributing to this success are

rarely analyzed, limiting our ability to learn how to

enable the next project and the next technology.

We argue for a third kind of NLP research, which

we call Translational NLP. Translational NLP re-

search aims to understand why one translation suc-

ceeds while another fails, and to develop general,

reusable processes to facilitate more (and easier)

translation between basic NLP advances and real-

world application settings. Much NLP research

already includes translational insights, but often

considers them properties of a specific application

rather than generalizable findings that can advance

the field. This paper illustrates why general prin-

ciples of the translational process enhance mutual

exchange between linguistic inquiry, model devel-

opment, and application research (illustrated in Fig-

ure 1), and are key drivers of NLP advances.
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We present a conceptual framework for Trans-

lational NLP, with specific elements of the trans-

lational process that are key to successful appli-

cations, each of which presents distinct areas for

research. Our framework provides a concrete path

for designing use-inspired basic research so that

research products can effectively be turned into

practical technologies, and provides the tools to

understand why a technology translation succeeds

or fails. A translational perspective further enables

factorizing “grand challenge” research questions

into clearly-defined pieces, producing intermediate

results and driving new basic research questions.

Our paper makes the following contributions:

• We characterize the stakeholders involved in

the process of translating basic NLP advances

to applications, and identify the roles they play

in identifying new research problems (§3.1).

• We present a general-purpose checklist to use

as a starting point for the translational pro-

cess, to help integrate basic NLP innovations

into applications and to identify basic research

opportunities arising from application needs

(§3.2).

• We present a case study in the medical domain

illustrating how the elements of our Transla-

tional NLP framework can lead to new chal-

lenges for basic, applied, and translational

NLP research (§4).

2 Defining Translational NLP

2.1 A third type of research

A long history of distinguishing between basic and

applied research (Bush, 1945; Shneiderman, 2016)

has noted that these terms are often relative; one

researcher’s basic study is the application of an-

other’s theory. In practice, basic and applied re-

search in NLP are endpoints of a spectrum, rather

than discrete categories. As use-inspired research,

most NLP studies incorporate elements of both ba-

sic and applied research. We therefore define our

key terms for this paper as follows:

Basic research Basic NLP research is focused

on universal principles: linguistically-motivated

study that guides model design (e.g., Recasens and

Hovy (2009) for coreference, Kouloumpis et al.

(2011) for sentiment analysis), or modeling tech-

niques designed for general use across different

settings and genres. Basic research tends to focus

on one problem at a time, and frequently leverages

established datasets to provide a well-controlled

environment for varying model design. Basic NLP

research is intended to take the long view: it takes

the time to investigate fundamental questions that

may yield rewards for years to come.

Applied research Applied NLP research studies

the intersection of universal principles with specific

settings; it is responsive to the needs of commer-

cial applications or researchers in other domains.

Applied research utilizes real-world datasets, often

specialized, and involves sources of noise and un-

reliability that complicate capturing linguistic regu-

larities of interest. Applications often involve tack-

ling multiple interrelated problems, and demand

complex combinations of tools (e.g. using OCR

followed by NLP to analyze scanned documents).

Applied research is concrete and immediate, but

may also be reactive and have a limited scope.

Translational research The term translational

is used in medicine to describe research that aims to

transform advances in basic knowledge (biological

or clinical) to applications to human health (Butte,

2008; Rubio et al., 2010). Translational research is

a distinct discipline bridging basic science and ap-

plications (Pober et al., 2001; Reis et al., 2010). We

adopt the term Translational NLP to describe re-

search bridging the gap between basic and applied

NLP research, and aiming to understand the pro-

cesses by which each informs the other. Section 4

presents one in-depth example; other salient ex-

amples include comparing the efficacy of domain

adaptation methods for different application do-

mains (Naik et al., 2019) and developing reusable

software for processing specific text genres (Neu-

mann et al., 2019). Translational research occupies

a middle ground in the timeframe and complex-

ity of solutions: it develops processes to rapidly

and effectively integrate new innovations into appli-

cations to address emerging needs, and facilitates

integration between pipelines of NLP tools.

2.2 Translation is bidirectional

In addition to “forward” motion of basic inno-

vations into practical applications, the needs of

real-world applications also provide significant op-

portunities for new fundamental research. Shnei-

derman’s model of “two parents, three children”

(Shneiderman, 2016) provides an informative pic-

ture: combining a practical problem and a theo-

retical model yields (1) a solution to the problem,
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(2) a refinement of the theory, and (3) guidance for

future research. Tight links between basic research

and applications have driven many major advances

in NLP, from machine translation and dialog sys-

tems to search engines and question answering.

Designing research with application needs in mind

is a key impact criterion for both funding agencies

(Christianson et al., 2018) and industry (Spector

et al., 2012), and helps to identify new, high-impact

research problems (Shneiderman, 2018).

2.3 NLP as a translational field: a historical

perspective

The NLP field has always lain at the nexus of ba-

sic and applied research. Application needs have

driven some of the most fundamental developments

in the field, leading to explosions in basic research

in new topics and on long-standing challenges.

The need to automatically translate Russian sci-

entific papers in the early years of the Cold War led

to some of the earliest NLP research, creating the

still-thriving field of machine translation (Slocum,

1985). Machine translation has since helped drive

many significant advances in basic NLP research,

from the adoption of statistical models in the 1980s

(Dorr et al., 1999) to neural sequence-to-sequence

modeling (Sutskever et al., 2014) and attention

mechanisms (Bahdanau et al., 2015).

Similarly, the rapid growth of the World Wide

Web in the 1990s created an acute need for tech-

nologies to search the growing sea of information,

leading to the development of NLP-based search

engines such as Lycos (Mauldin, 1997), followed

by PageRank (Page et al., 1999) and the growth of

Google. The need to index and monetize vast quan-

tities of textual information led to an explosion in

information retrieval research, and the NLP field

and ever-growing web data continue to co-develop.

In a more recent example, IBM identified auto-

mated question answering (QA) as a new business

opportunity in a high-information world, and de-

veloped the Watson project (Ferrucci et al., 2010).

Watson’s early successes catapulted QA into the

center of NLP research, where it has continued

to drive both novel technology development and

benchmark evaluation datasets used in hundreds of

basic NLP studies (Rajpurkar et al., 2016).

These and other examples illustrate the key role

that application needs have played in driving inno-

vation in NLP research. This reflects not only the

history of the field but the role that integrating basic

and applied research has in enriching scientific en-

deavor (Stokes, 1997; Branscomb, 1999; Narayana-

murti et al., 2013; Shneiderman, 2016). An inte-

grated approach has been cited by both Google

(Spector et al., 2012) and IBM (McQueeney, 2003)

as central to their successes in both business and

research. The aim of our paper is to facilitate this

integration in NLP more broadly, through present-

ing a rubric for studying and facilitating the process

of getting both to and back from application.

2.4 A practical definition

For an operational definition of Translational NLP,

it is instructive to consider four phases of a generic

workflow for tackling a novel NLP problem using

supervised machine learning.1 First, a team of NLP

experts works with subject matter experts (SMEs)

to identify appropriate corpora, define concepts

to be extracted, and construct annotation guide-

lines for the target task. Second, SMEs use these

guidelines to annotate natural language data, us-

ing iterative evaluation, revision of guidelines, and

re-annotation to converge on a high-quality gold

standard set of annotations. Third, NLP experts use

these annotations to train and evaluate candidate

models of the task, joined with SMEs in a feed-

back loop to discuss results and needed revisions

of goals, guidelines, and gold standards. Finally,

buy-in is sought from SMEs and practitioners in

the target domain, in a dialogue informed by empir-

ical results and conceptual training. NLP adoption

in practice identifies failure cases and new informa-

tion needs, and the process begins again.

This laborious process is needed because of the

gaps between expertise in NLP technology and ex-

pertise in use cases where NLP is applied. NLP

expertise is needed to properly formulate problems,

and subsequently to develop sound and generaliz-

able solutions to those problems. However, for up-

take (and therefore impact) to occur, these solutions

must be based in deep expertise in the use case do-

main, reified in a computable manner through anno-

tation or knowledge resource development. These

distinct forms of expertise are generally found in

different groups of individuals with complementary

perspectives (see e.g. Kruschwitz and Hull (2017)).

Given this gap, we define Translational NLP as

the development of theories, tools, and processes

to enable the direct application of advanced NLP

1While workflows will vary for different classes of NLP
problems, dialogue between NLP experts and subject matter
experts is at the heart of developing almost all NLP solutions.



4128

tools in specific use cases. Implementing these

tools and processes, and engaging with basic NLP

experts and SMEs in their use, is the role of the

Translational NLP scientist. Although every use

case has unique characteristics, there are shared

principles in designing NLP solutions that under-

gird the whole of the research and application pro-

cess. These shared translational principles can be

adopted by basic researchers to increase the im-

pact of NLP methods innovations, and guide the

translational researcher in developing novel efforts

targeting fundamental gaps between basic research

and applications. The framework presented in this

paper identifies common variables and asks specific

questions that can drive this research.

For examples of this process in practice, it is

valuable to examine NLP development in the medi-

cal domain. Use-inspired NLP research has a long

history in medicine (Sager et al., 1982; Ranum,

1989), frequently with an eye towards practical ap-

plications in research and care. Chapman et al.

(2011) highlight shared tasks as a key step towards

addressing numerous barriers to application of NLP

on clinical notes, including lack of shared datasets,

insufficient conventions and standards, limited re-

producibility, and lack of user-centered design (all

factors presenting basic research opportunities, in

addition to NLP task improvement). Several ef-

forts have explored the development of graphical

user interfaces for conducting NLP tasks, including

creation and execution of pipelines (Cunningham,

2002; D’Avolio et al., 2010, 2011; Soysal et al.,

2018), although these efforts generally do not re-

port on evaluation of usability by non-NLP experts.

Usability has been investigated by other studies in-

volving more focused tools aimed at specific NLP

tasks, including concept searching (Hultman et al.,

2018), annotation (Gobbel et al., 2014b,a), and in-

teractive review of and update of text classification

models (Trivedi et al., 2018, 2019; Savelka et al.,

2015). Recent research has utilized interactive NLP

tools for processing cancer research (Deng et al.,

2019) and care (Yala et al., 2017) documents. By

constructing, designing, and evaluating tools de-

signed to simplify specific NLP processes, these

efforts present examples of Translational NLP.

3 The Translational NLP framework

We present a conceptual framework for Transla-

tional NLP, to formalize shared principles describ-

ing how basic and applied research interact to cre-

ate NLP solutions. Our framework codifies fun-

damental variables in this process, providing a

roadmap for negotiating the design of methodolog-

ical innovations with an eye towards potential ap-

plications. Although it is certainly not the case

that every basic research advance must be tied to

a downstream application need, designing founda-

tional technologies for potential application from

the beginning produces more robust technologies

that are easier to transfer to practical settings, in-

creasing the impact of basic research. By defining

common variables, our framework also provides

a structure for aligning application needs to basic

technologies, helping to identify potential failure

points and new research needs early for faster adop-

tion of basic NLP advances.

Our framework has two components:

1. A definition of broad classes of stakeholders

in translating basic NLP innovations into ap-

plications, including the roles that each stake-

holder plays in defining and guiding research;

2. A checklist of fundamental questions to struc-

ture the Translational NLP process, and to

guide identification of basic research opportu-

nities in specific application cases.

3.1 Stakeholders

NLP applications involve three broad categories

of stakeholders, illustrated in Figure 2. Each con-

tributes differently to technology implementation

and identifying new research challenges.

NLP Experts NLP researchers bring key ana-

lytic skills to enable achieving the goals of an ap-

plied system. NLP experts provide methodological

sophistication in models and paradigms for analyz-

ing language, and an understanding of the nature

of language and how it captures information. NLP

researchers provide much-needed data expertise,

including skills in obtaining, cleaning, and format-

ting data for machine learning and evaluation, as

well as conceptual models for representing informa-

tion needs. NLP scientists identify research oppor-

tunities in modeling information needs, bringing

linguistic knowledge into the equation, and devel-

oping appropriate tools for application and reuse.

Subject Matter Experts Subject matter experts

(SMEs) provide the context that helps to determine

what information is important to analyze and what

the outputs of applied NLP systems mean for the

application setting. SMEs, from medical practition-

ers to legal scholars and financial experts, bring
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Tractable analytic methods

Data expertise

Conceptual models of information

NLP Experts 

Computing constraints

Data availability

Organizational priorities

End Users

Research context

Information context

NLP consumers

Subject Matter Experts

Translational NLP 

Researchers

Figure 2: Attributes of key stakeholders in the translational process for NLP.

an understanding of where relevant information

can be found (e.g., document sources (Fisher et al.,

2016) and sections (Afzal et al., 2018)), which can

help identify new types of language for basic re-

searchers to study (Burstein, 2009; Crossley et al.,

2014) and new challenges such as sparse complex

information (Newman-Griffis and Fosler-Lussier,

2019) and higher-level structure in complex docu-

ments (Naik et al., 2019). In addition, the context

that domain experts offer in terms of the needs of

target applications feeds back into evaluation meth-

ods in the basic research setting (Graham, 2015).

SMEs are also the consumers of NLP solutions,

as tools for their own research and applications.

Thus, SMEs must also be consultants regarding

the trustworthiness and reliability of proposed so-

lutions, and can identify key application-specific

concerns such as security requirements.

End Users The end users of NLP solutions span

a range of roles, environmental contexts, and goals,

each of which guides implementation factors of

NLP applications. For example, collecting patient

language in a lab setting, in a clinic, or at home will

pose different challenges in each setting, which can

inform the development of basic NLP methods. Ap-

plication settings may have limited computational

resources, motivating the development of efficient

alternatives to high-resource models (e.g. Wang

et al. (2020)), and have different human factors

affecting information collection and use.

End users have different constraints on data

availability, in terms of how much data of what

types can be obtained from whom; the extensive

work funded by DARPA’s Low Resource Lan-

guages for Emergent Incidents (LORELEI) initia-

tive (Christianson et al., 2018) is a testament to the

basic research arising from these constraints.

Beyond the individual domain expert, end users

use NLP technologies to address their own infor-

mation needs according to the priorities of their

organizations. These organizational priorities may

conflict with existing modeling assumptions, high-

lighting new opportunities for basic research to

expand model capabilities. For example, Shah et al.

(2019) highlight the conceptual gap between pre-

dictive model performance in medicine and clinical

utility to call for new research on utility-driven

model evaluation. Spector et al. (2012) make a sim-

ilar point about Google’s mission-driven research

identifying unseen gaps for new basic research.

The role of the Translational NLP researcher

is to interface with each of these stakeholders, to

connect their goals, constraints, and contributions

into a single applied system, and to identify new

research opportunities where parts of this system

conflict with one another. Notably, this creates an

opportunity for valuable study of SME and end user

research practices, and for participatory design of

NLP research (Lazar et al., 2017). Our checklist,

introduced in the next section, provides a structured

framework for this translational process.

3.2 Translational NLP Checklist

The path between basic research and applications is

often nebulous in NLP, limiting the downstream im-

pact of modeling innovations and obscuring basic

research challenges found in application settings.

We present a general-purpose checklist covering

fundamental variables in translating basic research

into applications, which breaks down the transla-

tional process into discrete pieces for negotiation,

measurement, and identification of new research

opportunities. Our checklist, illustrated in Figure 3,

is loosely ordered from initial design to application

details. In practice, these items reflect different ele-

ments of the application process and are constantly
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Information Need
What is the goal, and what 

are the outputs?

Data 
Characteristics

Which genres and linguistic 
communities are involved?

Task Paradigms
Which existing NLP tasks are 

involved?

Available 
Resources

What knowledge sources and 
infrastructure is available?

NLP Technologies
What models and methods 

are appropriate?

Evaluation
How is model performance 

evaluated?

Interpretation
How can model decisions be 
interpreted for accountability?

Application 
Engineering

How can this tool be made 
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n

Ap
pli
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Figure 3: The eight items in our Translational NLP

checklist, with key questions for each. Items are

loosely ordered from initial design to application de-

tails, but should be regularly revisited in a feedback

loop between application stakeholders.

re-evaluated via a feedback loop between the ap-

plication stakeholders. While many of these items

will be familiar to NLP researchers, each represents

potential points of failure in translation. Designing

the research process with these variables in mind

will produce basic innovations that are more eas-

ily adopted for application and more directly con-

nected to the challenges of real-world use cases.

We illustrate our items for two example cases:

Ex. 1: Analysis of multimodal clinical data

(scanned text, tables, images) for patient diagnosis.

Ex. 2: Comparison of medical observations to gov-

ernment treatment and billing guidelines.

Information Need The initial step that guides

an application is defining inputs and outputs, at two

levels: (1) the overall problem to address with NLP

(led by the subject matter expert), and (2) the for-

mal representation of that problem (led by the NLP

expert). The overall goal (e.g., “extract informa-

tion on cancer from clinical notes”) determines the

requirements of the solution, and is central to iden-

tifying a measurement of its effectiveness. Once

the overall goal is determined, the next step is a

formal representation of that goal in terms of text

units (documents, spans) to analyze and what the

analysis should produce (class labels, sequence

annotations, document rankings, etc.). These re-

quirements are tailored to specific applications and

may not reflect standardized NLP tasks. For ex-

ample, a clinician interested in the documented

reasoning behind a series of laboratory test orders

needs: (1) the orders themselves (text spans); (2)

the temporal sequence of the orders; and (3) a text

span containing the justification for each order.

Ex. 1: type, severity, history of symptoms.

Ex. 2: clinical findings, logical criteria.

Data Characteristics A clear description of the

language data to be analyzed is key to identifying

appropriate NLP technologies. Data characteris-

tics include the natural language(s) used (e.g., En-

glish, Chinese), the genre(s) of language to analyze

(e.g., scientific abstracts, quarterly earnings reports,

tweets, conversations), and the type(s) of linguis-

tic community that produced them (e.g., medical

practitioners, educators, policy experts). This infor-

mation identifies the sublanguage(s) of interest (Gr-

ishman and Kittredge, 1986), which determine the

availability and development of appropriate NLP

tools (Grishman, 2001). Corporate disclosures, fi-

nancial news reports, and tweets all require differ-

ent processing strategies (Xing et al., 2018), as do

tweets written by different communities (Blodgett

et al., 2016; Groenwold et al., 2020).

Ex. 1: clinical texts, lab reports.

Ex. 2: clinical texts, legal guidelines.

Task Paradigms To address the overall goal

with an NLP solution, it must be formulated in

terms of one or more well-defined NLP problems.

Many real-world application needs do not clearly

correspond to a single benchmark task formulation.

For example, our earlier example of the sequence

of lab order justifications can be formulated as a

sequence of: (1) Named Entity Recognition (treat-

ing the order types as named entities in a medical

knowledge base); (2) time expression extraction

and normalization; (3) event ordering; and (4) evi-

dence identification. Breaking the application need

into well-studied subproblems at design time en-

ables faster identification and development of rele-

vant NLP technologies, and highlights any portions

of the goal that do not correspond with a known

problem, requiring novel basic research.

Ex. 1: document type classification, OCR, informa-

tion extraction (IE), patient classification.

Ex. 2: IE, natural language inference.

Available Resources The question of resources

to support an NLP solution includes two distinct

concerns: (1) knowledge sources available to rep-

resent salient aspects of the target task; and (2)

compute infrastructure for NLP system execution
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and deployment. Knowledge sources may be sym-

bolic, such as knowledge graphs or gazetteers, or

representational, such as representative corpora or

pretrained language models. For some applica-

tions, powerful knowledge sources may be avail-

able (such as the UMLS (Bodenreider, 2004) for

biomedical reasoning), while others are severely

under-resourced (such as emerging geopolitical

events, which may lack even relevant social me-

dia text). These resources in turn affect the kinds

of technologies that are appropriate to use.

In terms of infrastructure, NLP technologies are

deployed on a wide variety of systems, from com-

mercial data centers to mobile devices. Each set-

ting presents constraints of limited resources and

throughput requirements (Nityasya et al., 2020).

An application environment with a high maxi-

mum resource load but low median availability

is amenable to batch processing architectures or

approaches with high pretraining cost and low

test-time cost. Pretrained word representstions

(Mikolov et al., 2013; Pennington et al., 2014) and

language models (Peters et al., 2018; Devlin et al.,

2019) are one example of fundamental technolo-

gies that address such a need. Throughput require-

ments, i.e., how much language input needs to be

analyzed in a fixed amount of time, often require

engineering optimization for specific environments

(Afshar et al., 2019), but the need for faster runtime

computation has led to many advances in machine

learning for NLP, such as variational autoencoders

(Kingma and Welling, 2014) and the Transformer

architecture (Vaswani et al., 2017).

Ex. 1: UMLS, high GPU compute.

Ex. 2: UMLS, guideline criteria, low compute.

NLP Technologies The interaction between task

paradigms, data characteristics, and available re-

sources helps to determine what types of implemen-

tations are appropriate to the task. Implementa-

tions can be further broken down into representa-

tion technologies, for mathematically representing

the language units to be analyzed; modeling ar-

chitectures, for capturing regularities within that

language; and optimization strategies (when us-

ing machine learning), for efficiently estimating

model parameters from data. In low-resource set-

tings, highly parameterized models such as BERT

may not be appropriate, while large-scale GPU

server farms enable highly complex model archi-

tectures. When the overall goal is factorized into

multiple NLP tasks, optimization often involves

joint or multi-task learning (Caruana, 1997).

Ex. 1: large language models, dictionary matching,

OCR, multi-task learning.

Ex. 2: dictionary matching, small neural models.

Evaluation Once a solution has been designed,

it must be evaluated in terms of both the specific

NLP problem(s) and the overall goal of the applica-

tion. Standardized NLP task formulations typically

define benchmark metrics which can be used for

evaluating the NLP components: F-1 and AUC for

information extraction, MRR and NDCG for infor-

mation retrieval, etc. The design of these metrics

is its own extensive area of research (Jones and

Galliers, 1996; Hirschman and Thompson, 1997;

Graham, 2015), and even established evaluation

methods may be constantly revised (Grishman and

Sundheim, 1995). Critically for the translational

researcher, some metrics may be preferred over

others (e.g., precision over recall), and standard-

ized evaluation metrics may not reflect the goals

and needs of applications (Friedman and Hripcsak,

1998). Improvements on standardized evaluation

metrics (such as increased AUC) may even obscure

degradations in application-relevant performance

measures (such as decreased process efficiency).

Translational researchers thus have the opportunity

to work with NLP experts and SMEs to identify

or develop metrics that capture both the effective-

ness of the NLP system and its contribution to the

application’s overall goal.

Ex. 1: F-1, patient outcomes.

Ex. 2: F-1, billing rates.

Interpretation Interpretability and analysis of

NLP and other machine learning systems has been

the focus of extensive research in recent years

(Gilpin et al., 2018; Belinkov and Glass, 2019),

with debate over what constitutes an interpretation

(Rudin, 2019; Wiegreffe and Pinter, 2019) and de-

velopment of broad-coverage software packages

for ease of use (Nori et al., 2019). For the trans-

lational researcher, the first step is to engage with

SMEs to determine what constitutes an acceptable

interpretation of an NLP system’s output in the ap-

plication domain (which may be subject to specific

legal or ethical requirements around accountability

in decision-making processes). This leads to an

iterative process, working with SMEs and NLP ex-

perts to identify appropriately interpretable models,

or to identify the need for new basic research on

interpretability within the target domain.

Ex. 1: Evidence identification, model audits.



4132

Ex. 2: Criteria visualization, model audits.

Application Engineering Last but not least, the

translational process must also be concerned with

the implementation of NLP solutions, both in terms

of the specific technologies used and how they can

fit in to broader information processing pipelines.

The development of general-purpose NLP architec-

tures such as the Stanford CoreNLP Toolkit (Man-

ning et al., 2014), spaCy (Honnibal and Montani,

2017), and AllenNLP (Gardner et al., 2018), as

well as more targeted architectures such as the

clinical NLP framework presented by Wen et al.

(2019), provide well-engineered frameworks for

implementing new technologies in a way that is

easy for others to both adopt and adapt for use in

their own pipelines. Standardized data exchange

frameworks such as UIMA (Ferrucci and Lally,

2004) and JSON make implementations more mod-

ular and easier to wire together. Leveraging tools

and frameworks like these, together with good soft-

ware design principles, makes NLP tools both eas-

ier to apply downstream and easier for other re-

searchers to incorporate into their own work.

Ex. 1: Multiple interoperable technologies.

Ex. 2: Single decision support tool.

3.2.1 Translating methodology advances into

existing applications

While the checklist items can guide initial design

of a new NLP solution, they are equally applica-

ble for incorporating new basic NLP innovations

into existing solutions. Any new innovation can be

reviewed in terms of our checklist items to iden-

tify new requirements or constraints (e.g., higher

computational cost, more intuitive interpretability

measures). The translational researcher can then

work with NLP experts, SMEs, and the end users to

determine how to incorporate the new innovation

into the existing solution.

4 Case Study: NLP for Disability Review

We illustrate our Translational NLP framework us-

ing our recent line of research on developing NLP

tools to assist US Social Security Administration

(SSA) officials in reviewing applications for dis-

ability benefits (Desmet et al., 2020). The goal of

this effort was to help identify relevant pieces of

medical evidence for making decisions about dis-

ability benefits, analyzing vast quantities of medi-

cal records collected during the review process.

The stakeholders in this setting included: NLP

researchers (interested in developing generalizable

methods); subject matter experts in disability and

rehabilitation; and SSA end users (limited com-

puting, large data but strictly controlled, overall

priorities of efficiency and accuracy).

The Translational NLP checklist for this setting

is shown in Table 1. This combination of factors

has led to several translational studies, including:

• Newman-Griffis et al. (2018) developed a low-

resource entity embedding method for do-

mains with minimal knowledge sources (lack

of Available Resources).

• Newman-Griffis and Zirikly (2018) analyzed

the data size and representativeness tradeoff

for information extraction in domains lacking

large corpora (Available Resources).

• Newman-Griffis and Fosler-Lussier (2019)

developed a flexible method for identifying

sparse health information that is syntactically

complex (challenging Data Characteristics).

• Newman-Griffis and Fosler-Lussier (2021)

compared the Task Paradigms of classification

and candidate selection paradigms for medical

coding in a new domain.

While these studies do not systematically ex-

plore Evaluation, Interpretation, or Application En-

gineering, they illustrate how the characteristics of

one application setting can lead to a line of Trans-

lational NLP research with broader implications.

Several further challenges of this application area

remain unstudied: for example, representing and

modeling the complex timelines of persons with

chronic health conditions and intermittent health

care and adapting NLP systems to highly variable

medical language from practitioners and patients

around the US. These present intriguing challenges

for basic NLP research that can inform many other

applications beyond this case study.

Of course, these studies are far from the only

examples of Translational NLP research. Many

studies tackle translational questions, from domain

adaptation (shifts in Data Characteristics) and low-

resource learning (limited Available Resources),

and the growing NLP literature in domain-specific

venues such as medical research, law, finance, and

more involves all aspects of the translational pro-

cess. Rather, this case study is simply one illustra-

tion of how an explicitly translational perspective

in study design can identify and connect broad op-

portunities for contributions to NLP research.
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Information Need Overall goal: Improve disability benefits review process by highlighting relevant information
Formal representation: Spans of evidence, with attributes for activity type and level of limitation

Data Characteristics Medical records and administrative forms from USA, mostly English

Task Paradigms Information extraction (spans), information retrieval (documents), span classification (activity
and limitations)

Available Resources Minimal knowledge sources for function and disability, no public corpora; US government
computing systems; high throughput requirements (thousands of records/day)

NLP Technologies Low-latency, low-compute sequence models; rule-based systems

Evaluation Standard metrics (F-1, accuracy). Information retrieval metrics reported for use case prototypes.

Interpretation Interpretation needs primarily around human decision-making; NLP tools highlight and organize
information in context. No ML interpretability reported in published results.

Application
Engineering

Open-source implementations using standardized frameworks for preprocessing. No data ex-
change reported.

Table 1: Translational NLP checklist items for Disability Review case study, including notes on published results.

5 Discussion

Our paradigm of Translational NLP defines and

gives structure to a valuable area of research not

explicitly represented in the ACL community. We

note that translational research is not meant to re-

place either basic or applied research, nor do we in-

tend to say that all basic NLP studies must be tied to

specific application needs. Rather we aim to high-

light the value of studying the processes of turn-

ing basic innovations into successful applications.

These processes, from scaling model computation

to redesigning tools to meet changing application

needs, can inform new research in model design,

domain adaptation, etc., and can help us understand

why some tools succeed in application while oth-

ers fail. In addition to helping more innovations

successfully translate, the principles outlined in

this paper can be of use to basic and applied NLP

researchers as well as translational ones, in identi-

fying common variables and concerns to connect

new work to the broader community.

Translational research is equally at home in in-

dustry and academia, and already occurring in both.

While resource disparities between industrial and

academic research increasingly push large-scale

modeling efforts out of reach of academic teams, a

translational lens can help to identify rich areas of

knowledge-driven study that do not require exas-

cale data or computing resources. The general prin-

ciples and interdisciplinary nature of translational

research make it a natural fit for public knowledge-

driven academic settings, while its applicability to

commercial needs is highly relevant to industry.

Our framework provides a starting point for the

translational process, which will evolve differently

for every project. The specifics of different applica-

tions will expand our initial questions in different

ways (e.g., “Data Characteristics” may involve mul-

timodal data, or different language styles), and the

dynamics of collaborations will shift answers over

time (e.g., a change in evaluation criteria may mo-

tivate different model training approaches). Our

checklist provides a minimal set of common ques-

tions, and can function as a touchstone for discus-

sions throughout the research process, but it can

and should be tailored to the nature of each project.

Our framework is itself a preliminary characteriza-

tion of Translational NLP research, and will evolve

over time as the field continues to develop.

6 Conclusion

We have outlined a new model of NLP research,

Translational NLP, which aims to bridge the gap

between basic and applied NLP research with gen-

eralizable principles, tools, and processes. We iden-

tified key types of stakeholders in NLP applica-

tions and how they inform the translational process,

and presented a checklist of common variables and

translational principles to consider in basic, transla-

tional, or applied NLP research. The translational

framework reflects the central role that integrating

basic and applied research has played in the devel-

opment of the NLP field, and is illustrated by both

the broad successes of machine translation, speech

processing, and web search, as well as many indi-

vidual studies in the ACL community and beyond.
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