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Simple Summary: Due to the rarity and non-specific symptoms of myeloma, a key challenge in
diagnosing myeloma in primary care is the clinician considering myeloma and initiating appropriate
investigations. We developed an algorithm to identify those at high-risk of having undiagnosed
myeloma based on results from routine blood tests taken for other reasons. We demonstrated that it
is possible to combine signals and abnormalities in several routine blood test parameters to identify
individuals at high-risk of having undiagnosed myeloma with high predictive accuracy. Identified
high-risk individuals could then undergo further automatic testing in the laboratory (a reflex test) to
test specifically for myeloma. We estimate the number of additional tests needed to diagnose one
case at different model thresholds. Further work is needed to explore the full potential of such a
strategy. If successful, automatic reflex testing would enable large-scale, low-cost case-finding for
myeloma with a significant impact on the diagnosis of myeloma.

Abstract: Myeloma is one of the hardest cancers to diagnose in primary care due to its rarity and
non-specific symptoms. A rate-limiting step in diagnosing myeloma is the clinician considering
myeloma and initiating appropriate investigations. We developed and internally validated a risk
prediction model to identify those with a high risk of having undiagnosed myeloma based on results
from routine blood tests taken for other reasons. A case-control study, based on 367 myeloma cases
and 1488 age- and sex-matched controls, was used to develop a risk prediction model including
results from 15 blood tests. The model had excellent discrimination (C-statistic 0.85 (95%CI 0.83, 0.89))
and good calibration (calibration slope 0.87 (95%CI 0.75, 0.90)). At a prevalence of 15 per 100,000
population and a probability threshold of 0.4, approximately 600 patients would need additional
reflex testing to detect one case. We showed that it is possible to combine signals and abnormalities
from several routine blood test parameters to identify individuals at high-risk of having undiagnosed
myeloma who may benefit from additional reflex testing. Further work is needed to explore the full
potential of such a strategy, including whether it is clinically useful and cost-effective and how to
make it ethically acceptable.

Keywords: myeloma; blood tests; risk prediction; early detection; reflex testing; primary care

1. Introduction

Multiple myeloma is a cancer of the plasma cells, with approximately 6000 new cases
diagnosed annually in the UK [1]. Myeloma has been identified as one of the hardest
cancers to diagnose in primary care [2]. It is a relatively rare cancer; on average, a GP
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will see one new case every 8–10 years. Patients present with a range of non-specific
symptoms, including back pain, bone pain, fatigue, and blood test abnormalities, such as
hypercalcemia, renal impairment, anaemia, and raised inflammatory markers, which are
all common in an aging population and may be falsely attributed to other common benign
conditions [3,4]. Many myeloma patients have complex diagnostic journeys. Around
half have three or more pre-referral consultations, and around one-third are diagnosed
through emergency presentation [5–7]. Although the presentation may be non-specific, once
considered, the diagnostic pathway for myeloma is relatively straightforward. However,
delays in diagnosis result in a higher burden of disease-related complications, such as
lytic bone disease, pathological fractures, acute kidney injury, and severe infection, all of
which have been shown to limit the quality of life, treatment tolerance, response rates, and
survival [5,8]. One-year survival ranges from 96% for those diagnosed with stage 1 disease
to 80% for those diagnosed with stage 3 [9]. Improving the early diagnosis of myeloma is
an area of unmet clinical need, and alternative diagnostic strategies are needed [10].

A range of blood tests are used to aid the diagnostic workup of myeloma [11]. Data
from primary care records show that of newly diagnosed myeloma cases, 83% had urea
and electrolytes (U&E) tests, 80% full blood count (FBC), and 52% calcium tests, with
49% having all three blood tests prior to diagnosis [12]. Analysis based on the National
Cancer Diagnosis Audit found that prior to diagnosis, 65% of myeloma patients had U&E
tests, 73% FBC, 58% liver function tests, and 49% tests for inflammatory markers [13].
Importantly, alterations in routine blood parameters can be detected several years prior to
myeloma diagnosis, before the onset of symptoms or disease complications. Haemoglobin
values have been shown to start to decrease in myeloma patients up to three years prior to
diagnosis [14]. Both plasma viscosity (PV) and erythrocyte sedimentation rate (ESR) have
been shown to have discriminatory suitability in the diagnosis of myeloma, with ESR and
PV values starting to increase approximately two years prior to diagnosis [15].

Clinical prediction models have combined symptom data and blood test results to
identify patients at higher risk of developing myeloma [3,16]. Both these studies were
based on large primary care populations in England. Shephard et al. identified sixteen
features independently associated with myeloma, each with generally low risk; however,
once some symptoms were combined with leucopenia or hypercalceamia, risk estimates
were strongly associated with myeloma [3]. Koshiaris et al. developed a risk prediction
model combining symptoms and blood test results, including age, gender, back, chest
and rib pain, nosebleeds, haemoglobin, platelets, white cell count, and mean corpuscular
volume. The model had an area under the curve of 0.84 (95%CI 0.81 to 0.87); this increased
to 0.87 (95%CI 0.84 to 0.90) when calcium and inflammatory markers were added to the
model predictors. These models depend upon patients reporting specific symptoms to
their GP and the GP coding them appropriately in the patient records for inclusion in
the development of the model. Many myeloma symptoms are non-specific, and a rate-
limiting step in diagnosing myeloma is the clinician considering myeloma and initiating
appropriate investigations. Algorithms based on minor abnormalities and subtle changes in
routine blood parameters only (such as haemoglobin, liver function tests, and inflammatory
markers that may be taken for other reasons) may be useful to identify individuals with a
high risk of having undiagnosed myeloma independent of symptom presentation and to
prompt GPs into considering myeloma as part of the differential diagnosis. Such algorithms
could then be implemented in hospital laboratories to trigger automatic reflex testing of
high-risk individuals possibly having undiagnosed myeloma. A reflex test is a laboratory
test performed after initial test results are obtained, and pre-determined criteria are met.
Blood samples are stored in laboratories for up to 72 h after initial testing. Reflex testing
of these samples based upon such pre-determined risk prediction criteria may enable
large-scale, low-cost case-finding for myeloma for those at greatest risk without the need
for additional clinics and blood specimens to be collected from patients.

A further consideration for strategies to improve the early diagnosis of myeloma is
the potential increase in the diagnosis of the precursor condition monoclonal gammopathy
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of undetermined significance (MGUS). It is often diagnosed incidentally via routine blood
tests. MGUS is common, with a prevalence of 3–5% and a risk of progression to myeloma
of approximately 1% per year [17]. Once diagnosed, regular monitoring of blood tests and
clinical symptoms is recommended, often guided by MGUS risk-stratification strategies.
This has cost and workload implications for the NHS, as well as for the mental health of
these patients, the majority of whom will never require treatment for MGUS.

Prior to developing and implementing a laboratory reflex test for myeloma, it is
essential to investigate whether an appropriate algorithm based on results from routine
blood tests can be developed with appropriate accuracy. In this study, we develop and
internally validate a risk prediction model to identify those with a high risk of having
undiagnosed myeloma based on results from routine blood tests taken for other reasons.

2. Material and Methods
2.1. Study Population

A retrospective case-control study used de-identified data from Leeds Teaching Hospi-
tals Trust (LTHT), including clinical, pathology, and demographic data. Cases were defined
as patients diagnosed with multiple myeloma (ICD-10 C90) between 2012 and 2019 at
LTHT.

Controls were selected from LTHT patients who had at least two FBCs within a two-
year time period from 2012–2019. Patients diagnosed with any other haematological cancer
up to 2021 were excluded. Initially, five controls were selected for each case matched on
age, gender, and year. The date of the last blood test was used as the index date. Further
restrictions were applied to the control group to remove groups of patients who were
critically ill and, therefore, may potentially have extreme outlying values for blood test
results. This involved removal of controls where cancer was recorded as a comorbidity and
those whose blood tests were all requested from intensive or palliative care.

All patients with an MGUS diagnosis recorded on their medical record (ICD-10, D47.2)
between 2012 and 2019 were also identified for inclusion in a further sensitivity analysis.

2.2. Blood Tests

The blood tests included components of FBC and biochemistry blood tests. All tests
carried out between 2011 and the diagnosis/index date were included, so cases and controls
had blood tests at least one year prior to the index date. The blood tests included those
requested from primary care and those conducted in hospital.

The total number and median number of blood tests for each individual were calcu-
lated, including all measurements up to five years prior to the diagnosis/index date. This
analysis assessed how frequently these tests were conducted and to help select the final list
of candidate predictors (Supplementary Table S1).

Although repeat measurements of blood tests over time were available, the prediction
model was developed based on cross-sectional data, so we retained only one blood test
result for each patient. For cases, the date the patient started to undergo tests as part of
the diagnostic workup for their myeloma was identified and defined as the date of either a
paraprotein, serum electrophoreses, or immunofixation test within the period 2 years prior
to diagnosis. Only blood tests prior to this date were included, and the test result closest to
this was retained. For controls, the test results closest to the index date were included.

2.3. Sample Size and Events per Parameter

The sample size was calculated based on the recommendations from Riley et al. to
calculate the minimum number of events per parameter [18]. The prevalence of myeloma
in this case-control study (after further exclusion of controls) was 27%, assuming an AUC of
0.80 (based on similar work by Koshiaris et al. [16]) and a shrinkage factor of 0.9. Based on
these inputs, a minimum of 9.8 events per parameter was estimated. We included 375 cases
and were able to include up to 38 parameter predictors. Therefore, we included age and
sex and 15 blood tests to allow us to include non-linear terms for continuous variables.
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2.4. Candidate Predictors

Candidate predictors initially considered were components of FBC and biochemistry
blood tests (shown in Supplementary Table S1) that are commonly conducted in primary
care and known to be abnormal at the point of a myeloma diagnosis. These were refined
for inclusion in the modelling stage based on existing literature, clinical opinion, and data
availability. The final list of variables to take forward to the modelling stage were selected
via discussion with the clinical team, including a GP (RN) and haematologists (GC and JC).
We only included routine blood tests well recorded within the data extract (recorded for
at least 50% of cases and controls). The final fifteen blood tests included were: albumin,
alkaline phosphatase (ALP), alanine transaminase (ALT), basophils, calcium, creatinine, C-
reactive protein (CRP), eosinophils, haemoglobin, lymphocytes, mean cell volume (MCV),
monocytes, neutrophils, platelets, and white cell count (WCC) (Supplementary Table S2).

2.5. Model Development

A risk prediction model was developed using logistic regression. A full modelling
approach was adopted where all predictors were included in the model regardless of
their statistical significance. This method avoids issues with potential overfitting and
predictor selection methods, which may be data-dependent. To account for potential non-
linearity, continuous predictors were modelled using restricted cubic splines with three
knot points placed at the recommended locations based on percentiles (10th, 50th, and 90th
percentiles) [19].

2.6. Missing Data

Multiple imputations using chained equations were used to account for missing data
assuming the data were missing at random [20]. The imputation model included all
predictors and outcomes using predictive mean matching for continuous variables. Model
convergence was assessed by examining convergence plots and comparing the distributions
of observed and imputed values. Twenty imputed datasets were generated, and analyses
were conducted on each imputation set and pooled using Rubin’s Rule [20].

2.7. Internal Validation

The model was internally validated to assess the model discrimination and calibration.
Model discrimination, which measures the ability of the model to differentiate between
cases and controls, was measured using the C-statistic. Model calibration, which measures
the agreement between predicted and observed risks, was assessed using calibration plots
and the calibration slope. The calibration plot was obtained by generating 10 groups
based on the deciles of predicted probability, plotting the predicted risks against the
observed risks, and fitting a weighted smoothing trend line (loess smoother) between
model predictions and outcome. The calibration slope was calculated by fitting a logistic
regression for the outcome with the model linear predictor as the only independent variable.
The coefficient for the linear predictor is the calibration slope (the ideal calibration slope is
1). Internal validation using bootstrapping with multiple imputation was conducted using
1000 bootstrap samples drawn from each imputed data set and results pooled to obtain the
optimism-adjusted estimates.

2.8. Diagnostic Accuracy Statistics

Model sensitivity and specificity were obtained for probability thresholds ranging from
0.1 to 0.5 (by intervals of 0.05). The prevalence of myeloma in a primary care population
(where the predicted algorithm would be implemented) was estimated based on published
studies and official national statistics [12,16,21]. We estimated the positive predictive values
(PPV), negative predictive value (NPV), number of cancers detected and missed, the total
number that would require additional reflex testing, and the number needed to reflex test
to diagnose one case at each probability threshold.
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2.9. Sensitivity Analysis and Additional Models

Several additional models based on further exclusion criteria were run as sensitivity
analyses. The additional models are listed below.

Calcium excluded: The model was run again, excluding calcium as a predictor. Cal-
cium is an important predictor of myeloma [11]; however, it was the blood test that was
conducted least in both the case and control group and had the highest levels of missing
data. In clinical practice, if a GP is requesting a calcium test, they may already be thinking
of the possibility of cancer.

Over 60s only: The model was run again, restricting the age of cases and controls
to include those over 60 years of age only. The median age at diagnosis for myeloma is
71 years, with over 80% of new cases diagnosed in those over 60 years of age [21]. In our
study cohort, there were 66 cases and 348 controls aged <60 years who were excluded from
this analysis.

MGUS as controls: The MGUS cohort (n = 392) were excluded from the main model
development. Our main aim is identifying myeloma cases, and we wish to avoid inadver-
tently detecting a large number of MGUS cases. The MGUS cohort were included in the
control group, and the model was developed and validated using this updated control
group.

Further models based on combinations of the above criteria were also run.

1. All ages, MGUS as controls, calcium excluded as a predictor.
2. Over 60 s only, MGUS as controls, all predictors included.
3. Over 60 s only, MGUS as controls, and calcium excluded as a predictor.

Each of these models was internally validated, and the model’s discrimination and
calibration were assessed by deriving the C-statistic and the C-slope. The diagnostic
accuracy statistics were calculated for each model as described above.

2.10. Software

Analysis was carried out in R version 4.0.2 using the following packages: dplyr for data
manipulation [22], Hmisc and rms to generate descriptive statistics and model fitting [19],
mice and nanair to explore missing data patterns and perform multiple imputations [23,24],
pROC for model discrimination and estimating diagnostic accuracy statistics [25], and
psfmi for model validation with multiple imputations [26].

The study is reported in accordance with Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidance [27].

3. Results

There were 439 myeloma patients diagnosed between 2012 and 2019, and, after all
exclusions, 367 cases and 1488 controls were included in the prediction modelling (Figure 1).
The baseline characteristics of the cohort are shown in Table 1. The median age of the cases
was 71 years (IQR 63, 79), and 58% were male. Supplementary Figure S1 and Table S3 show
the characteristics of the MGUS cohort. Supplementary Figures S2 and S3 show the trends
and distributions of blood test results for cases and controls.

Approximately one-third of included blood tests were from primary care (Supplemen-
tary Table S4). The percentage of missing data for candidate predictors was greatest for
calcium (35%) and CRP (28%), with a higher percentage of missing controls than cases.
Data were missing for between 5–6% for albumin, ALP, and ALT, and for all other tests, the
percentage with missing data was <1% (Supplementary Table S5).
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Figure 1. Flow chart of study participants.

Table 1. Study cohort description.

Variable Cases
N = 367

Controls
N = 1488

Age, median (IQR) 71 (63, 79) 70 (60, 78)
Age group, n(%)

<50 years 18 4.9% 111 7.5%
50–59 48 13.1% 237 15.9%
60–69 98 26.7% 389 26.1%
70–79 125 34.1% 452 30.4%
80–89 71 19.3% 275 18.5%
90+ 7 1.9% 24 1.6%

Sex, n(%)
Male 214 58.3% 875 58.8%

Female 153 41.7% 613 41.2%
Ethnicity, n(%)
White British 309 84.2% 1229 82.6%

Black 17 4.6% 15 1.1%
South Asian 10 2.7% 68 4.6%

Other 16 4.4% 30 2.2%
Missing 15 4.1% 146 9.8%

Total number of comorbidities, n(%)
0 242 65.9% 1018 68.4%
1 88 24.0% 326 21.9%
2 29 7.9% 111 7.5%

3+ 8 2.2% 33 2.1%
Blood tests, median (IQR)

Albumin 36.0 (31.0, 40.0) 39.0 (34.0, 42.0)
ALP 139.0 (89.0, 201.0) 138.0 (83.0, 213.0)
ALT 19.0 (14.0, 30.0) 21.0 (15.0, 31.0)

Basophils 0.03 (0.02, 0.04) 0.04 (0.03, 0.06)
Calcium 2.41 (2.31, 2.54) 2.33 (2.27, 2.40)

Creatinine 89.50 (72.0, 143.2) 76.00 (63.0, 95.25)
CRP 5.00 (5.0, 19.62) 15.10 (5.00, 54.50)
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Table 1. Cont.

Variable Cases
N = 367

Controls
N = 1488

Eosinophils 0.12 (0.06, 0.19) 0.13 (0.06, 0.23)
Haemoglobin 112.0 (97.0, 127.2) 132.0 (115.0, 144.0)
Lymphocytes 1.49 (1.07, 2.03) 1.46 (1.03, 1.99)

MCV 96 (92, 101) 94 (90, 98)
Monocytes 0.39 (0.29, 0.50) 0.45 (0.34, 0.57)

Neutrophils 3.64 (2.75, 5.28) 4.95 (3.69, 6.94)
Platelets 223.0 (167.0, 288.5) 248.0 (199.0, 309.0)

WCC 6.14 (4.73, 7.94) 7.58 (5.95, 9.73)
Abbreviations: IQR = Interquartile range, ALP = alkaline phosphatase, ALT = alanine transaminase, CRP = C-
reactive protein, MCV = mean cell volume, WCC = white cell count.

3.1. Predictor Variables

Associations between each predictor and the outcome from the final model are shown
in Figure 2, and the model coefficients are in Supplementary Table S6.
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3.2. Model Discrimination and Validation

The C-statistic directly calculated from the dataset was 0.87 (95%CI 0.84, 0.89). After
internal validation via bootstrapping, the C-statistic was 0.85 (95%CI 0.83, 0.87). The
calibration slope was 0.87 (95%CI 0.75, 0.90), suggesting some model overfitting. The
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calibration plot is shown in Figure 3, and there is some suggestion of underestimation of
risk in the groups with the highest risk. Supplementary Figure S4 shows histograms of the
predicted probabilities for cases and controls.
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3.3. Sensitivity Analysis

Model fit statistics for the series of sensitivity analysis models are shown in Table 2.
The C-statistic ranged from 0.81 (95%CI 0.79, 0.84) for the model, including the MGUS
cohort as controls and excluding calcium as a predictor, to 0.86 (95%CI 0.84, 0.89) for
the model based on the over 60s and including all blood tests. The C-slope ranged from
0.86 to 0.88.

Table 2. Model discrimination and calibration for the full model and all sensitivity analyses.

Model C-Statistic C-Slope

Full model (all 15 blood tests included) 0.85 (0.83, 0.87) 0.87 (0.75, 0.90)
Calcium removed as predictor 0.83 (0.81, 0.85) 0.86 (0.73, 1.01)

Over 60s only included 0.86 (0.84, 0.89) 0.86 (0.73, 1.01)
MGUS cohort included as controls 0.83 (0.81, 0.86) 0.88 (0.76, 1.00)

All ages, MGUS as controls, calcium removed 0.81 (0.79, 0.84) 0.88 (0.75, 0.99)
Over 60s only, MGUS as controls, all predictors 0.85 (0.82, 0.87) 0.87 (0.75, 1.00)

Over 60s only, MGUS as controls, calcium removed 0.83 (0.80, 0.85) 0.87 (0.73, 1.00)

3.4. Diagnostic Accuracy

The diagnostic accuracy of all models at a range of threshold probabilities are shown
in Table 3. At a probability threshold of 0.2, the sensitivity was 77.1 (95%CI 72.8, 81.2), and
the specificity was 82.3 (95%CI 80.3, 84.3); increasing the threshold to 0.4 resulted in the
sensitivity reducing to 58.3 (95%CI 53.1, 63.5) while the specificity increased to 94.8 (93.6,
95.9).
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Table 3. Diagnostic accuracy metrics for all models at a range of probability thresholds assuming a
prevalence of 15 cases per 100,000 population.

Prevalence 15 per 100,000

Model Threshold Sensitivity
(95% CI)

Specificity
(95% CI) PPV NPV Total to

Reflex Test
Cancers

Diagnosed
Cancers
Missed

Number Needed
to Reflex Test to

Detect 1 Case

Full model
0.1 90.2 (86.9, 92.9) 60.2 (57.6, 62.8) 0.0003 1.0000 39,808 14 1 2942
0.2 77.1 (72.8, 81.2) 82.3 (80.3, 84.3) 0.0007 1.0000 17,709 12 3 1531
0.4 58.3 (53.1, 63.5) 94.8 (93.6, 95.9) 0.0017 0.9999 5208 9 6 596

Calcium removed
0.1 88.8 (85.8, 92.1) 55.6 (53.0, 58.0) 0.0003 1.0000 44,407 13 2 3334
0.2 77.4 (73.3, 81.5) 78.5 (76.3, 80.5) 0.0006 1.0000 21,508 12 3 1853
0.4 55.0 (50.1, 60.2) 94.2 (92.8, 95.2) 0.0014 0.9999 5807 8 7 704

Over 60s only
0.1 91.4 (88.0, 94.4) 61.6 (58.9, 64.2) 0.0004 1.0000 38,408 14 1 2801
0.2 81.7 (77.1, 86.1) 80.6 (78.5, 82.9) 0.0006 1.0000 19,409 12 3 1584
0.4 65.1 (59.5, 70.4) 94.3 (92.9, 95.6) 0.0017 0.9999 5709 10 5 585

MGUS as controls
0.1 84.2 (80.1, 87.7) 63.9 (61.7, 66.0) 0.0003 1.0000 36,107 13 2 2859
0.2 73.6 (69.2, 77.9) 86.0 (84.3, 87.5) 0.0008 1.0000 14,009 11 4 1269
0.4 46.6 (41.7, 51.8) 96.0 (95.1, 96.9) 0.0017 0.9999 4006 7 8 573

MGUS as
controls and

calcium removed

0.1 85.6 (82.0, 89.1) 59.4 (57.1, 61.6) 0.0003 1.0000 40,607 13 2 3163
0.2 71.7 (67.0, 76.3) 82.8 (81.1, 84.5) 0.0006 0.9999 17,208 11 4 1600
0.4 44.1 (39.5, 49.1) 95.7 (94.7, 96.6) 0.0015 0.9999 4306 7 8 651

Over 60s only,
MGUS as controls,

all predictors

0.1 87.0 (83.1, 90.7) 64.0 (61.5, 66.4) 0.0004 1.0000 36,008 13 2 2759
0.2 75.4 (70.4, 80.0) 84.6 (82.8, 86.3) 0.0007 1.0000 15,409 11 4 1362
0.4 48.8 (43.2, 54.5) 94.9 (93.7, 96.0) 0.0014 0.9999 5107 7 8 698

Over 60s only,
MGUS as controls,
calcium removed

0.1 87.0 (83.4, 90.7) 60.7 (58.1, 63.1) 0.0003 1.0000 39,307 13 2 3012
0.2 74.8 (70.1, 79.7) 81.5 (79.4, 83.4) 0.0006 1.0000 18,508 11 4 1650
0.4 48.5 (43.2, 54.2) 94.6 (93.5, 95.7) 0.0013 0.9999 5406 7 8 743

Abbreviations: CI = confidence interval, PPV = positive predictive value, NPV = negative predictive value.

Assuming a prevalence of 15 cases per 100,000 population and a probability thresh-
old of 0.2, the number of additional reflex tests to be carried out ranges from 14,009 to
21,508 depending on the chosen model, with the corresponding number needing a reflex
test to diagnose 1 case ranging from 1269 to 1853. Increasing the probability threshold to
0.4 decreases the total number of additional reflex tests to between 4006 and 5807, with the
number needed to reflex test to diagnose 1 case ranging from 573 to 704. Supplementary
Tables S7 and S8 and Figure S5 show these metrics for different prevalence estimates.

4. Discussion
4.1. Key Findings

We have developed a risk prediction model to identify individuals at high-risk of
having undiagnosed myeloma based on the results of blood tests taken for other reasons.
The model shows promising performance after internal validation and sensitivity analysis
with good discrimination and calibration. Individual symptoms and blood test abnormali-
ties have low predictive value. However, in this proof-of-concept study, we showed it is
possible to combine signals and abnormalities in several routine blood test parameters to
identify individuals at high-risk of having undiagnosed myeloma who may benefit from
additional reflex testing specifically for myeloma.

The model is based on blood tests commonly conducted in primary care. Based on
the model parameters, the number of patients identified for additional reflex testing varies
considerably. At a probability threshold of 0.1, approximately 40,000 individuals would be
identified to undergo further testing; this reduces considerably to around 5000 individuals
at a probability threshold of 0.4, with the corresponding number needed to diagnose one
case reducing from around 3000 to 600. However, at higher probability thresholds, the
number of cancers missed increases.

4.2. Comparison with Other Studies

Previous prediction models have focussed on including blood test results alongside
presenting symptoms to identify high-risk patients. Our study was not reliant upon
patients reporting specific symptoms, so it is not completely comparable. However, the
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previously developed models included several blood test abnormalities, including anaemia,
leucopoenia, hypercalcemia, and raised inflammatory markers [3,16].

Raised inflammatory markers are associated with increased cancer risk [28]. Specif-
ically for myeloma, previous research has shown that PV and ESR are more useful for
diagnosis than CRP [15]. In our model, we included CRP rather than PV or ESR, as this
was the most commonly used inflammatory marker in our cohort. PV was missing for 31%
of cases and 73% of controls, and ESR was missing for 76% of cases and 87% of controls.
These tests are also more likely to be performed in patients where cancer is suspected, and
therefore, their predictive value may appear higher. While methods to deal with missing
data could have been used to impute missing values and allow these markers to be included
in the model development, we felt that since these tests were only conducted in a small
proportion of the study sample when the model algorithm is implemented clinically, this
would lead to many exclusions and therefore decided not to include these in the model
development. This is also supported by data from CRPD which shows that in the prediction
model developed by Koshiaris et al. ESR was missing for 74%, CRP was missing for 81%,
and PV was missing for 96% of the study population [16], and Watson et al. showed that
PV was the least commonly used inflammatory marker [28].

Hypercalcaemia plays an important role in the diagnosis of myeloma and is one of the
CRAB features essential for the diagnosis of myeloma [29]. Out of all blood tests included
in our model, this is the one conducted the least (84% in cases and 60% in controls). Patients
with hypercalcaemia have an increased risk of cancer [30], and it may be that when this test
is requested, the clinician is already thinking about the possibility of a cancer diagnosis.
For these reasons, we re-ran our model, excluding calcium as one of the predictors, and
we still obtained similar model discrimination and calibration. Again, this is important for
implementing the developed model so that patients are not excluded if they do not have
the included blood tests.

4.3. Clinical Implications

A major challenge in diagnosing myeloma in primary care is the clinician suspecting
myeloma and appropriately testing for it. Our proposed approach based on reflex testing re-
moves this step by identifying high-risk individuals on blood tests already being conducted
with minimal impact on NHS resources. However, there are challenges and several issues
to consider with this strategy. Reflex and reflective testing are common in UK laboratories,
but there is variation between laboratories and different approaches used in decisions
to contact the requestor before adding a particular test [31]. Whether this test would be
considered automatically, based on our developed algorithms, or whether it is dependent
upon the laboratory specialist adding the additional tests and the mechanisms for this need
to be defined. Setting appropriate thresholds for the test is challenging, along with risk
communication. There are serious ethical issues around the potential diagnosis of a disease
that was not originally considered when the blood test was requested. Further work is
needed to explore all these issues with a range of stakeholders, including patients and the
wider population, to determine whether this strategy is clinically useful and cost-effective
and how to make it ethically acceptable.

The number of individuals to undergo additional testing varies considerably depend-
ing on the probability threshold chosen. Further economic evaluation work is needed to
explore whether this type of automatic triage testing pathway can be cost-effective and
establish the necessary appropriate thresholds that incorporate the costs of the additional
tests. This study provides the evidence base to conduct this health economic analysis which
we are undertaking as the next stage of this project. One advantage of this method is that the
additional test used in the diagnostic workup for myeloma, serum protein electrophoresis,
immunofixation, and serum-free light chain assays are sensitive and specific initial tests for
the majority of patients and relatively inexpensive compared to other diagnostic methods.

While trying to improve the early diagnosis of myeloma, it is important to avoid
inadvertently diagnosing a large number of MGUS cases which would have a significant
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impact on patients’ mental health as the majority of patients will never require treatment for
MGUS. It also has significant cost and workload consequences for the NHS. We included
the group of patients with an MGUS diagnosis recorded in sensitivity analysis combined
with the control group and found that the model had similar predictive performance to the
model, excluding this group. It should also be acknowledged that the control group may
include patients with undiagnosed MGUS. A population-based screening trial for MGUS is
ongoing in Iceland, where participants with MGUS are randomised to different follow-up
strategies, providing vital evidence on the cost-effectiveness of screening and monitoring
approaches [32].

4.4. Strengths and Limitations

The key strengths of this study are the methods used in model development. All blood
tests included were those commonly conducted in primary care and undertaken for reasons
other than a cancer diagnosis; they were not reliant upon the patient reporting specific
symptoms and the clinician considering myeloma. All test results were considered on a
continuous scale, and we did not use reference ranges to define abnormal results, which
may vary across laboratories. The dichotomisation or categorisation of data also results in a
loss of statistical power [33]. Spline functions were used to model the relationship between
predictors and the outcome rather than assuming a linear relationship [34], and multiple
imputations were used to account for missing data [20].

The major limitation of our study was the selection of the control group. This was
based on hospital patients who had at least two FBCs over two years. These patients
may not be representative of the wider population that our developed model would be
implemented into. The blood test data we had access to were not limited to those conducted
in hospital only, and around one-third of those included were requested by GPs. We tried
to minimise some of this bias further by excluding tests with extreme values indicative of
critical illness. Furthermore, the planned reflex testing would only be applied to patients
undergoing blood tests who may represent a sicker population, and there is evidence to
suggest an increased cancer risk in patients who undergo testing even if the test results
are within the normal range [28,35–37]. We adopted a case-control approach to ensure a
sufficient number of cases for robust model development rather than a cohort study design.
Further validation of our developed model in a primary care population is needed by
adopting a cohort approach.

Full data was not available for all tests included in the model. While we overcame this
in the model development using methods to deal with missing data, there may be implica-
tions for the implementation. If patients have not undergone the required blood tests, then
we may not be able to calculate their predicted risk. Due to sample size limitations, we
could only use up to 15 blood tests. Other tests may have been important, including those
used to determine myeloma prognosis, but these tests were less likely to be conducted
prior to diagnosis, again limiting the clinical utility of the developed model.

The model was based on cross-sectional data using results from one time point for
each individual. For myeloma patients, we based this on those prior to the initiation of
the diagnostic work for myeloma. Changes in some blood tests can be seen to 2–3 years
before diagnosis [14,15]. Further work is required to identify whether such longitudinal
trajectories and changes can be incorporated into a risk prediction model, with a growing
interest in methods incorporating repeated measures captured within electronic health
records [38,39].

5. Conclusions

To improve the timeliness of myeloma diagnosis, it is essential to identify high-risk
individuals and initiate appropriate investigations. In this proof-of-concept study, we
showed it is possible to combine signals and abnormalities in several routine blood test
parameters to identify individuals at high-risk of having undiagnosed myeloma who may
benefit from additional reflex testing. Further work is needed to explore the full potential
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of such a strategy. If successful, automatic reflex testing would enable large-scale, low-cost
case-finding for myeloma, with a significant impact on myeloma diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15030975/s1, Table S1: Number of tests available up to 5-year
prior to index date for myeloma patients, MGUS patients and controls. Table S2: Candidate predictors
variables included in model development. Table S3: Baseline characteristics of MGUS cohort. Table
S4: Most frequent requesting departments for blood test results used in model development. Table
S5: Number and percentage with missing data for blood tests in cases and controls. Table S6: Model
coefficients for final model based. Table S7: Estimated prevalence based on published studies and
national cancer data. Table S8: Total number to additionally test at different prevalence estimates and
probability thresholds for each model. Figure S1: Flow chart of MGUS cohort. Figure S2: Trend plots
for blood test for cases and controls, mean values (and 95% CIs) within 90 day periods. Figure S3: Box
plot of distribution of blood tests for cases and controls for test results included in the model. Figure
S4: Predicted probabilities cases and controls (over imputed models). Figure S5: Number needed to
additionally test to diagnose 1 case at different prevalence estimates and probability thresholds for
each model.

Author Contributions: L.S., J.C., G.C., B.S. and R.D.N. contributed to the conceptualisation of the
project. L.S. and R.D.N. are joint Principal Investigators of the study. L.S. performed the data analysis,
drafted the manuscript, and is the study guarantor. All authors provided critical comments, edited
the manuscript, and approved its final version. All authors have read and agreed to the published
version of the manuscript.

Funding: The study is funded by a CRUK Early Detection and Diagnosis Primer award (EDDPMA-
May21\100024). This work arises from the CanTest Collaborative, funded by Cancer Research UK
(C8640/A23385), of which RDN is an Associate Director and BS a Senior Faculty Member.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Yorkshire and the Humber—Sheffield Research Ethics Committee
(20/YH/0304 on 10/11/2020).

Informed Consent Statement: Not applicable (patient informed consent was not required as the
dataset consists of de-identifiable patient information collected from LTHT with the freedom to
opt out).

Data Availability Statement: The data are not publically available due to restricted access. The
data used for this research project are available to the research community via application to LTHT
Research Data and Informatics team. The R code used in the analysis can be found at https://github.
com/LFairleySmith/MyelomaPrediction (accessed on 25 January 2023).

Acknowledgments: This study uses data provided by patients and collected by the NHS as part
of their care and support. We want to thank Willie Hamilton and Matthew Thompson for their
constructive comments during study development.

Conflicts of Interest: All authors are working on a CRUK-funded grant looking at risk prediction
of myeloma from routine blood tests taken for other reasons, potentially leading to commercial,
academic, and financial gain.

References
1. Cancer Research UK. Myeloma Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/myeloma (accessed on 28 July 2022).
2. Lyratzopoulos, G.; Wardle, J.; Rubin, G. Rethinking diagnostic delay in cancer: How difficult is the diagnosis? BMJ

2014, 349, g7400. [CrossRef]
3. Shephard, E.A.; Neal, R.D.; Rose, P.; Walter, F.M.; Litt, E.J.; Hamilton, W.T. Quantifying the risk of multiple myeloma from symp-

toms reported in primary care patients: A large case-control study using electronic records. Br. J. Gen. Pract. 2015, 65, e106–e113.
[CrossRef]

4. Koo, M.M.; Hamilton, W.; Walter, F.M.; Rubin, G.P.; Lyratzopoulos, G. Symptom Signatures and Diagnostic Timeliness in Cancer
Patients: A Review of Current Evidence. Neoplasia 2018, 20, 165–174. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers15030975/s1
https://www.mdpi.com/article/10.3390/cancers15030975/s1
https://github.com/LFairleySmith/MyelomaPrediction
https://github.com/LFairleySmith/MyelomaPrediction
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/myeloma
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/myeloma
http://doi.org/10.1136/bmj.g7400
http://doi.org/10.3399/bjgp15X683545
http://doi.org/10.1016/j.neo.2017.11.005


Cancers 2023, 15, 975 13 of 14

5. Howell, D.; Smith, A.; Appleton, S.; Bagguley, T.; Macleod, U.; Cook, G.; Patmore, R.; Roman, E. Multiple myeloma: Routes to
diagnosis, clinical characteristics and survival—Findings from a UK population-based study. Br. J. Haematol. 2017, 177, 67–71.
[CrossRef]

6. Elliss-Brookes, L.; McPhail, S.; Ives, A.; Greenslade, M.; Shelton, J.; Hiom, S.; Richards, M. Routes to diagnosis for cancer—
Determining the patient journey using multiple routine data sets. Br. J. Cancer 2012, 107, 1220–1226. [CrossRef]

7. Lyratzopoulos, G.; Neal, R.D.; Barbiere, J.M.; Rubin, G.P.; Abel, G.A. Variation in number of general practitioner consultations
before hospital referral for cancer: Findings from the 2010 National Cancer Patient Experience Survey in England. Lancet Oncol.
2012, 13, 353–365. [CrossRef]

8. Atkin, C.; Iqbal, G.; Planche, T.; Pratt, G.; Yong, K.; Wood, J.; Raynes, K.; Low, E.; Higgins, H.; Neal, R.D.; et al. Diagnostic
pathways in multiple myeloma and their relationship to end organ damage: An analysis from the Tackling Early Morbidity and
Mortality in Myeloma (TEAMM) trial. Br. J. Haematol. 2021, 192, 997–1005. [CrossRef]

9. National Disease Registration Service NHS Digital. CancerData. Survival. Available online: https://www.cancerdata.nhs.uk/
survival/home (accessed on 16 September 2022).

10. Smith, L.; Carmichael, J.; Cook, G.; Shinkins, B.; Neal, R.D. Diagnosing myeloma in general practice: How might earlier diagnosis
be achieved? Br. J. Gen. Pract. 2022, 72, 462–463. [CrossRef]

11. Watson, J.; Mounce, L.; Bailey, S.E.; Cooper, S.L.; Hamilton, W. Blood markers for cancer. BMJ 2019, 367, l5774. [CrossRef]
12. Seesaghur, A.; Petruski-Ivleva, N.; Banks, V.L.; Wang, J.R.; Abbasi, A.; Neasham, D.; Ramasamy, K. Clinical features and diagnosis

of multiple myeloma: A population-based cohort study in primary care. BMJ Open 2021, 11, e052759. [CrossRef]
13. Cranfield, B.M.; Koo, M.M.; Abel, G.A.; Swann, R.; McPhail, S.; Rubin, G.P.; Lyratzopoulos, G. Primary care blood tests before

cancer diagnosis: National Cancer Diagnosis Audit data. Br. J. Gen. Pract. 2022, 73, e95–e103. [CrossRef] [PubMed]
14. Edgren, G.; Bagnardi, V.; Bellocco, R.; Hjalgrim, H.; Rostgaard, K.; Melbye, M.; Reilly, M.; Adami, H.O.; Hall, P.; Nyren, O. Pattern

of declining hemoglobin concentration before cancer diagnosis. Int. J. Cancer 2010, 127, 1429–1436. [CrossRef] [PubMed]
15. Koshiaris, C.; Van den Bruel, A.; Oke, J.L.; Nicholson, B.D.; Shephard, E.; Braddick, M.; Hamilton, W. Early detection of multiple

myeloma in primary care using blood tests: A case-control study in primary care. Br. J. Gen. Pract. 2018, 68, E586–E593. [CrossRef]
[PubMed]

16. Koshiaris, C.; Van den Bruel, A.; Nicholson, B.D.; Lay-Flurrie, S.; Hobbs, F.R.; Oke, J.L. Clinical prediction tools to identify patients
at highest risk of myeloma in primary care: A retrospective open cohort study. Br. J. Gen. Pract. 2021, 71, e347–e355. [CrossRef]

17. Wadhera, R.K.; Rajkumar, S.V. Prevalence of monoclonal gammopathy of undetermined significance: A systematic review. Mayo
Clin. Proc. 2010, 85, 933–942. [CrossRef]

18. Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M.
Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [CrossRef]

19. Harrell, F.E. rms: Regression Modeling Strategies. 2022. Available online: https://cran.r-project.org/web/packages/rms/index.
html (accessed on 25 January 2023).

20. White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med.
2011, 30, 377–399. [CrossRef]

21. National Disease Registration Service NHS Digital. CancerData. Cancer Incidence 2019. Available online: https://www.
cancerdata.nhs.uk/incidence_and_mortality (accessed on 13 September 2022).

22. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.;
Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [CrossRef]

23. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

24. Tierney, N.; Cook, D.; McBain, N.; Fay, C.; O’Hara-Wild, M.; Hester, J.; Smith, L.; Heiss, A. nanair: Data Structures, Summaries,
and Visualisations for Missing Data. Available online: https://cran.r-project.org/web/packages/naniar/naniar.pdf (accessed on
12 September 2022).

25. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef]

26. Heymans, M.W. psfmi: Prediction Model Selection and Performance Evaluation in Multiple Imputed Datasets. Available online:
https://mwheymans.github.io/psfmi/ (accessed on 12 September 2022).

27. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015, 162, 55–63. [CrossRef]

28. Watson, J.; Salisbury, C.; Banks, J.; Whiting, P.; Hamilton, W. Predictive value of inflammatory markers for cancer diagnosis in
primary care: A prospective cohort study using electronic health records. Br. J. Cancer 2019, 120, 1045–1051. [CrossRef] [PubMed]

29. Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.;
Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol.
2014, 15, E538–E548. [CrossRef]

30. Hamilton, F.; Carroll, R.; Hamilton, W.; Salisbury, C. The risk of cancer in primary care patients with hypercalcaemia: A cohort
study using electronic records. Br. J. Cancer 2014, 111, 1410–1412. [CrossRef] [PubMed]

31. McKeeman, G.C.; Hall, S.L.; Freedman, D.B. Reflex and reflective testing practice in Clinical Biochemistry in the United
Kingdom—A national survey. Ann. Clin. Biochem. 2020, 57, 77–87. [CrossRef] [PubMed]

http://doi.org/10.1111/bjh.14513
http://doi.org/10.1038/bjc.2012.408
http://doi.org/10.1016/S1470-2045(12)70041-4
http://doi.org/10.1111/bjh.17044
https://www.cancerdata.nhs.uk/survival/home
https://www.cancerdata.nhs.uk/survival/home
http://doi.org/10.3399/bjgp22X720737
http://doi.org/10.1136/bmj.l5774
http://doi.org/10.1136/bmjopen-2021-052759
http://doi.org/10.3399/BJGP.2022.0265
http://www.ncbi.nlm.nih.gov/pubmed/36253112
http://doi.org/10.1002/ijc.25122
http://www.ncbi.nlm.nih.gov/pubmed/20020493
http://doi.org/10.3399/bjgp18X698357
http://www.ncbi.nlm.nih.gov/pubmed/30104326
http://doi.org/10.3399/BJGP.2020.0697
http://doi.org/10.4065/mcp.2010.0337
http://doi.org/10.1136/bmj.m441
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
http://doi.org/10.1002/sim.4067
https://www.cancerdata.nhs.uk/incidence_and_mortality
https://www.cancerdata.nhs.uk/incidence_and_mortality
http://doi.org/10.21105/joss.01686
http://doi.org/10.18637/jss.v045.i03
https://cran.r-project.org/web/packages/naniar/naniar.pdf
http://doi.org/10.1186/1471-2105-12-77
https://mwheymans.github.io/psfmi/
http://doi.org/10.7326/M14-0697
http://doi.org/10.1038/s41416-019-0458-x
http://www.ncbi.nlm.nih.gov/pubmed/31015558
http://doi.org/10.1016/S1470-2045(14)70442-5
http://doi.org/10.1038/bjc.2014.433
http://www.ncbi.nlm.nih.gov/pubmed/25093495
http://doi.org/10.1177/0004563219888541
http://www.ncbi.nlm.nih.gov/pubmed/31679388


Cancers 2023, 15, 975 14 of 14

32. Rognvaldsson, S.; Love, T.J.; Thorsteinsdottir, S.; Reed, E.R.; Oskarsson, J.; Petursdottir, I.; Sigurethardottir, G.A.; Vietharsson, B.;
Onundarson, P.T.; Agnarsson, B.A.; et al. Iceland screens, treats, or prevents multiple myeloma (iStopMM): A population-
based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up
strategies. Blood Cancer J. 2021, 11, 94. [CrossRef]

33. Royston, P.; Altman, D.G.; Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med.
2006, 25, 127–141. [CrossRef]

34. Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S.
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and
elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [CrossRef]

35. Watson, J.; Bailey, S.; Hamilton, F.; Hamilton, W.; Mounce, L. Lessons from biases in electronic health record data: The importance
of clinical vigilance with negative test results. BMJ 2018, 361, k1479. [CrossRef]

36. Bailey, S.E.; Ukoumunne, O.C.; Shephard, E.A.; Hamilton, W. Clinical relevance of thrombocytosis in primary care: A prospec-
tive cohort study of cancer incidence using English electronic medical records and cancer registry data. Br. J. Gen. Pract.
2017, 67, e405–e413. [CrossRef]

37. Ankus, E.; Price, S.J.; Ukoumunne, O.C.; Hamilton, W.; Bailey, S.E.R. Cancer incidence in patients with a high normal platelet
count: A cohort study using primary care data. Fam. Pract. 2018, 35, 671–675. [CrossRef] [PubMed]

38. Bull, L.M.; Lunt, M.; Martin, G.P.; Hyrich, K.; Sergeant, J.C. Harnessing repeated measurements of predictor variables for clinical
risk prediction: A review of existing methods. Diagn. Progn. Res. 2020, 4, 9. [CrossRef] [PubMed]

39. Goldstein, B.A.; Navar, A.M.; Pencina, M.J.; Ioannidis, J.P. Opportunities and challenges in developing risk prediction models
with electronic health records data: A systematic review. J. Am. Med. Inform. Assoc. 2017, 24, 198–208. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41408-021-00480-w
http://doi.org/10.1002/sim.2331
http://doi.org/10.7326/M14-0698
http://doi.org/10.1136/bmj.k1479
http://doi.org/10.3399/bjgp17X691109
http://doi.org/10.1093/fampra/cmy018
http://www.ncbi.nlm.nih.gov/pubmed/29659802
http://doi.org/10.1186/s41512-020-00078-z
http://www.ncbi.nlm.nih.gov/pubmed/32671229
http://doi.org/10.1093/jamia/ocw042
http://www.ncbi.nlm.nih.gov/pubmed/27189013

	Introduction 
	Material and Methods 
	Study Population 
	Blood Tests 
	Sample Size and Events per Parameter 
	Candidate Predictors 
	Model Development 
	Missing Data 
	Internal Validation 
	Diagnostic Accuracy Statistics 
	Sensitivity Analysis and Additional Models 
	Software 

	Results 
	Predictor Variables 
	Model Discrimination and Validation 
	Sensitivity Analysis 
	Diagnostic Accuracy 

	Discussion 
	Key Findings 
	Comparison with Other Studies 
	Clinical Implications 
	Strengths and Limitations 

	Conclusions 
	References

