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Abstract—Due to the importance of determining faulty bypass 

diodes in photovoltaic systems, faulty bypass diodes have been of 

widespread interest in recent years due to their importance to 

improving PV system durability, operation, and overall safety. 

This paper presents new work in developing an artificial 

intelligence (AI) based model using the principles of artificial 

neural networks (ANN) to detect short and open PV bypass 

diodes fault conditions. With only three inputs from the PV 

system, namely the output power, short-circuit current, and 

open-circuit voltage, the developed ANN model can determine 

whether the PV bypass diodes are defective. In the 

experimentally validated case of short and open bypass diodes, 

93.6% and 93.3% of faulty bypass diodes can be detected. 

Furthermore, the developed ANN model has an average precision 

and sensitivity of 96.4% and 92.6%, respectively. 

 
Index Terms— Photovoltaics; fault detection algorithm, 

artificial intelligence; bypass diodes. 

NOMENCLATURE 

ANN  Artificial Neural Network 
ANFIS  Adaptive Neuro Fuzzy Inference System 𝑤𝑖𝑗   ANN Network Neurons 𝑥𝑗  ANN Network inputs 𝑤𝑗0  ANN Network activation threshold 𝑏  ANN Network Bias 𝑓1   ANN Network Non-Liner Function 
I-V  Current-Voltage 𝐼𝑀𝑃𝑃  Current at Maximum Power Point 𝐹𝑃  False Positive Rate 
kNN  k-Nearest Neighbors Network 
MPP  Maximum Power Point 
MLP  Multilayer Perceptron 𝑃𝑀𝑃𝑃  Maximum Power Point 𝑉𝑂𝐶   Open Circuit Voltage 
PV  Photovoltaic 
PID  Potential Induced Degradation 
P-V  Power-Voltage 
RBF  Radial Basis Function 
STC  Standard Test Conditions 𝐼𝑆𝐶   Short Circuit Current 𝑇𝑃  True Positive Rate 𝑉𝑀𝑃𝑃   Voltage at Maximum Power Point 
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I. INTRODUCTION 

OLAR Photovoltaic (PV) energy has shown a worldwide 
expansion over the past years. So far, the cumulative 
global installed capacity has exceeded 760 GW [1]. 

There are increasingly global expectations on energy 
production through solar PV systems. Given its resent 
expansion, it is crucial to ensure the performance and 
reliability of such systems. PV power plants operate under the 
threat of various fault conditions, which will decrease their 
efficiency, reliability, and lifetime, or even lead to a dangerous 
operation “fire incident” in some circumstances [2]. 

The fundamental PV modules are central units of a PV 
system, and frequently, they are subjected to hardware faults. 
Such faults can be temporary or permanent, depending on the 
source [3], and there are various fault types such as mismatch 
conditions, module ageing, potential induced degradation 
(PID) [4], shading, short circuit faults [5], and bypass diodes 
faults [6].  

The deficiency of bypass diodes can heat the solar cells, 
causing hotspots, burn marks, and fires in the worst-case 
scenario [7]. It is hence crucial to identify and correct a bypass 
diode fault occurrence on a PV module. In contrast, the bypass 
diodes faults can manifest in two situations: open circuit and 
short-circuit. Short-circuit faults can result from bad 
connections with the solar cells or manufacturing defects. On 
the other hand, the open-circuit faults may occur from a 
disconnection, mainly due to poor soldering and line-to-line 
faults [8]. 

Recent studies have identified several fault detection 
methods and have been explored in the literature. It is possible 
to categorize these methods into two categories: electrical and 
nonelectrical methods. Electrical methods are usually 
considered and potentially mitigated using statistical [9, 10] or 
signal processing methods [11]. For example, in [9], authors 
have proposed an enhanced Cassie–Mayr-Based approach for 
detecting DC series arcing in PV systems. However, the same 
problem was investigated by [10] by adopting a neural 
network and receiving signal strength indicators. Both [10] 
and [11] show accurate results in detecting the DC arcing 
fault; however, they cannot identify failure in the PV modules’ 
bypass diodes. A similar precise detection method was 
developed by [11] to detect line-line and line–ground PV 
faults using a senseless algorithm based on the acquired data 
of the PV modules. Again, this method cannot detect faulty 
PV bypass diodes, which can misidentify the line-ground 
faults scenario.  
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For the nonelectrical methods, they are mainly utilizing 
machine learning-based techniques. Some of these techniques 
detect the fault predictively, avoiding potential power losses 
and damages [12]. However, the most common methods 
identify and diagnose fault conditions in real-time. For 
Example, [13] proposed an artificial neural network (ANN) to 
identify and localize PV module degradation, short-circuited 
and shading about real-time machine learning methods. The 
input variables are ambient temperature, voltage, and current 
at the maximum power point (MPP). However, the method 
was not experimentally tested. In contrast, [14] developed an 
adaptive neuro fuzzy inference system (ANFIS)-based 
algorithm trained using a simulated dataset. This method 
identifies and diagnoses line-to-line faults, partial shading, and 
short-circuited bypass diodes. However, experimental tests 
were not conducted. 

The research developed by Madeti et al. [15] applied a k-
nearest neighbors’ network (kNN) to detect short-circuited 
modules, line-to-line faults, shading and bypass diode defects. 
They used ambient temperature, irradiance, and voltage and 
current at the MPP. This algorithm was not experimentally 
tested, and their findings showed a maximum error of 
3%.  Recently, Hussain et al. [16] compared a radial basis 
function (RBF) and a multilayer perceptron (MLP) for 
detecting short-circuited PV modules. Using power and 
irradiance as input variables, the authors reached a maximum 
accuracy of 97.9% for the RBF algorithm on the experimental 
tests. In contrast, there is not any existing PV fault detection 
algorithm that can detect short-circuit bypass diode fault 
conditions. There are some attempts from the industry to 
explain this faulty situation, yet no proposals have practically 
been utilized.  

In point of the case, even when the PV modules suffer from 
faulty bypass diodes, they typically do not show the impact 
when no shading/overcasting/clouds affect the modules. The 
reason behind this, electrically speaking, is that the bypass 
diodes are only activated during shading conditions. For 
example, recent studies [17-19] have shown that partial 
shading can drop the PV output power; however, it can be 
effectively alleviated when bypass diodes are equipped with 
the modules. In addition, the faulty conditions of PV modules, 
such as faults in bypass diodes or DC arcing, can result in 
current leakage. For example, in [20], the authors proposed a 
communication-assisted overcurrent protection scheme for 
photovoltaic (PV)-based dc microgrids, and in a recent review 
paper [21], it was summarized that PV defects such as 
hotspots or cracks can also lead to leakage of the PV modules 
and can be somewhat mitigated using integrable power 
electronics devices.  

The problem of PV faults can seriously lead to health and 
safety concerns about PV technology, ultimately impacting the 
delivery of the global vision of net-zero carbon by 2050. 
Therefore, in early 2009, a significant work [22] studied the 
protection against electric shock in a photovoltaic generator 
(PVG), the dc side of a PV installation. And since then, 
hundreds of related PV fault detection articles have been 

proposed in the literature. 
This article aims to demonstrate the development of an 

ANN-based model to detect simultaneously short and open 
bypass diode fault conditions. With this aim in mind, the 
paper's main contributions are,  

1) Introduce a simple yet highly accurate, ANN-based 
model that only requires a minimal number of input 
parameters, namely PV output power, open circuit 
voltage and short circuit current, to detect PV bypass 
diode faults. 

2) Identify the number of faulty PV bypass diodes using 
the same ANN network without additional input 
requirements. 

3) The ANN model comprises a "bias" parameter which 
allows the use of the model with small-to-medium 
PV systems capacity. 

4) Experimentally validate the proposed solution and 
provide insights for the ANN model precision and 
sensitivity rates. 

This article is organized as follows: Section II introduces 
the PV bypass diode failure modes, while Section III presents 
the methodology concepts and theoretical grounds of the 
developed ANN model. Section IV shows the algorithm's 
results using different experimental case studies, and finally, 
Section V concludes the work. 

II. PV BYPASS DIODES FAILURE MODES 

Traditional and modern PV modules are integrated with 
bypass diodes, where three to four bypass diodes in the 
junction box (Fig. 1(a)) are connected in parallel with the PV 
sub-strings.  The bypass diodes function as an alternative route 
for the output generated current when the solar cells in the 
sub-string(s) are being affected by shading. In other words, 
they restrict the reverse-biased voltage developed across the 
partially shaded cells, improving the PV module's overall 
power production. 

 
(a) 

 
(b) 

Fig. 1. (a) PV junction box combining three bypass diodes, (b) Snapshot of 
bypass diodes conditions: open, short, and normal operation. 
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Bypass diodes have two main failure modes, failing in 
open- or in short-circuit, demonstrated in Fig. 1(b). If a bypass 
diode fails open (Diode1), it can no longer pass a current 
(complete breakdown). In this case, the diode should be 
replaced as soon as possible since, in this faulty condition, the 
sub-string would be affected by heating (known as hotspots) 
during partial shading conditions. On the contrary if the 
bypass diodes fail short-circuit (Diode2). In that case, the solar 
cells within the sub-string would not contribute to the output 
voltage for the entire PV module. It would result in a 
significant drop in the module's output power. It is worth also 
noting that in this paper, the tested modules have three bypass 
didoes (as in Fig. 1(a)), and each diode is connected in parallel 
with 20 series-connected solar cells (as in Fig. 1(b)). 

In this paper, the examined PV modules have three bypass 
didoes (as in Fig. 1(a)), and each diode is connected in parallel 
with 20 series-connected solar cells (as in Fig. 1(b)). We 
experimented with three different PV modules to observe how 
severely bypass failure condition can affect their performance. 
The second and third PV modules are working at normal 
conditions, and the first module is affected by one open-circuit 
bypass diode. The thermal image of the three tested PV 
modules, taken using FLIR TG165, is presented in Fig. 2. No 
hotspots are observed in PV#3 and PV#2, while PV#1 has an 
entire hotspot PV sub-string in the location where the bypass 
diode is in open condition. The temperature of the sub-string 
ranges from 55°C to 60°C, compared with adjacent non-
hotspot PV modules of nearly 38°C. This result confirms that 
defective bypass diodes can develop a sever hotspots in the 
affected PV sub-string, and hence, degrade the output power 
of the PV module. 

III. METHODOLOGY 

A. Preliminary analysis of PV bypass diodes 

In this paper the behavior of three PV modules configured 
with different bypass diodes arrangements has been 
investigated, as illustrated in Fig. 3(a). PV#1 operates under 
normal operation, while PV #2 has one open bypass diode. 
The last module, PV#3, has one shorted bypass diode. The 
current-voltage (I-V) and power-voltage (P-V) curves were 
taken using a Solmetric PV analyzer instrument. The modules 
main electrical parameters at standard test conditions are, 
power at maximum power point (𝑃𝑀𝑃𝑃): 220.1 W, voltage at 
maximum power point (𝑉𝑀𝑃𝑃): 28.7 V, current at maximum 
power point (𝐼𝑀𝑃𝑃): 7.67 A, open circuit voltage (𝑉𝑂𝐶): 36.7 
V, and the short circuit current (𝐼𝑆𝐶): 8.18 A. 

All experiments apply the same amount of shade (40%) to 
modules with an opaque object (white sheet), since bypass 
diodes are activated if shading occurs. Tests were conducted 
with solar irradiance measured at 640 W/m2 and module 
temperatures around 18°C. The output measured I-V and P-V 
curves are presented in Figs. 3(b) and 3(c), respectively. 

According to PV#1, The I-V or P-V curves show no losses 
in the 𝐼𝑆𝐶  or 𝑉𝑂𝐶 , while its 𝑃𝑀𝑃𝑃 is equal to 121.6 W. 
However, we observe a significant drop of 4 A in the 𝐼𝑆𝐶  for 
the PV module with an open bypass diode (PV#2). This result 
is expected because the PV sub-strings are connected in series. 
Therefore, due to the open bypass diode, the maximum 
generated current will be limited to the minimum value of all 
sub-strings. Subsequently, there is a 20.4 W loss in the output 
power (𝑃𝑀𝑃𝑃 = 101.2 𝑊). In contrast, PV#3 experiences a 
drastic drop in its voltage because one of the sub-strings is 
now shorted due to the short-circuited bypass diode. In this 
case, the 𝑉𝑂𝐶  dropped by 13.7 V compared with PV#1, and the 
module 𝑃𝑀𝑃𝑃 = 72.4 𝑊. 

B. Proposed ANN model 

A novel ANN model has been developed to detect faulty 
bypass diodes in PV modules. The ANN network architecture 
is presented in Fig. 4. The ANN is driven by three inputs, PV 
module output power, and ; these inputs are then processed 
using one hidden layer, which consists of nine neurons. 
Extensive simulations were conducted in order to select the 
number of neurons. In MATLAB, one to 100 neurons were 
tested, and nine neurons was found to produce the best results. 

As the number of PV modules in the system were increased, 
the measured power and voltage rating shift is anticipated. It 
means that at standard test conditions (STC) where the solar 
irradiance is 1000 W/m2, and PV module temperature is 25°C, 
a single PV module would generate 220 W, whereas two 
modules connected in series generate approximately double 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Examined PV modules with different bypass diode configurations 
(PV#1 normal, PV#2 with open bypass diode, PV#3 with short bypass diode), 
(b) Measured I-V curves, (c) Measured P-V curves. 

 
Fig. 2. Thermal image of the three tested PV modules. 
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the power rating of 440 W. Therefore, in this work a fixed bias 
in the ANN model to accommodate this requirement has been 
used. Note, the bias value is usually input using the graphical 
user interface (example, 3x for 3 PV modules connected in 
series). 

Each neuron in the hidden layer takes a formed linear 
combination of the outputs of previous layers neurons. This 
linear combination is weighted using the strength between the 
neurons (𝑤𝑖𝑗) and multiplied by both inputs (𝑥𝑗). An 
activation threshold (𝑤𝑗0) was also assigned to each neuron. 
This process is expressed using equations (1) and (2) while 
utilizing the bias (𝑏). Note: i is equal to the number of hidden 
neurons (1 to 9), j is equal to the number of inputs (1 to 3). 

 ∑ (𝑤𝑖𝑗𝑥𝑗 +  𝑤𝑗0)3𝑗=1                            (1) 𝑏 × ∑ (𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑗0)3𝑗=1                      (2) 
 

The weighted activation process is then multiplied by the 
non-liner function 𝑓1 as shown in (3), this is achieved using a 
sigmoid function, 𝑓1 = 11+𝑒−𝑥. Finally, the output value of the 

hidden layers 𝑦𝑖 is determined by (4). 
 𝑓1  ×  ∑ (𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑗0)3𝑗=1                   (3) 

  𝑦𝑖 = 𝑓(𝑢) =  11+ 𝑒− ∑ (𝑤𝑖𝑗𝑥𝑗+ 𝑤𝑗0)3𝑗=1              (4) 

 
The output layer comprises six different classes, and each 

class corresponds to a specific condition. For example, if the 
predicted class of the ANN is "class 1", the PV module is in 
normal operation mode, where no faulty bypass diode is 
detected. Subsequently, for "class 2", one diode in the module 
is detected as open-circuit bypass diode mode. The description 
of each class is highlighted in Fig. 4. 

The ANN characteristics is presented in Table I. The model 
comprises three inputs and six outputs using one hidden layer. 
The training process is supervised, meaning that we provided 
a set of input/output data of correct network performance. We 
randomly divided 70% of the samples for training, 15% for 
validation, and 15% for testing. Thus, we enable the validation 
of the desired topology. The training algorithm chosen is 
Levenberg-Marquardt, considering it is a faster algorithm for 
ANN networks of moderate sizes. The data were randomly 
selected for training, validating, and testing and all samples 
were normalized to 0 to 1. The dropout rate is used to prevent 

the ANN model from overfitting. The dropout rate for the 
input and hidden layers is 0.5. The process of the dropout is 
driven by setting the weights to zero. In the training process 
the number of iterations is 100, and the size of the batch is 10. 

It is unlike a situation where it is found that a PV module 
has faulty bypass diodes in open- and short-circuit conditions 
at the exact instant. Because when a bypass diode fails open, it 
can develop a hotspot in the sub-string, and subsequently, as 
time progresses, the diodes will be affected by excessive 
forward current and cause these to fail in open mode [6] as 
well. In contrast, when a bypass diode fails short-circuit, the 
voltage of the PV module will drop, so there will be little 
likelihood of diodes failing in the open mode at the same time. 

The PV#1 is shown in Fig. 3(a) was left operating in the 
field for six days to record data samples for training and 
validating the ANN model. Each day a new faulty bypass 
condition was injected (i.e., day1: normal operation, day 2: 
one diode is open, day 3: two diodes ae open, etc.). From the 
measured/recorded samples, 80% were selected for training 
and 20% for validation. No data was spare for testing as the 
ANN model prediction accuracy will be examined using a 
different dataset, accurately representing the developed 
model's precision. 

The output confusion matrix of the ANN model is shown in 
Fig. 5(a). The accuracy of the ANN to predict the correct class 
is equal to 96.2% and 95.9%, respectively, while training and 
validating the model. In Fig. 5(a), the diagonal green boxes 
represent a correct fault classification, while any red boxes 
represent false classification. In addition, the model took 61 
iterations, (epoch) (Fig. 5(b)), to achieve the minimum 
gradient of 0.31%. This means that the predicted classes of the 
confusion matrix are stopped after reprocessing the data 61 
times. This test also indicated that no overtraining appears in 
the ANN since a minimal gradient was achieved (below 1%). 

The summary of the proposed algorithm is presented in Fig. 
5(c). The algorithm requires three inputs from the PV system, 
followed by processing the data into the ANN network, which 
was developed using MATLAB script. The ANN will then 
produce the output confusion matrix, followed by key 
indicators of the algorithm's performance. 

 
 
 

Table I ANN model characteristics. 
Parameter Value 

Input variables 3 (𝑃𝑀𝑃𝑃 , 𝑉𝑂𝐶 , 𝐼𝑆𝐶) 
Output variables 6 (fault type) 

Number of hidden layers 1 
Number of neurons 8 + bias 

Training process Supervised (feedforward propagation) 
Training algorithm Levenberg-Marquardt 
Activation function Sigmoid 

Type of division samples Random 
Training 70% 

Validation 15% 
Testing 15% 

Normalization (0,1) 
Dropout rate for input layer 0.5 

Dropout rate for hidden layer 0.5 
Training iterations, Batch size 100, 10 

 

 
  Fig. 4. Developed ANN model architecture. 
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To evaluate the performance of the proposed algorithm, 
different terms have been used, and they are defined as 
follows: 

1) Bypass diode fault detection accuracy: closeness of 
the estimations to their true values; the model is more 
accurate when it offers a smaller error, so 
approaching 100% accuracy rate implies that the 
algorithm can detect the PV bypass didoes faults with 
no error. 

2) Precision: closeness of repeated measurement results 
to each other. For example, when precision is above 
90%, it implies that the collected samples from the 
experiment are very similar, and therefore, the ANN 
network can quickly identify the bypass diode’s fault 
condition. 

3) Sensitivity: this is the metric that evaluates the ANN 
model’s ability to predict true positives of each 
available category. For example, a 90% sensitivity 
rate implies that the ANN model is sensitive enough 
to discover the PV bypass diode’s fault categories 
(open circuit or short circuit). 

IV. RESULTS 

A. Experimental setup description 

 A practical step for these experiments comprising five 
series-connected PV modules to test the developed ANN 
model's accuracy (Fig. 6). The modules are connected with a 
power converter to record the measured samples, including its 
main electrical parameters summarized in Table II. The PV 
system is connected with a purely resistive load (16 Ω). At 
STC conditions, the peak power of the system is 1100 W. 
Each PV module comprising three bypass didoes, and every 
single diode is connected in parallel with 20 series-connected 
solar cells. 

B. Single PV module in a PV system affected by a failure in 

the bypass diodes 

The accuracy of the developed ANN model was obtained 
while running the PV system in different faulty bypass diode 
scenarios. On the first day, Fig. 7(a), the PV system operated 
under normal conditions until 8:59. Then, from 9:00 until 
11:59, one bypass diode was open in one of the PV modules. 
Subsequently, an additional bypass diode was opened in the 
same PV module in the following four hours. In the last case, 
at 16:00 to 19:00, all bypass diodes were removed from the 
PV module. 

It is worth noting that considerable fluctuations in solar 
irradiance affect the modules during the experiments; hence, 
the algorithm can detect the bypass diodes' faulty conditions. 
However, suppose there are no shading/overcasting/clouds 
avaiable in the sky (known as clear sky condition). In that 
case, the algorithm cannot detect the faulty bypass diodes 
since all bypass diodes in this scenario will be anyways 
deactivated.  

On the second day, Figure 7(b), a short-circuited bypass 
diode mode was investigated. A short-circuit occurred in the 
bypass diode of one PV module between 9:00 and 11:59. 
From 12:00 to 15:59, the same module had two short-circuited 
diodes. Consequently, the PV system operated normally 
between 5:00 and 8:59 and 16:00 and 19:00.  As a result, 840 
samples were collected per day on both days at a sampling rate 
of 1 sample/minute. 

  
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) Output confusion matrix during the training and validation for the 
ANN model, (b) ANN network training state (epochs vs gradient), (c) Step-
by-step summary of the proposed PV bypass diode detection algorithm. 

Table II Electrical parameters of the examined PV system at STC conditions. 
Parameter Value 

Power at maximum power point (𝑃𝑀𝑃𝑃) 1100 W 
Current at maximum power point (𝐼𝑀𝑃𝑃) 7.68 A 
Voltage at maximum power point (𝑉𝑀𝑃𝑃) 143.25 V 

Short circuit current (𝐼𝑆𝐶) 8.10 A 
Open circuit voltage (𝑉𝑂𝐶) 183 V 

Fig. 6. Practical setup of the tested PV system. 
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The output result of the ANN model, represented by the 
confusion matrix, is shown in Fig. 8. During day 1, Fig. 8(a), 
the accuracy of detecting the actual fault condition is 92.5%. 
Two compelling outcomes can be noticed in Fig. 8(a): 

1) The number of samples classified as class 5 or 6 is 
limited (only 4) due to the fact that only short bypass 
diodes were examined in this experiment. 

2) There is a standard misclassification between the 
classes. There were many samples misclassified into 
the nearest possible class. For example, observing the 
second row of the confusion matrix, 163 samples 
were correctly classified as class 2, while only eight 
were misclassified as class 1 or 3. 

According to the ANN model prediction for the second day, 
Fig. 8(b), the overall bypass diode fault detection accuracy is 
94.6%. Here, three significant features can be highlighted: 

1) There were limited number of samples (only 26) 
classified as classes 2, 3, and 4, as in this experiment 
only open bypass diodes were investigated. 

2) Even though during this day there were rapid 
fluctuations in the solar irradiance (as seen previously 
in Fig. 7(b)), it did not affect the accuracy of 
predicting the correct class of the bypass fault 
condition. 

3) Predicting open bypass diode condition appears more 
accurate than the short condition because it is 
anticipated to see a more notable reduction in the 
output power of the PV system 
 

There are two additional metrics that can be calculated from 
the output confusion matrix, the first is the precision (ideal 
case = 100%) which indicates how many samples were 
identified as a fault and are correctly predicted. This metric is 
calculated using (5). The second metric is the sensitivity (ideal 
case = 100%) which is the ratio of true positives samples 
divided by the total number of true positives and false 
negatives. This metric is calculated using (6). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃           (5) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃+𝐹𝑁           (6) 

 
where 𝑇𝑃 is the true-positive samples correctly classified, 𝐹𝑃 
false-positive samples that are not faulty but have been 
classified as faulty, and 𝐹𝑁 is the false-negative samples that 
are faulty and have been identified as not faulty. 

The summary of the precision and sensitivity of all classes 
are presented in Table III. The results show how well the 
developed ANN model predicts all the different classes. For 
example, the lowest precision and sensitivity are 89.2% and 
88.3%, respectively, for classes 2 and 4. 

C. Multiple PV modules in a PV system affected by a failure 

in the bypass diodes (static fault) 

In this section, the ANN model bias will be adjusted to the 
number of the PV modules in the PV system, so multiplication 
of the weighting by a factor of five is executed. In this case, 
the ANN confusion matrix will also be automatically 
synchronized to represent this change in the bias, hence, 
predicting the accurate number of bypass diodes failure in the 
PV system. 

As shown in Fig. 9, three different case studies have been 
considered: case#1, the PV system is under normal operation 
condition, case#2 the PV system is affected by four open-
circuit bypass diodes in different locations, and in the last 
case, case#3, the PV system is affected by four short-circuit 

 
(a)              (b) 

Fig. 7. Measured solar irradiance and PV system output power; for both days the PV average modules surface temperature was approximately 18°C. (a) Day 1, 
(b) Day 2. 

   
(a)                                                       (b) 

Fig. 8. Output ANN model confusion matrix. (a) Day 1, (b) Day 2. 

Table III Precision and sensitivity rate of each experimented class. 
Class no. TP FP FN Precision (%) Sensitivity (%) 

1 225 12 15 94.9 93.7 
2 165 20 16 89.2 91.1 
3 228 22 11 91.2 95.4 
4 159 5 21 96.9 88.3 
5 170 7 10 96.0 94.4 
6 231 5 9 97.8 96.3 

Average 94.3 93.2 
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bypass diodes. The output power against the solar irradiance 
in the three days of the experiment is shown in Fig. 10. During 
this experiment, the PV modules surface temperature was 
approximately 19°C. 

The ANN model requires the input of the other two 
parameters, 𝑉𝑂𝐶  and 𝐼𝑆𝐶; the log of these parameters is 
accessible via the power converter. In addition, the sampling 
rate remained 1 sample/minute on the three days, resulting in 
840 samples/day. 

The output confusion matrix of the ANN model is shown in 
Fig. 10(d); here, nine classes are now being present in the 
ANN as the bias multiplies the number of the class depending 
on the number of faulty bypass diodes in the PV system. Each 
class now represents the following condition: 

• Class 1: normal operation. 
• Class 2: one open-circuit bypass diode. 
• Class 3: two open-circuit bypass diodes. 
• Class 4: three open-circuit bypass diodes. 
• Class 5: four open-circuit bypass diodes. 
• Class 6: one short-circuit bypass diode. 
• Class 7: two short-circuit bypass diodes. 
• Class 8: three short-circuit bypass diodes. 
• Class 9: four short-circuit bypass diodes. 

According to Fig. 10(d), the overall detection accuracy of 
the different cases is 93.1%. For case#1, 783 samples were 
correctly classified out of 840 (detection accuracy for class 1 = 
93.2%). For case#2, the detection accuracy is 92.5%, where 
777 samples are correctly classified. Detection accuracy of 
93.5% is obtained for case#3. We observed that the increase in 
the number of faulty bypass diodes did not affect the genuine 
detection accuracy of the ANN model. 

Furthermore, the location of the defective bypass diodes 
also does not affect the ANN model detection accuracy. We 
understand if the PV system consisted of 100 modules. Since 
the physical location and distribution of temperature, shading, 
and solar irradiance may differ, the ANN model's detection 
accuracy might decrease. Nevertheless, we demonstrated in 
this experiment that the developed approach can be applied to 
small-scale or residential PV systems. 

 
Fig. 9. Bypass diodes arrangement of the PV modules of the second experiment (static fault). 

(a) 

(b) 

 
(c) 

 
(d) 

Fig. 10. Measured solar irradiance and PV system power, during the three 
days the average PV modules surface temperature was approximately 19°C. 
(a) Day 1 – Case#1, (b) Day 2 – Case#2, (c) Day 3 – Case#3, (d) Output 
confusion matrix of the ANN model after processing the measured samples of 
the PV system obtained from the three case studies. 
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The Table IV summarizes precision and sensitivity for the 
classes. Class 1 has the lowest precision at 94.1%, while the 
remaining classes have the highest precision at 100%. The 
average sensitivity of all classes is 93.1%.  

 
The fault types (classes) were selected non-adjacently in 

this experiment to confirm how precisely (up to 100%) the 
ANN can predict the bypass diode fault. PV systems are often 
affected by faulty bypass diodes within the PV system that 
operate faulty for several days/weeks. While it is unlikely to 
see a PV system with multiple defective bypass diodes within 
a short period of time, it is an interesting topic worth 
investigating and will be discussed in the next section. 

The advantage of our developed model is that it can identify 
how many bypass diodes are defective in a PV system and 
provide the number and mode of the defective bypass diodes. 
The actual defective module, however, cannot be identified. 

D. Multiple PV modules in a PV system affected by a failure 

in the bypass diodes (dynamic fault) 

In the previous experiment, the bypass diode failure did not 
change throughout the day, presenting a static fault. In this 
section, a dynamic fault identification will be performed in the 
PV system as the conditions of the bypass diodes change 
throughout the day. Three different scenarios were considered, 
as shown in Fig. 11(a). PV system is affected by two open and 
short-circuit bypass diodes between 5:00 and 9:59. From 
10:00 to 13:59, the system was subjected to four open-circuit 
bypass diodes and three short-circuit bypass diodes. Lastly, 
the system was subjected to four and two open-circuit and 
short-circuit bypass diodes between 14:00 and 19:00. 

The output measured solar irradiance and power of the PV 
system is shown in Fig. 11(b). The entire system was switched 
off during the test when changing the bypass diode failure 
condition, which can be seen in Figure 11(b) where it shows 
zero PV output power at 10:00 and 14:00. The sampling rate 
for this test remained at 1 sample/minute, resulting in 299 
samples for the first case and 234 and 295 samples for the 
second and third cases, respectively. We processed the data 
into the ANN in order to examine the fault prediction. 

In terms of detection accuracy, we have achieved 91.2% 
(error or misclassification of the bypass diode's fault condition 
is only 8.8%). According to the results, class 8 had the best 
detection accuracy with 92.7%, while class 7 had the lowest 
with 89.4%. 

Table V presents the precision and sensitivity of the classes 
calculated using (5) and (6). In average, the precision of the 
ANN model was 97.0%, while the sensitivity was 91.6%. 
Based on these results, it is apparent that the ANN model was 
correctly designed.   

(a) 

(b) 

(c) 
Fig. 11. (a) Bypass diodes arrangement of the PV modules of the third 
experiment (dynamic fault), (b) Measured solar irradiance and PV system 
power, the average PV modules surface temperature was approximately 22°C,
(c) Output confusion matrix of the ANN model after processing the measured 
samples of the PV system obtained from dynamic faut testing scenario. 

Table IV Precision and sensitivity rate of each experimented class. 
Class no. TP FP FN Precision (%) Sensitivity (%) 

1 783 49 57 94.1 93.2 
5 777 0 63 100 92.6 
9 785 0 55 100 93.4 

Average 98.0 93.1 
 

Table V Precision and sensitivity rate of each experimented class. 
Class no. TP FP FN Precision (%) Sensitivity (%) 

3 276 11 23 96.2 92.3 
5 487 0 42 100 92.1 
7 531 4 63 99.2 89.4 
8 217 17 17 92.7 92.7 

Average 97.0 91.6 
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E. Comparative Study 

A comparison is made between the findings of this study 
and those of recent studies (Table VI) on the detection of PV 
bypass diodes' faults [23-27]. According to our knowledge, no 
previous work has been done on detecting short bypass diode 
fault identification (even though some papers claim that, but in 
reality, it is open bypass diode). A majority of algorithms, 
such as [23] and [25], rely on detecting the PV system's I-V 
curve. Starting with this method is a great idea. It is, however, 
challenging to operate offline (using only the data from the 
power converters). In [24], the bypass diodes were detected 
using thermal testing; once again, the algorithm requires a 
physical inspection of the PV site, similar to those using 
drones for identifying failures in [26] and [27]. 

We present in this paper an ANN algorithm that can 
efficiently operate with power converter data due to the fact 
that only three parameters are required (the output power, 
short-circuit current, and open-circuit voltage). Moreover, a 
bias parameterization allows the model to be expanded by 
adding more bypass diodes classification if the PV modules in 
the system are increased. In both short and open circuit bypass 
diode detection, the average detection accuracy is over 93%. 

V. CONCLUSION 

This work reports an ANN-based model to detect short- and 
open-circuit bypass diode fault conditions in PV modules. The 
advanced model only requires three inputs of the PV system: 
output power, short-circuit current, and open-circuit voltage, 
and it can identify the number of defective bypass diodes. 
Experimental validation on several PV modules has shown 
that the detection accuracy of the model is 93.6% and 93.3%, 
respectively, when detecting short- and open-circuit bypass 
diode conditions. It was also found by conducting various 
experiments that the average ANN network precision and 
sensitivity is equal to 96.4% and 92.6%, respectively. Our 
results are also compared with previously reported algorithms 
available in the literature; this work uniquely combines the 
short and open circuit bypass diode faulty conditions in an 
expandable model without using any drone-based or curve 
tracking of the PV system. 

This work is significant in multiple ways: (i) the proposed 
model can detect open and short-circuit bypass diodes 
simultaneously, (ii) the model does not require any physical 
inspection of the PV system, such as thermal, 

electroluminescence or photoluminescence imaging, and 
finally, (iii) the proposed model is expandable, but here it is 
worth to note that if the model is used with a PV system 
comprising a large number of PV modules the accuracy is 
expected to drop slightly, so we highly recommend using the 
proposed solution with residential to medium-scale PV 
installations. 
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