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A B S T R A C T   

Background: Secondary use of Electronic Health Records (EHRs) has mostly focused on health conditions (dis-
eases and drugs). Function is an important health indicator in addition to morbidity and mortality. Nevertheless, 
function has been overlooked in accessing patients’ health status. The World Health Organization (WHO)’s In-
ternational Classification of Functioning, Disability and Health (ICF) is considered the international standard for 
describing and coding function and health states. We pioneer the first comprehensive analysis and identification 
of functioning concepts in the Mobility domain of the ICF. 
Results: Using physical therapy notes at the National Institutes of Health’s Clinical Center, we induced a hier-
archical order of mobility-related entities including 5 entities types, 3 relations, 8 attributes, and 33 attribute 
values. Two domain experts manually curated a gold standard corpus of 14,281 nested entity mentions from 400 
clinical notes. Inter-annotator agreement (IAA) of exact matching averaged 92.3 % F1-score on mention text 
spans, and 96.6 % Cohen’s kappa on attributes assignments. A high-performance Ensemble machine learning 
model for named entity recognition (NER) was trained and evaluated using the gold standard corpus. Average 
F1-score on exact entity matching of our Ensemble method (84.90 %) outperformed popular NER methods: 
Conditional Random Field (80.4 %), Recurrent Neural Network (81.82 %), and Bidirectional Encoder Repre-
sentations from Transformers (82.33 %). 
Conclusions: The results of this study show that mobility functioning information can be reliably captured from 
clinical notes once adequate resources are provided for sequence labeling methods. We expect that functioning 
concepts in other domains of the ICF can be identified in similar fashion.   

1. Introduction 

1.1. Overview 

Clinical natural language processing (NLP) has been well-explored 
on three application areas: disease studies, drug-related studies, and 
workflow optimization [1]. Community shared tasks such as i2b2/n2c2 
challenges [2–11], CLEF eHealth [12–19], and SemEval [20–23] 
addressed various NLP questions including de-identification, concept 
extraction, and temporal information on disease-specific datasets. 

However, the analysis of human functioning within medical EHRs, in the 
presence of health conditions (diseases and drugs) and demands of the 
environment has been largely un-explored. Function has been increas-
ingly perceived as an important health indicator in addition to mortality 
and morbidity [24,25]. 

The World Health Organization (WHO)’s International Classification 
of Functioning, Disability and Health (ICF) [26] is the international 
standard for coding function and health states. Components of the ICF 
(Fig. 1) encompass Body Functions and Structures, tasks performed by 
an individual (Activities), societal interaction (Participation), and 
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Contextual Factors. 

1.2. Objective 

Our study focuses on Mobility domain, in Activities and Participation 
chapter, of the ICF. Mobility is a more well-defined and observable 
construct of human functioning. Our goal is to set a foundational step to 
utilize mobility information in clinical NLP [27–31]. We systematically 
induced an entity hierarchy, annotated a gold standard corpus, and 
trained NER models. Our work significantly expands the previous, pre-
liminary report [32]. 

1.3. Existing work on functioning information 

Information extraction in clinical text were possible due to stan-
dardized vocabulary and annotated corpora [33–35]. In functioning 
domain, the lack of a standardized ontology [27] and the incomplete-
ness of the ICF as a vocabulary source [36], made existing work to rely 
on application specific dictionary [37] collected through focus groups 
[28,30] or manual chart reviews [38]. The lack of annotated resources 
and a consensus representation of functioning concepts led existing 
methods to rely on heuristic rules [27–30], manual mapping tables [29], 
or manual conversion of truncated phrases [39]. Recent work focused on 
Mobility domain of the ICF and systematically argued for the need to 
capture and standardize functioning information [40], created an 

annotated corpus [32], compared word embeddings [41], and classified 
a coarse qualifier [42]. 

2. Methods 

2.1. Data collection 

We sampled 1,554 Physical Therapy (PT) notes from the Rehabili-
tation and Medicine Department at the NIH Clinical Center using data-
bases of the NIH Biomedical Translational Research Information System 
[43]. The sample included 950 PT Initial Assessment notes, 320 PT 
Reassessment notes, 278 PT Assessment and Discharge notes, and 6 PT 
Discharge notes (Appendix A.3). 

2.2. Annotation 

An interdisciplinary team comprised of computational linguists, 
health scientists, and statisticians analyzed components of mobility 
concepts and developed annotation guidelines similar to a previous 
work [44]. Among the team, two researchers in health sciences were 
assigned annotator roles. Annotation process was divided into three 
phases. In phase 1, a seed batch of 100 PT Initial Assessment notes was 
analyzed by the interdisciplinary team. At the end of this phase, a hi-
erarchical representation of mobility-related entities was constructed 
alongside with an initial schema and annotation guidelines. In phase 2, 
the two annotators consolidated the results of phase 1 on the remaining 
1,454 PT notes. In phase 3, consensus annotation was performed to 
create a gold standard corpus of 400 PT notes. All annotation was done 
on GATE Developer [45]. (Appendix A.4 and Fig. 2) 

2.3. A hierarchy of mobility-related entities 

In contrast to past work that either stored functioning phrases as 
strings [28–30,38] or involved manual conversion [39], we captured a 
consistent representation of mobility concepts over 1,554 PT notes. 
Given a sentence “The patient ambulates with modified independence 
for 300 ft”, the head verb “ambulates” is a predicate modified by two 
prepositional phrases “with modified independence” and “for 300 ft”. 
We generalized the predicate to become an Action, accompanied by two 
types of modifiers: Assistance and Quantification respectively. Such 
generalization neutralized both grammatical roles and the 
predicate-argument structure. For example, an Action could be a phrase, 
and an Assistance or a Quantification could have no association to any 
specific Action. Generalization allowed the concepts to be flexibly 

Fig. 1. Diagram of the International Classification of Functioning, Disability 
and Health (ICF) model of function. Reproduced by permission of World Health 
Organization (WHO), from ICF [26], p18. 

Fig. 2. The annotation process: from guidelines and schema development to creation of the gold standard corpus.  
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conveyed in the complex clinical narratives. 
To align with mainstream NLP, we modeled each component as a 

named entity (Table 1). As a result, Mobility became a nested entity that 
encapsulated three sub-entities: Action, Assistance, and Quantification. 
In addition, we observed that Quantification entities occasionally 
referred to numerical scales either by name (e.g. NIHFA, FIM) or by 
elaboration in a series of short phrases (Table 1, Score Definition 
Example). We captured these elaborated scales in Score Definition en-
tities. For example, a PT note included: “(1=dependent, 2=requires per-
son to assist, 3=requires assistive device, 4=independent) Transfers score: 4/ 
4 Ambulation score: 3/4 Wheelchair score: 4/4”. Here, the Quantification 
scales “4 /4” and “3 / 4” referred to the Score Definition elaborated 
within the parentheses. In term of implicit relations between entities, we 
denoted that a Score Definition entity Calibrated subsequent Quantifi-
cation entities. While within the same Mobility instance, Assistance 
entities Enabled and Quantification entities Measured the extension of 
the Action entity. The hierarchy of entities and their implicit relations 
are presented in Fig. 3 - Entities layer. 

In addition, we recorded values of eight types of contextual attributes 
(Fig. 3, Attributes layer) that accompany the component entities. These 
attributes provided additional layers of semantics. We captured 3-digit 
ICF codes because such granularity improved data density and it was 
widely used in clinical applications relating to health outcome evalua-
tion. Granularity of other attributes were captured at a coarse level to 
provide grouping and avoid redundancy. 

2.4. Analysis and evaluation 

We used descriptive statistics to analyze the distribution of annota-
tion results in three annotation phases. 

We used F1 score [46] to measure inter-annotator agreement (IAA) 
of entity mention spans, and Cohen’s kappa (κ) [47] to measure agree-
ment of the contextual attributes. We report IAAs on both exact 
matching similar to CoNLL evaluation [48] and partial matching similar 
to MUC evaluation [49,50]. 

2.5. Ensemble identification of nesting mobility-related entity mentions 

We split the gold standard corpus (GSC) of 400 annotated notes into 
five-fold cross-validation. Each fold comprised of 240 notes for training, 
80 notes for evaluation, and 80 notes for testing (Fig. 4). Our method 
included two stages. In stage one, we trained and optimized hyper-
parameters of three popular, base NER methods (Section 2.5.4) using the 

Table 1 
Mobility-related entities.  

Entity Definition Example 
Mobility A self-contained, well-defined 

description of physical 
functional status information. 

Patient able to ambulate 40 ft. 
with rolling walker 

Action Captures the type of activity as 
well as an individual’s ability to 
perform said activity. 

ambulate 

Assistance Information about the use and 
the source of needed assistance 
(e.g., another person or object) 
to perform an activity. 

with rolling walker 

Quantification Information regarding 
measurement values of the 
activity. 

40 ft. 

Score 
Definition 

A standardized assessment of 
functional status. Often 
represented as numerical values 
that provide a calibrated scale 
of functional status 

1=Totally dependent, 
2=Requires assistance of a 
person (with or without 
appliance), 3=Requires 
appliances, orthosis or 
prosthesis for independence, 
4=Totally independent 
(indoors/outdoors)  

Fig. 3. A hierarchy of mobility-related entities, attributes, attribute values, and relations. Implicit relations between entities are expressed in dashed arrows.  

Fig. 4. Distribution of the corpus in one of the five-fold cross-validation. Each 
rectangle corresponds to 80 clinical notes. 

Table 2 
Rules of the tokenizing post-processor.  

Error Description Erroneous Token Correction 
Splitting combined tokens with 

concatenators such as forward slash, 
backward slash, and hyphen. 

“driving/ 
transportation” 

"driving", "/", 
"transportation" 

Splitting abbreviated measure of 
functioning ability comprising of 
both letter and digits. 

"x400 ft" "x", "400", "ft" 

Special PT abbreviation such as “A.” 

denoting mobility assistance at the 
end of a sentence. The tokenizer 
mistakenly recognized it as an 
abbreviated name, thus losing end- 
of-sentence semantics. 

“A.” “A”, “.” 

Recognizing end-of-sentence even 
without a space after a full stop. 

"discuss.The" “discuss”, “.”, “The”  

T. Thieu et al.                                                                                                                                                                                                                                   
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training and evaluation sets. In stage two, we used the base models to 
predict NER tags (Section 2.5.2) of the evaluation set and used the 
prediction as raw input to generate features for our Ensemble method 
(Section 2.5.5). Next we trained our Ensemble model with the generated 
features while using human annotated tags on the evaluation set as la-
bels. Finally, we compared performance of our Ensemble model against 
the base models on the held-out test set. 

2.5.1. Tokenization 
We used tokenizer of Stanford CoreNLP [51] to split a clinical note 

into tokens and associated character indices. We implemented a 
rule-based post-processor to correct tokenizing errors on common PT 
scribing patterns (Table 2). 

2.5.2. Modelling entity mention recognition task 
We modeled the nested NER task using joined label tagging [52]. 

Specifically, each token was assigned a tag, and the sequence of tags 
encoded entity mentions. We used the common BIO tagging scheme 
(Appendix A.5). Performance difference between BIO tagging compared 
to other schemes such as BIOES was inconclusive [53,54]. 

2.5.3. Tagging granularity 
We observed that PT notes contained noisy end-of-sentence signals. 

These noises made algorithmic sentence segmentation inaccurate and 
the downstream fragmented sentences perturbed human annotators. We 
decided to annotate the GSC on the whole clinical note, without sen-
tence segmentation. Sequence tagging on a lengthy document is a harder 
structure prediction problem, while noisy sentence segmentation might 
trim away useful context of an entity mention. To thoroughly investigate 
the accuracy of NER models, we conducted NER on two levels of gran-
ularity: document level, and sentence level. 

In document-level tagging, the NER classifier took each entire PT 
note as one example. In sentence-level tagging, we used Stanford Cor-
eNLP [51] to split a PT note into sentences. Sequence tagging models 
were trained and decoded on the sentences. After that, predicted tags of 

sentences were concatenated to form tagging of the whole PT note. At 
evaluation, we measured entity-level performance of both 
document-level tagging and sentence-level tagging using the same 
script. 

2.5.4. Base classifiers 
We used three popular NER methods: Conditional Random Field 

(CRF), Recurrent Neural Networks (RNN), and Bidirectional Encoder 
Representations from Transformers (BERT). 

CRF is a probabilistic graphical model [55] and we used Stanford 
NER implementation [51,56]. We kept the original feature set including 
lexical, morphological, n-gram, and word shape features. 

The RNN we used is a bi-directional long-short term memory neural 
networks (Bi-LSTM) [57] with a CRF decoding layer [58]. We parame-
trized the Bi-LSTM-CRF with 0.005 learning rate, gradient clipping at 
5.0, and a dropout rate of 0.5. We also experimented with two sets of 
pre-trained word vectors: (a- Wikipedia) GloVe 300 dimensional vectors 
embedded from 6B tokens of Wikipedia 2014 and Gigaword 5 [59], and 
(b- PubMed) word2vec [60] 200 dimensional vectors embedded from 5B 
tokens of PubMed abstracts and PubMed Central full-text articles [61]. 

We experimented three pre-trained models of bidirectional trans-
formers: BERT (base + large) [62] and BioBERT [63]. Both BERT (base 
+ large) models were pre-trained on BooksCorpus (800 M tokens) [64] 
and English Wikipedia (2,5B tokens). BERT base had 110 M parameters 
while BERT large had 340 M parameters. BioBERT was BERT base 
additionally pre-trained on 4.5B tokens PubMed abstracts and 13.5B 
tokens PubMed Central full-text articles. We fine-tuned BERT models to 
do NER with 5 epochs, a batch size of 32, and a dropout rate of 0.1. 

2.5.5. Ensemble learning 
Our method employed ensemble stacking that combines outputs of 

multiple classifiers. We used Scikit-learn [65] to stack outputs of CRF, 
RNN, and BERT under two combiners: (a) Softmax, and (b) 
Error-Correcting Output Code (ECOC) model [66] with Support Vector 
Machine [67,68]. At each tag position, we extracted a symmetric feature 

Fig. 5. Average number of tokens by entity types and PT note types.  

Fig. 6. Distribution of Mobility mentions by entity types and PT note types.  
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window comprising of tags produced by the base classifiers. For 
example, to predict a tag at position k with a feature window of size 3, 
we extracted tags produced by individual classifiers at positions k-1, k, 
and k+1 into a feature vector: 
v = (tagCRF

k−1
, tagCRF

k , tagCRF
k+1

, tagRNN
k−1

, tagRNN
k , tagRNN

k+1
, tagBERT

k−1
, tagBERT

k , tagBERT
k+1

)

We experimented with feature windows of odd sizes ranging from 1 
to 39 to fully encapsulate all entity types based on average-lengths 
(Fig. 5). Our ensemble classifier aggregated prediction outputs of all 
CRF and RNN models. For BERT models, we only aggregated outputs on 
sentence tagging because BERT document level tagging performed 
badly. 

3. Results 

3.1. Corpus characteristics 

The gold standard corpus consists of 400 PT notes across three sub-
sets: 200 PT initial assessment notes, 150 PT reassessment notes, and 50 
mixed PT notes. The corpus has 274,165 tokens with 13,814 unique 
tokens, and each PT note on average has 685 tokens with 316 unique 
tokens (Appendix A.6). 

Fig. 5 shows the average number of tokens per entity type. Fig. 6 
shows the co-occurrence of Mobility mentions with sub-entity mentions. 
There is also a small portion (≈ 0.1 %) of Mobility mentions that do not 
contain any sub-entity mentions. Table 3 shows distribution of mentions 
as the annotation process transitioned across phases. The variation in 
number of mentions indicates the two annotators making effort to come 
to a consensus agreement. 

We computed IAAs for both text span agreement and attribute values 
(Appendix A.7), together with two sample proportion significance tests 
p-values of the change in precision and recall of entity text spans (Ap-
pendix A.8). Based on a conservative significance level at p-value <
0.002, most entity types exhibit statistically significant improvement in 
IAA when moving from an earlier to a later annotation phase (Appendix 
A.9). 

3.2. Named entity recognition 

Table 4 presents the best NER results of our Ensemble method 
compared to the best results of three base classifiers. All results are av-
erages over five cross-validation folds. Generally, the level of conser-
vation (precision) decreased from CRF, RNN, to BERT, while the level of 
aggressiveness (recall) increased from CRF, RNN, to BERT. The uncor-
relation of the base classifiers is a prerequisite for Ensemble learning. As 
a result, our Ensemble method outperformed all base classifiers in F1- 
score on all entity types. Our RNN model alone yielded higher perfor-
mance on Mobility mentions compared to a prior work [41]. Our 
Ensemble method thus established a strong baseline to benchmark 
mobility-related entity recognition. 

Performance differences between classifiers reveals interesting 
properties of each entity type. Mobility and Action required more 
context to identify correctly, so they were better recognized at document 
level for RNN. They also shared commonality with biomedical text, as 
evidenced by Pubmed embedding in RNN. On the contrary, Assistance 
and Quantification were more independent on context and shared 
commonality with news-wire text. In overall, Ensemble was able to rely 
on base classifiers’ outputs with relative short window size. Using larger 
window size than Assistance’s average length implied Ensemble had 
difficulty in identifying Assistance entities. 

Looking across entity types, Action and Quantification were short in 
textual length and that made them easier to detect than Mobility. Score 
Definition was the longest type of entity but having the highest detection 
accuracy due to its rather uniformed wording. Assistance was the 
opposite with short textual length but low detection accuracy. This was 
due to Assistance mentions expressed more textual variation and their 
quantity was only about half of Mobility quantity. Beside the difference 
in quantity, we hypothesized that Mobility was better detected than 
Assistance because it relied on signals from the more accurate Action 
and Quantification sub-entities. 

4. Discussion 

4.1. Comparison to related works 

Annotation of gold standard datasets and benchmarking NER per-
formance were prevalent in general English [69] and biomedical sub-
language [70]. Recent reviews [69,70] summarized 17 popular English 
NER corpora and 39 popular biomedical NER corpora. A typical corpus 

Table 3 
Number of entity mentions annotated by entity types, annotators, and annota-
tion phases.   

Total Mob Act Asst Quant ScDf 
D - A1 13,236 4,387 4,190 2,256 2,101 302 
D - A2 14,169 4,597 4,490 2,485 2,292 305 
C - A1 14,010 4,653 4,441 2,412 2,202 302 
C - A2 14,263 4,623 4,525 2,509 2,303 303 
Gold 14,281 4,631 4,527 2,517 2,303 303 

Notes: D = double annotation, C = cross-adjudication, Gold = gold standard 
(consensus adjudication), A1 = first annotator, A2 = second annotator, Mob =
Mobility, Act = Action, Asst = Assistance, Quant = Quantification, ScDf = Score 
Definition. 

Table 4 
Best performing models on each entity type. Average performance and standard 
deviation are computed on exact matching over five-fold cross-validation.  

Parameters 
F-1 score 
Precision 
Recall 

Mobility Action Assistance Quantification Score 
Definition 

CRF 

sent sent sent sent doc 
71.26 ± 

1.66 
81.04 
± 1.93 

68.89 ± 

2.42 86.92 ± 2.47 93.91 ± 

7.69 
78.25 ±
2.03 

87.57 
± 2.83 

76.79 ±
1.49 93.69 ± 2.93 97.97 ±

2.33 
65.43 ±
1.50 

75.46 
± 2.07 

62.55 ±
3.56 81.09 ± 2.61 90.99 ±

12.37 

RNN (Bi- 
LSTM- 
CRF) 

doc, 
pubmed 

doc, 
pubmed sent, wiki sent, wiki doc, wiki 

73.04 ± 

2.91 
83.89 
± 1.97 

71.46 ± 

3.54 87.95 ± 2.89 92.74 ± 

6.77 
74.36 ±
3.36 

84.23 
± 2.69 

74.15 ±
3.03 89.79 ± 3.24 95.44 ±

2.11 
71.77 ±
2.52 

83.61 
± 2.30 

69.00 ±
4.30 86.22 ± 3.13 90.96 ±

11.53 

BERT 

sent, 
large 

sent, 
large sent, large sent, large sent, bio 

74.17 ± 

1.43 
86.00 
± 1.29 

70.29 ± 

3.67 88.79 ± 4.11 92.40 ± 

7.52 
73.28 ±
2.05 

85.04 
± 1.94 

71.48 ±
4.23 87.84 ± 6.33 96.00 ±

2.67 
75.09 ±
1.21 

87.00 
± 1.13 

69.23 ±
4.08 89.92 ± 2.12 90.08 ±

12.74 

Ensemble 

ECOC, 
w=15 

ECOC, 
w=3 

ECOC, 
w=9 Softmax, w=1 ECOC, 

w=11 
78.02 ± 

1.63 
87.67 
± 0.91 

74.74 ± 

2.45 89.65 ± 3.56 94.41 ± 

7.07 
79.68 ±
1.86 

87.78 
± 1.90 

78.36 ±
1.16 90.15 ± 5.08 97.97 ±

1.52 
76.42 ±
1.55 

87.60 
± 0.65 

71.55 ±
4.24 89.23 ± 2.29 91.87 ±

11.74 
Notes: doc/sent = tagging at document/sentence level, wiki/pubmed = Wiki-
pedia/PubMed pre-trained word embedding, base/large/bio = types of BERT 
models, w = size of feature window. 
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in these domains contained thousands of abstracts and a dozen entity 
types. NER performance typically reached more than 0.90 F1-score in 
English [62] and more than 0.80 F1-score in biomedicine [71]. 

In the medical/clinical domain, English corpora containing anno-
tated concepts coupled with attributes and/or relations were sparse and 
NER benchmarking was infrequent. Popular datasets include 2009 i2b2 
[9] with 1,243 discharge notes, 2010 i2b2/VA [4] with 1,748 discharge 
notes, ShARe/MIMIC-II corpus [72] used in SemEval [21,73] with 531 
clinical notes, MiPACQ [74] with 13,091 sentences, and CLEF [44] with 
150 clinical notes. Besides, ACL conferences published several corpora 
with 5,000 abstracts [75], 5,160 clinical notes [76], and 300 discharge 
notes [77]. Recent clinical NER performance reached ≈0.85 F1-score 
[78,79]. Our work is the first in the functioning sublanguage of clin-
ical domain that incorporated three components: (i) a semantically an-
notated corpus, (ii) a compact entity hierarchy to represent a rather 
complex sublanguage, and (iii) a strong baseline for benchmarking NER. 
Our new Ensemble NER performance of 0.849 F1-score was close to the 
top NER performance in clinical NLP. Our annotated corpus of 400 
clinical notes was humble but approximately equal in size to other 
well-known corpora such as ShARe/MIMIC-II, MiPACQ, and CLEF. 

Existing NLP works in the functioning sublanguage either collected 
shallow phrases [38], or involved manual conversion of clinical text 
[39]. Our work carried deeper semantics than grouping of phrases and 
provided a fully automatic method to extract mobility concepts. Our 
focus on the entire Mobility domain was comprehensive and our anno-
tation process was systematic similar to prior works [44,75]. The impact 
of our corpus has already been demonstrated by recent analysis [42,80]. 
Unlike others, irregularities existed in this new mobility sublanguage 
(Appendix A.10). 

4.2. Limitations 

Both the hierarchical order of mobility-related entities and the an-
notated corpus were derived from rehabilitation patient records at the 
NIH Clinical Center; thus, they reflected regional language idiosyn-
crasies. Our representation was limited to a single domain of the ICF and 
did not capture cross-domain interaction. We simplified the definition of 
an entity as a contiguous span of text, and our annotation lacked deeper 
semantic layers such as co-references and event annotation. Our 

ensemble NER accuracy is still well under human IAA performance, thus 
leaving space for NER model research. Despite a recent attempt [42], 
entity attribute grounding tasks are mostly open for the scientific 
community. 

4.3. Future directions 

We plan to expand the gold standard corpus to claimants’ clinical 
notes at the Social Security Administration (SSA). We are also interested 
in applying our method to publicly available datasets such as i2b2 and 
MIMIC. Our entity representation would also benefit from further 
research on combining representation across multiple ICF domains. 

5. Conclusion 

Our work contributed three folds to clinical NLP community: (i) 
created a hierarchical entity representation that consistently captured 
the entire Mobility domain of the ICF, (ii) annotated a semantic corpus 
of mobility-related concepts and attributes, and (iii) established a strong 
baseline to benchmark mobility NER in clinical notes. We expect this 
pioneer work to proliferate research in this important yet underexplored 
area. 

Ethics approval and consent to participate 

Not applicable. 

Consent for publication 

Not applicable. 

Availability of data and materials 

Source code of our method is freely available at: https://bitbucket. 
org/LanguageAndIntelligence/mobilityconcepts. 

The datasets generated and analysed during the current study are not 
publicly available due to NIH privacy restriction on clinical records at 
the NIH Clinical Center. However, we are investigating the option of 
publicly releasing the pre-trained models, subject to NIH Clinical Center 

Summary Table 

What was already known on the topic  

• Functioning terminology is underpopulated in electronic health records and underrepresented in the Unified Medical Language System 
(UMLS) [27].  

• Use of functioning information has been incoherent, unorganized [28,30,38], incomplete [27–30,39], and relies on manually-built mapping 
tables [29].  

• Recent work focuses on one domain (i.e. Mobility) of the ICF and systematically argued for the need to capture and standardize functioning 
information [40], created an annotated corpus [32], compare several choices of word embeddings [41], and attempt to classify a coarse 
qualifier [42]. 

What this study added to our knowledge  

• This study provides a complete process to analyze a new clinical domain for natural language processing. It significantly extends a previous 
summary [32] by providing comprehensive analysis of entity hierarchy, annotation procedures, corpus characteristics, and irregular 
challenges.  

• This study demonstrates that complex and nested functioning concepts can be accurately identified given an adequate training corpus. This is 
an advancement to a previous approach using manual mapping tables [29].  

• This study is the first that analyzes the strength and weaknesses of the conditional random field and recurrent neural networks in information 
extraction of functioning concepts. It subsequently builds a state-of-the-art ensemble model for mobility-related named entity recognition.  

• This study is the first comprehensive analysis of an entire domain of the ICF, including entity analysis, annotation, quality control, and 
machine sequence labeling.  
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