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Abstract—All state of charge (SoC) estimation algorithms
based on equivalent circuit models (ECMs) estimate the open
circuit voltage (OCV) and convert it to the SoC using the SoC-
OCV nonlinear relation. These algorithms require the identifica-
tion of ECM parameters and the nonlinear SoC-OCV relation.
In literature, various techniques are proposed to simultaneously
identify the ECM parameters. However, the simultaneous iden-
tification of the SoC-OCV relation remains challenging. This
paper presents a novel technique to construct the SoC-OCV
relation, which is eventually converted to a single parameter
estimation problem. The Kalman filter is implemented to estimate
the SoC and the related states in batteries using the proposed
parameter estimation and the SoC-OCV construction technique.
In the numerical simulations, the algorithm demonstrates that
it accurately estimates the battery model parameters, and the
SoC estimation error remains below 2%. We also validate the
proposed algorithm with a battery experiment. The experimental
results show that the error in SoC estimation remains within
2.5%.

Index Terms—electric vehicles; state of charge estimation;
adaptive systems; nonlinear filters; stochastic systems.

I. INTRODUCTION

Lithium-ion batteries are successfully employed in many

devices as a power source. Their high energy density and long

lifespan make them more attractive among the different battery

types [1], [2], [3]. However, overcharging or discharging

lithium-ion batteries shortens their lifespan and irreversibly

damages their performance. Thus, monitoring the battery states

with high accuracy is critical in the design of battery manage-

ment systems (BMSs).

Today, lithium-ion batteries are increasingly used to power

electric vehicles (EVs) due to the aforementioned advantages.

EV producers must assure the safe application, enhance the

driving range, optimise the power management strategy, pro-

long the service life and reduce the cost of the batteries. A

reliable BMS is necessary to fulfill multiple tasks including the

fault diagnosis, estimation of the battery state of health (SoH)

and state of charge (SoC). Battery fault diagnosis is important

for the safe operation of the batteries. In the majority of the

existing literature, the battery fault is diagnosed based on the

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
(Corresponding author: Onur Kadem.)

battery voltage and temperature. An alternative method based

on the battery charging capacity is proposed in [4]. Real-time

SoH estimation requires comprehensive and labor-intensive

laboratory tests. SoH estimation method based on incremental

capacity analysis has been proposed in [5]. The SoC is the

most important indicator to make charge or discharge decision

and assure the battery’s safety, efficiency, and longevity. As a

result, investigations about accurate SoC estimation techniques

are the center of researches in improved BMS design tasks.

Battery SoC determination is always a primary function of

a BMS. Therefore, a large number of methods have been

proposed to estimate the battery SoC in real-time. These

methods can be classified into two groups: the model-free

approaches and the model-based approaches [6], [7], [8].

Coulomb counting (CC) and open circuit voltage (OCV) mea-

surement methods are two common model-free approaches.

The CC method measures the battery’s charging/discharging

current and integrates it over time to estimate the SoC [9].

However, it is not only sensitive to the unknown initial SoC

value but also accumulates error from the current measurement

sensor over time because of the integration process [10]. The

OCV measurement method provides accurate SoC estimations

but it requires a look-up table for the SoC-OCV relationship

[11]. Once the OCV is measured, the corresponding SoC can

be easily found from the look-up table. However, accurate

measurement of the OCV requires a long relaxation time in the

range of hours and this is not suitable for online applications

[12].

The model-based methods are constructed in a closed-loop

structure, which continuously reduces the error in SoC esti-

mation using the available current and voltage measurements,

and it leads to a better SoC estimation. The model-based

approaches describe the battery dynamics in two different

ways of battery modelling, i.e., the electrochemical models

and equivalent circuit models (ECMs).

The electrochemical models use several coupled differen-

tial equations to describe the electrochemical process in the

battery [13]. The most popular electrochemical models are

the pseudo-two-dimentional (P2D) model and single parti-

cle model (SPM). The P2D model is based on the porous

electrode theory, the concentrated solution theory and the

kinetics equations [14]. However, its usage is not preferred

in state estimation due to its complexity. As such, the SPM
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Fig. 1: First order Equivalent Circuit Model for the Battery

has been developed to simplify the P2D model. In the SPM,

two assumptions are made to approximate each electrode as

a single spherical particle. Firstly, the electrodes are assumed

to be composed of multiple uniform sized spherical particles,

followed by the current distribution being uniform along the

both electrodes [15], [16]. However, the solutions to the

differential equations and parametric uncertainties in these

models remain a challenge to solve [17], [18].

Thevenin-based ECMs are widely employed in online BMS

applications [8], [19], [20], [21]. Thevenin-based ECMs do not

require thorough knowledge about battery electrochemistry,

and they provide a good description of battery dynamics [8],

[19]. This advantage of ECMs makes them easily adapted

to estimation and control algorithms and implementation in

embedded micro-controllers compared to the electrochemical

models. Thus, the ECMs based methods lead the real time

estimations such as the Kalman filter (KF) in [22], extended

Kalman filter (EKF) in [23], unscented Kalman filter (UKF)

in [24] and particle filter (PF) in [25], [26].

The ECM consists of basic circuit elements including

resistors, capacitors and voltage source as shown in Figure

1. Most SoC estimation algorithms must run on a battery

model whose parameters are known. This implies that a

parameter identification procedure is necessary to prepare the

model for SoC estimation. The battery model parameters

can be identified through either offline or online. Offline

parameter identification is a heavily laborious experimental

task. Although a set of batteries can originate from the same

production line, deviations in parameter values between the

batteries are natural. Thus, an experiment has to be conducted

for each battery. Moreover, the experimental conditions and

battery ageing also affect the parameter values.

The online parameter estimation is appropriate to adapt to

varying conditions. There are different approaches to estimate

the parameters online. In [27], the model parameters are added

as states into the state vector and estimated using the adaptive

UKF. Recursive least square (RLS) algorithms are commonly

used in battery model parameter estimation [21], [28], [29],

[30], [31]. However, the convergence and the stability of the

proposed RLS techniques cannot be guaranteed. In [32], the

proposed methodology uses the adaptive control theory to

estimate the battery model parameters on-line so that the

convergence and stability of the estimator are guaranteed.

However, in a typical parametric model, the parameter vector

includes battery model parameters along with the OCV as a

function of SoC. This may cause inaccurate SoC estimation

since the model parameters may not converge to their true

values.

The nonlinear SoC-OCV relation is commonly assumed to

be known and is used to map a value of OCV to its correspond-

ing SoC value. However, the true SoC-OCV relation changes

due to battery ageing and temperature change. This difference

is directly reflected as an error in SoC estimation [33]. Similar

to the parameter estimation, the SoC-OCV relation could be

obtained through an experimental procedure [34], [35], [36],

which is vulnerable to a change in operational conditions.

The effect of SoC-OCV model and characterisation tests the

accuracy of SoC estimation is investigated in [37]. Different

types of tests are performed to acquire the SoC-OCV charac-

teristic depending on various operational conditions. However,

this relation is unique for a specific battery used during the

test and cannot apply to different batteries and conditions.

The SoC-OCV curve at different temperatures is identified

offline and mapped by using the polynomial electrochemical

equation in [38]. The equation does not consider the effect

of battery ageing on the SoC-OCV curve, which deteriorates

the accuracy of SoC estimation eventually. In [39], the curve

is obtained by sorting the estimated OCV according to SoC

calculated using CC technique. However, it is expected that

the accuracy of the curve decreases with time since the CC

technique stores the error at each calculation step. In [40], the

relation is modelled by using piece-wise linear functions and

it is assumed that SoC-OCV relation is fixed, which does not

take into account the changes in the true relation.

We propose an adaptive estimation algorithm for the SoC

with a nonlinear SoC-OCV curve. The algorithm estimates

the parameters describing the ECM and the SoC-OCV curve.

Unlike other algorithms, the proposed method does not require

high experimental labour. In addition, the algorithm automat-

ically adapts to changes in operational conditions and battery

ageing without requiring any manual adjustments.

The organisation of the paper is as follows: Section II

introduces the battery model; Section III presents the pa-

rameter estimation; Section IV summarises the OCV estima-

tion; Section V explains the the SoC-OCV curve estimation

method; Section VI shows simulation results to demonstrate

the efficiency of the proposed method; Section VII shows the

experiment results; finally, conclusions and future works are

discussed in Section VIII.

II. LITHIUM BATTERY MODELLING

A reliable battery model should have low complexity yet

be able to describe the battery dynamics. Various battery

technologies including lithium-ion battery technologies use

and adopt resistor-capacitor (RC)-equivalent circuit models for

real time utilisation. To prevent the large matrix operations, the

first-order RC model is the best candidate to accurately repre-

sent the system’s dynamics in lithium-ion battery applications

[41], [42], [43], [44].

Figure 1 shows the first-order RC model of a lithium

battery, which consists of a standard parallel 1-RC branch

and an internal resistor, R0, which causes an energy loss

during charging or discharging phases. The battery’s tran-

sient and relaxation responses, which occur during or after
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the charging/discharging cycles, are modelled by the parallel

RC branch. Rp and Cp are the polarisation resistance and

capacitance, respectively. R0, Rp and Cp vary according to

the ambient temperature and battery ageing even at the same

SoC levels. The terminal voltage, Vt, converges to its steady

state voltage, which is the OCV, Voc, if the load is removed

from the battery for sufficiently enough time, e.g., 1 hour.

I is the current flowing across the battery’s poles and I is

positive on discharge or negative on charge. I is divided into

Ia that flows over Rp and Ib that flows over Cp. The following

equations express the battery transient response:

İa = −
Ia
τ

+
I

τ
(1a)

Vt = Voc − IaRp − IR0 (1b)

where ˙(·) = d(·)/dt and τ = RpCp. The measurable states of

the battery are Vt and I . As the polarisation voltage, Vp, across

the RC branch is equal to IaRp, the differential equation for

Vp is obtained as follows:

V̇p = −
Vp

τ
+

I

Cp
(2a)

Vt = Voc − Vp − IR0 (2b)

which gives the common expression for the battery dynamics

[45], [12]. In (2b), Voc refers to a nonlinear function of SoC.

The SoC-OCV model is required to transform the OCV to the

SoC.

The chemical reactions in the battery dynamic process

are affected by the ambient temperature and battery ageing.

Consequently, the battery parameters, i.e., R0, Rp, Cp and

the SoC-OCV model vary in time. R0, Rp and Cp are to be

estimated in the next section and then the SoC-OCV model is

to be built in Section V.

III. BATTERY PARAMETER ESTIMATION

Discretise (2)

Vp,k+1 = βVp,k + (1− β)RpIk (3a)

Vt,k = Voc,k − Vp,k −R0Ik (3b)

where (·)k is the kth sample of (·), β = e−∆ts/τ and ∆ts is

the sampling time. Rewrite (3b) for step k + 1

Vt,k+1 = Voc,k+1 − Vp,k+1 −R0Ik+1 (4)

Substituting (3a) into (4)

Vt,k+1 = Voc,k+1 − βVp,k − (1− β)RpIk −R0Ik+1 (5)

Rearrange (3b) and substitute into (5)

Vt,k+1 =βVt,k −R0Ik+1 + [βR0 + (β − 1)Rp] Ik

+Voc,k+1 − βVoc,k

(6)

Define

∆Vt,k+1 = Vt,k+1 − Vt,k (7)

Substitute (6) into (7) for k and k + 1 sampling time

∆Vt,k+1 = β∆Vt,k −R0∆Ik+1 + γ∆Ik

+∆Voc,k+1 − β∆Voc,k (8)

where ∆(·)k+1 = (·)k+1−(·)k and γ = βR0+(β−1)Rp. Voc

is known to vary slowly compared to Vt, and the change in

Voc is assumed to be negligible during the sampling interval

[46]. Equation (8) is approximated as

∆Vt,k+1 = β∆Vt,k −R0∆Ik+1 + γ∆Ik (9)

and it is written in a linear parametric model as follows:

yk+1 = θT
k+1φk+1 (10)

where the unknown parameters to be estimated are

θk+1 =
[

β −R0 γ
]T

(11)

and the state vector is given by

φk+1 =
[

∆Vt,k ∆Ik+1 ∆Ik
]T

(12)

As the terminal voltage is measured, the terminal voltage

difference is obtained from two measurement samples. The

measurement equation for the parameter estimation is defined

by

ỹk+1 = ∆Vt,k+1 + ek+1 (13)

where ek+1 is the measurement noise.

Now, one of the standard online parameter estimation algo-

rithms based on adaptive law can be applied as follows [47]:

εk+1 = ỹk+1 − θ̂
T

kφk+1 (14a)

θ̂k+1 = θ̂k + Γ∆tsεk+1φk+1 (14b)

where (̂·) is the estimate of (·), and Γ is the positive-definite

adaptive gain matrix.

Once the estimation, θ̂k+1, is available, the parameters in

the model are obtained by

R̂0 = −θ̂
(2)
k+1 (15a)

R̂p =
θ̂
(3)
k+1 + θ̂

(1)
k+1R̂0

1− θ̂
(1)
k+1

(15b)

Ĉp =
−∆ts

R̂p log θ̂
(1)
k+1

(15c)

where (·)(i) for i = 1, 2, 3 is the ith element of (·).

IV. OCV ESTIMATION USING KALMAN FILTER

The KF solves linear optimal estimation problems. As Voc

slowly varies in most of the practical cases, it is assumed to

be a piece-wise constant, hence

Voc,k+1 = Voc,k + wVoc,k (16)

where wVoc,k is the zero-mean Gaussian random process noise.

The propagation of the current, Ia, is given by

Ia,k+1 = β̂kIa,k +
(

1− β̂k

)

Ik + wIa,k (17)

where β̂k = θ̂
(1)
k , wIa,k is the zero-mean Gaussian random

process noise. wVoc,k and wIa,k are independent to each

other. Equations (16) and (17) are the governing state-space

equations. The measurement equation is given by

Ṽt,k = Voc,k − Ia,kR̂p − IkR̂0 + vy,k (18)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

where Ṽt,k is the measured terminal voltage, Ik is the charging

or discharging terminal current at k-th sample and vy,k is the

measurement noise. In a compact form,

xk+1 = Akxk +Bkuk + wx,k

yk = Ckxk +Dkuk + vy,k
(19)

where

xk =
[

Ia,k Voc,k

]T
, yk = Ṽt,k, uk = Ik

Ak =

[

β̂k 0
0 1

]

, Bk =

[

1− β̂k

0

]

, wx,k =

[

wVoc,k

wIa,k

]

Ck =
[

−R̂p 1
]

, Dk = −R̂0,

(20)

the covariance of wx,k is Q and the variance of vy,k is r. Note

that the measurement noise is independent from the process

noise.

V. SOC-OCV ESTIMATION

ECM based SoC estimation applications use the SoC-

OCV nonlinear relation to transform the estimated OCV to

a SoC estimation. This relation is unique for every battery

but sensitive to the ambient temperature and battery ageing.

Hence, a relation that is obtained offline cannot be used for

different batteries, testing protocols and operational conditions.

Therefore, an online method is proposed to establish the SoC-

OCV relation. The proposed method obtains the SoC-OCV

relation by establishing a parameter estimation problem.

In general, the slopes of the SoC-OCV curve change dras-

tically from the low values to the high values. The nonlinear

function must be a one-to-one increasing nonlinear function

as SoC increases. Firstly, the potential candidate model of

the SoC-OCV relationship must meet these two requirements.

Secondly, the number of model parameters to be identified

must not be more than three. The latter requirement allows

us to estimate the model parameters in real-time based on

the boundary conditions and measurements. Considering these

two requirements, we establish the following novel nonlinear

model to capture these characteristics with three modelling

parameters:

Voc = a log(z) + bez
3

+ c (21)

where a, b and c are the coefficients to be estimated, which

are different for every battery and vary for each condition,

z is the SoC in [δ, 1] and δ is a small positive number. The

SoC below δ is considered to be zero. This nonlinear equation

expresses the typical shape of the SoC-OCV curve and their

variations. By estimating the three parameters, the estimated

SoC-OCV curve in real-time adapts to the variations caused

by the operational condition and battery condition.

In electronics, the lower cut-off voltage is the voltage at

which the battery is fully discharged. At this voltage, the

battery SoC is equal to 0 as follows:

Vlow = Voc|z=0 ≈ Voc|z=δ ≈ a log δ + b+ c (22)

where Vlow is the lower cut-off voltage of the battery, which

is given in the battery specifications. Similarly, Voc is equal

Algorithm 1 Calculation of ãk

1: Set ϵ > 0, a small positive number

2: Calculate g(ẑk, δ) = (e− 1) + 3eẑ
3

k ẑ3k log δ
3: if |g(ẑk, δ)| < ϵ then

4: Let b̂k = b̂k−1

5: Calculate ãk from (27)

6: ãk = ẑk(dVoc/dz)k − 3b̂ke
ẑ3

k ẑ3k
7: else

8: Calculate ãk using (28)

to the higher cut-off voltage, Vhigh, when the battery is fully

charged, as follows:

Vhigh = Voc|z=1 = be+ c (23)

Subtract (22) from (23)

Vhigh − Vlow = b(e− 1)− a log δ (24)

Solve for b as follows:

b = b(a) =
∆Vhl + a log δ

e− 1
(25)

where ∆Vhl = Vhigh−Vlow. Substitute (25) into (23), and solve

for c as follows:

c = c(a) = Vhigh − b(a)e (26)

The derivative of (21) with respect to z is

dVoc

dz
=

a

z
+ 3bez

3

z2 (27)

Solve the equation for a

a =
f(dVoc/dz, z)

g(z, δ)
(28)

=
(dVoc/dz) z (e− 1)− 3∆Vhle

z3

z3

(e− 1) + 3ez3z3 log δ

The number of the parameter to be estimated for the SoC-OCV

curve is reduced to 1, i.e., estimating a given by (28). The

denominator of (28), g(z, δ), may approach zero depending

upon z and δ and it would cause the numerical problem.

Algorithm 1 is to prevent the numerical problem to calculate

a. The current value of b is assumed to be constant for the

neighbourhood of the singular point and (27) is used directly

to calculate a. The calculated a in the algorithm denoted by

ãk, is treated as the measurement in the estimation algorithm

presented later.

To calculate (27) or (28), the OCV derivative with respect

to the SoC is required. Providing the estimates of the OCV,

V̂octhe following difference is calculated:

∆V̂oc,k+1 = V̂oc,k+1 − V̂oc,k (29)

where V̂oc,k+1 and V̂oc,k are provided by the KF designed in

Algorithm 2. In addition, as the SoC propagation equation is

given by [48]

zk+1 = zk +
Ik∆ts
Cmax

(30)
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where Cmax is the battery capacity constant and ∆ts is the

sampling time, the differential z at step k+1 is calculated as

follows:

∆zk+1 =
Ik∆ts
Cmax

(31)

Therefore, the derivative can be approximated by the first-

order difference as follows:

dVoc

dz

∣

∣

∣

∣

k+1

≈
∆V̂oc,k+1

∆zk+1
=

∆V̂oc,k+1Cmax

Ik∆ts
(32)

and the approximation with the current z are substituted into

(28). Equation (21) is now written as a function of z only.

Therefore, the estimation of z leads to the estimation of SoC-

OCV curve.

The SoC estimation problem has the linear state propagation

equation, (30), and the nonlinear measurement equation, (21).

The EKF for estimation z, i.e., ẑ, is given in Algorithm

2, where the observation matrix is defined by the following

Jacobian

Hk =
∂Voc

∂z

∣

∣

∣

∣

z=ẑk,a=âk

=
âk
ẑk

+ 3b(âk)e
ẑ3

k ẑ2k (33)

where âk is to be estimated.

The direct substitution of ãk in Algorithm 1 into (33),

however, would amplify undesirable noises in the measure-

ments and the estimated values. Additional KF is designed

for estimating a, where it is assumed that a varies slowly in

each sampling interval, i.e.,

ak+1 = ak + wa,k (34)

where wa,k is the process noise with the zero-mean and the

variance equal to qa. To apply the KF design procedure, ãk
from Algorithm 1 is treated as the measurement and assumed

to have the following measurement noise characteristic:

ãk = a+ va,k (35)

where ãk is the measurement of the true a. va,k is the zero

mean Gaussian measurement noise, which is independent to

the process noise, wa,k. To calculate the variance of va,k, z
(i)
k

samples are generated as follows:

z
(i)
k = ẑk + v

(i)
z,k (36)

where i = 1, 2, . . . , Ns, Ns is the number of samples and viz,k
is the zero-mean Gaussian with the variance equal to rz,k. The

ã
(i)
k particles are calculated by substituting z

(i)
k samples into

Algorithm 1. The variance of va,k+1 is then calculated by the

samples as follows:

ra,k =

Ns
∑

i=1

[

ã
(i)
k − āk

]2

Ns − 1
(37)

where āk =
∑

ã
(i)
k /Ns. Finally, the whole algorithm is

summarized in Algorithm 2, where (·)k+1|k is the priori

prediction of (·) and (·)k+1|k+1 is the posteriori estimation of

(·). Using separate KF algorithms to estimate OCV, coefficient

a and SoC is recommended in order to reduce computational

cost.

Algorithm 2 Adaptive SoC estimation algorithm

1: Initialise: θ̂0, x̂0, P0, ẑ0, pz,0, â0 and pa,0
2: while true do

3: Obtain the measurement and input: Ṽt,k, Ik
4: Run the parameter estimation using (14) & (15)

5: Run Algorithm 1 to obtain ãk
6: Calculate the variance of ãk using (36) & (37)

7: Propagate

8: x̂k+1|k = Akx̂k|k +Bkuk

9: Pk+1|k = AkPk|kA
T +Q

10: z using (30)

11: pz,k+1|k = pz,k|k + qz
12: âk+1|k = âk|k
13: pa,k+1|k = pa,k|k + qa
14: Update

15: Lk+1 = Pk+1|kC
T
k /

[

CkPk+1|kC
T
k + r

]

16: x̂k+1|k+1 = x̂k+1|k + Lk+1

(

Ṽt − V̂t,k+1|k

)

17: Pk+1|k+1 = (1− Lk+1Ck)Pk+1|k

18: Kz,k+1 = pz,k+1|kH
T /(Hpz,k+1|kH

T + rz)
19: Ka,k+1 = pa,k+1|k/(pa,k+1|k + ra,k+1)
20: âk+1|k+1 = âk+1|k +Ka,k+1

(

ã− âk+1|k

)

21: pa,k+1|k+1 = (1−Ka,k+1)pa,k+1|k

22: ẑk+1|k+1 = ẑk+1|k +Kz,k+1

(

Ṽoc − V̂oc,k+1|k

)

23: pz,k+1|k+1 = (1−Kz,k+1H)pz,k+1|k

24: Repeat

VI. NUMERICAL SIMULATIONS

A fully charged battery simulation was conducted to show

the estimation results of our proposed algorithm. The simu-

lated battery capacity is 0.85Ah. The discharge current rate

is 1C. The simulated true values of R0, Rp and Cp are

chosen as 0.1Ω, 0.015Ω and 100F, respectively and these

values are similar in [44] and [49]. For the simulation purpose,

its nonlinear relation between SoC and Voc is modelled as a

rational function given by

Voc(z) =

∑4
j=0 kjz

j

∑4
j=0 qjz

j
(38)

where k0 = 16.65, k1 = 516.2, k2 = 519.9, k3 = 5.696,

k4 = −4.523, q0 = 2.591, q1 = 70.68, q2 = 61.26,

q3 = 14.07, q4 = −24.92. The initial unknown parameter

vector is set to: θ̂0 = [1,−0.05, 0.05]T . These initial values

are similar in [50] and [51]. The initial Voc and Ia are set to

7V and 0A, respectively. The covariance or the variance for

OCV estimation are: Q = 0.01I2×2 and r = 0.1 [52], where

I2×2 is the 2× 2 identity matrix.

The initial z estimate is set to 50% while the true is 100%.

The initial pz , pa, rz and ra are set to 0.001. Ns is set to 100.

The initial a is chosen as 0.5. The adaptive gain Γ = 1000I3x3.

∆ts is set to 0.01s. The higher cut-off voltage, Vhigh, is equal

to 8.4756V and the lower cut-off voltage, Vlow, is equal to

6.4735V. δ and ϵ are set to 0.001 and 0.1, respectively.

Figure 2 illustrates that the online parameter estimation

algorithm provides accurate estimates of the parameters. R0
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Fig. 2: Battery parameters & OCV estimation: i) Ohmic resis-

tance, ii) Polarisation resistance, iii) Polarisation capacitance

and iv) OCV

Fig. 3: SoC-OCV parameters & SoC estimation: i) Coefficient

a, ii) Coefficient b, iii) Coefficient c, iv) SoC

converges fast to its true value whereas Rp and Cp show more

fluctuations.

The calculated parameters are fed to the KF to estimate

the Voc. Figure 2 (iv) demonstrates that the fast convergence

of the parameters leads to the fast convergence of Voc. The

estimated Voc agrees with the true Voc until the battery is fully

discharged.

The SoC-OCV model parameters shown in Figure 3 (i-

iii) and SoC shown in Figure 3 (iv) converge immediately.

The SoC-OCV characteristic is dependent on the ambient

temperature. When the ambient temperature is lower, the OCV

becomes higher or vice versa, however, this behavior is not

observed at high SoC regions, i.e. SoC > 80%, [53], [54].

Figure 4 shows that the proposed model adequately represents

Fig. 4: Estimated & True SoC-OCV curves at different tem-

peratures

Fig. 5: SoC estimation results under dynamic loading: i) SoC

estimation under DST profile, ii) DST test current profile, iii)

SoC estimation under HPPC test profile, iv) HPPC test current

profile

the nonlinear SoC-OCV relation and adapts to the curve

variations at different temperatures.

Figure 5 shows the SoC estimation results under two dif-

ferent dynamic loading including dynamic stress test (DST)

profile given in Figure 5 (ii) and hybrid pulse power char-

acterisation (HPPC) test profile given in Figure 5 (iv). DST

and HPPC test profiles are widely employed in evaluating the

performance of SoC estimation algorithms used in EVs [55].

Figures 5 (i) and Figure 5 (iii) illustrate that the proposed

algorithm robustly estimates the SoC under different dynamic

loading.
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Li-Po Battery

DC Motors

NI 9505

NI 9215

Data Logging

Fig. 6: The experimental setup

TABLE I: SoC-OCV relation obtained from SoC drop test

z 0 0.05 0.1 0.15 0.2
Voc [V] 6.5688 7.2294 7.365 7.4088 7.4625

z 0.3 0.4 0.5 0.6 0.7
Voc [V] 7.5363 7.5813 7.6401 7.7304 7.8663

z 0.8 0.85 0.9 0.95 1
Voc [V] 8.0011 8.1325 8.2151 8.3038 8.3801

VII. BATTERY EXPERIMENT

A battery test rig shown in Figure 6 has been assembled

by powering three DC motors by a LiPo battery in new

condition. Its minimum capacity is given to be 1Ah by the

manufacturer. The battery configuration has serially-connected

two cells, each with a nominal voltage of 3.7V. The battery’s

peak discharge rate is 40C whereas its maximum charge rate

is 2C. I and Vt are acquired through a NI 9505 and NI 9215

devices during the battery operation. A commercial battery

charger has been used to charge the battery with a constant-

current constant-voltage mode. The charger can also discharge

the battery with a constant current. The upper cut-off voltage

is set to be 8.4V to prevent possible damages to electrodes due

to overcharging. Similarly, when the terminal voltage reaches

lower cut-off voltage which is equal to 6.4V, the battery

is considered as fully discharged. The room temperature is

remained at 25◦C ±3◦C. The motor speed is remained at 50

rpm (revolutions per minute) thus the battery is discharged

under constant current. All measured data are saved in every

0.01s.

A. Battery capacity

The battery capacity is given in the battery specification

along with the lower and upper cut-off voltage values. How-

ever, the real capacity may be slightly different from the

one given by the manufacturer. This might affect the SoC

estimation accuracy. Hence, the experimental battery capacity

is found by drawing a constant current, i.e., 1C, from the fully

charged battery. When the battery reaches to the lower cut-off

voltage value, it is considered to be completely discharged.

During this process, the amount of the current drained from the

Fig. 7: LiPo battery’s physical parameter & OCV estimation:

i) Ohmic resistance, ii) Polarisation resistance, iii) Polarisation

capacitance and iv) OCV

battery and the time are measured. Therefore, the experimental

capacity is simply calculated from the area under the time

versus current graph. This procedure is repeated 5 times and

the average capacity is calculated as 0.96Ah.

B. SoC-OCV relation

To establish the experimental SoC-OCV relation, the battery

is fully charged under a constant-current constant-voltage

mode until it reaches the upper cut-off voltage. Then, the

battery is discharged by 5% intervals until SoC reaches 80%.

The SoC drop interval is then increased to 10% until SoC

reaches to 20%. The SoC drop rate is again decreased to 5%

until the battery is fully discharged. This change in the SoC

drop rate has been done to better capture the nonlinearity

at low and high SoC regions. One hour relaxation period

is used between the two discharging intervals. The terminal

voltage measured after each resting period is assumed to be

the Voc. The SoC calculated using CC is considered as the

reference SoC. The measured Voc value is recorded with its

corresponding SoC value. The same process is repeated for the

battery charging process to take into account the differences

in Voc due to hysteresis. The average Voc values are calculated

and Table I is the look-up table for the experimentally obtained

SoC and OCV relation.

C. Validation Experiment

Parameters of the ECM and coefficients of SoC-OCV curve

are identified by Algorithm 2 from the experimental data of

the LiPo battery. The same initial values as in the numerical

simulation are used in the validation simulations. The fully

charged battery is discharged by three DC motors. Vt and I
are measured every 0.01s.
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Fig. 8: Estimated Coefficients of SoC-OCV curve and esti-

mated SoC compared to experimental SoC: i) Coefficient a,

ii) Coefficient b, iii) Coefficient c, iv) SoC

Figure 7 shows the convergence of the battery model

parameters. All three model parameters converge almost im-

mediately. The estimation of R0 has a persistent trend around

0.18Ω. Note that the estimated R0 includes the wiring resis-

tance. On the other hand, Rp increases as the SoC decreases.

It starts with around 0.02Ω and reaches around 0.08Ω at the

end of discharging. Cp has the reverse trend compare to Rp.

This is because the time constant of the battery tends to remain

constant during the discharge process. Thus, Cp decreases to

compensate the increase in Rp. The similar behaviours are

also observed in [21], [56], [57].

Figure 7 (iv) shows the estimated Voc in a solid red line

whereas the experimental Voc is in the dashed black line. The

experimental Voc is obtained from the data given in Table

I. The estimated Voc converges to the experimental Voc less

than 1s. The accuracy in Voc estimation is requisite for the

accurate estimation of SoC. The estimates of SoC-OCV curve

coefficients are shown in Figure 8 (i-iii) and Figure 8 (iv)

illustrates the SoC convergence. The SoC converges to its

experimental value in less than 1s. It is vital to accurately

estimate the SoC at low and high SoC values because it is

necessary to know when to stop charging or discharging the

battery. In these nonlinear regions, the estimated SoC agrees

well with the experimental SoC as shown in Figure 8 (iv).

Figure 9 (i) shows the final SoC-OCV curve estimation in

the red solid line, which is well aligned with the experimen-

tally obtained data indicated by ”*”. Figure 9 (ii) illustrates

the error in Voc estimation. The Voc estimation agrees well

with the experimental Voc within the maximum error ±0.1V.

Figure 9 (iii) demonstrates the error in the SoC estimation.

The error bound in z is within less than ±0.03.

The performance of the proposed algorithm shown with the

Fig. 9: Experimental SoC-OCV data points along with the

estimated SoC-OCV curve & Estimation error in OCV and

SoC: i) SoC-OCV curve, ii) Error in OCV, iii) Error in SoC

experiment validates the capability of the algorithm to adapt

to the noisy environment and measurement.

VIII. CONCLUSIONS AND FUTURE WORK

The real-time SoC estimation algorithm is proposed based

on a new SoC-OCV model. The physical battery parameters

are estimated using the adaptive law. The OCV is estimated

using the KF, the SoC is estimated using the EKF and

another KF is used to develop the nonlinear curve estimation

algorithm. The proposed algorithm is validated by performing

the computer simulation and battery experiment. Both results

validate that the proposed method provides an accurate estima-

tion of SoC, and the experiment shows that the SoC estimation

error is less than 2.5%.

The proposed method could be directly implemented for

many applications including EVs. It eliminates all laborious

time consuming experiments and reduces the SoC estimation

error due to the inaccuracy in the SoC-OCV nonlinear curve

obtained offline. Changes in the SoC-OCV curve by opera-

tional condition and battery ageing are automatically reflected

in the estimation in real-time.

The future work will include robustness and sensitivity

analysis of the proposed algorithm considering the drift noise

in the input current measurement. Further computational and

experimental research will be carried out on the accuracy of

the approximation model given in Eq. (21) for different battery

types. Moreover, the behaviour of the SoC estimation error

due to the difference between the model and the truth will be

investigated by realistic and extreme condition experiments.
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