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One of the main techniques in smart plant protection is pest detection using deep

learning technology, which is convenient, cost-effective, and responsive.

However, existing deep-learning-based methods can detect only over a dozen

common types of bulk agricultural pests in structured environments. Also, such

methods generally require large-scale well-labeled pest data sets for their base-

class training and novel-class fine-tuning, and these significantly hinder the further

promotion of deep convolutional neural network approaches in pest detection for

economic crops, forestry, and emergent invasive pests. In this paper, a few-shot

pest detection network is introduced to detect rarely collected pest species in

natural scenarios. Firstly, a prior-knowledge auxiliary architecture for few-shot

pest detection in the wild is presented. Secondly, a hierarchical few-shot pest

detection data set has been built in the wild in China over the past few years.

Thirdly, a pest ontology relation module is proposed to combine insect taxonomy

and inter-image similarity information. Several experiments are presented

according to a standard few-shot detection protocol, and the presented model

achieves comparable performance to several representative few-shot detection

algorithms in terms of bothmean average precision (mAP) andmean average recall

(mAR). The results show the promising effectiveness of the proposed few-shot

detection architecture.

KEYWORDS

few-shot detection, hierarchical structure, pest recognition, prior knowledge,

cross-relation

1 Introduction

Food issues have long concerned countries around the globe, as they do the Chinese

government at all levels. In particular, preventing crop diseases and insect pests is not only

crucial for increasing food production but also effective for reducing latent agricultural

economic losses and facilitating accurate predictions of future grain yields. Current methods

for preventing crop diseases and insect pests are still heavily reliant on manual observations

by experienced farmers, and they suffer from a long-term shortage of professional agricultural

technicians (He et al., 2012; Parsa et al., 2014). Faced with hundreds of millions of Chinese
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farming households, having only approximately 550,000 Chinese

national agricultural technology extension agencies are far from

sufficient (Zhang et al., 2016). Furthermore, (i) a large age gap

among agricultural technicians, (ii) a lack of pest-recognition staff

in each county-level plant protection station, and (iii) differing field

experiences are causing a low cover density of experts specializing in

pest identification and a lack of unified pest-identification criteria,

thereby leading to the blind application of pesticides and serious

environmental pollution (Yu, 2021).

Automatic pest identification originated from combining insect

morphology with traditional machine-learning algorithms (Watson

et al., 2004; Murakami et al., 2005). However, despite most

researchers still placing heavy emphasis on machine-learning-based

pest classification, automated pest detection based on deep learning

has grown rapidly in recent years. Many researchers have used

portable probes with digital cameras (Wang et al., 2021) and

stationary light traps (Liu et al., 2020; Dong et al., 2021; Du et al.,

2022) to automatically identify over a dozen types of tiny pests by

means of artificial intelligence. Pest detection offers more semantic

information with which to carry out real-world farming tasks, such as

object-detection-based swarm counting (Li et al., 2022) and similar

pest detection (Wang et al., 2022), whereas pest classification fails to

recognize and locate multiple unknown categories of pests in a single

image simultaneously. Therefore, pest detection is much more

practical for precise pesticide application and pest control, and it

helps agricultural plant protection experts deliver accurate treatments

to control and avoid the occurrence of larger-scale pest outbreaks as

early as possible.

However, current deep-learning-based methods require sufficient

data to build a structural minimization model and to support cross-

domain model adaption, while machine-learning-based methods

demand complex hand-crafted feature descriptors and controlled

laboratory backgrounds (Ngugi et al., 2021). To the best of our

knowledge, little attention has been paid to those rarely collected

but still harmful insect pest species whose samples are difficult to

collect because of geography, season, frequency, and pest mobility

(Wang, 2021). Moreover, it is difficult for even many images taken

continuously from a single camera angle to fully reflect the semantic

information of insects because images that are helpful for

distinguishing pest species are often only a few representative

images taken from multiple angles, such as of the fronts, sides,

backs, and abdomens of pests (Huo and Tan, 2020). Therefore, it

would be meaningful to discover a novel class with only a few

instances (i.e., 10, 15, or 20 shots) (Wang et al., 2020a; Parnami

and Lee, 2022). Until high-performance few-shot conceptual models

that can be trained quickly become available, customization to collect

big data for different scenarios is a reality that the artificial-

intelligence community must face (Zhang et al., 2022). To solve this

problem, we may have to start from scratch with data structure, logic

causality, various invariants of vision, and compositional concept

learning, among other topics, and introduce prior knowledge to

auxiliary model training.

On the other hand, introducing few-shot learning technology

would make it possible to detect rarely collected pest categories with

just a few available samples, which would greatly reduce the cost of

manual labeling through a semi-supervised automatic labeling

process in which only a small amount of manual verification and

calibration would have to be done by agricultural technical experts in

the later stages. In addition, it would contribute to establishing a rapid

response mechanism for invasive alien pests.

The contributions of this paper are summarized as follows:

1. We introduce a prior-knowledge auxiliary architecture for

few-shot pest detection in the wild, which allows us to detect

rarely collected pests with extremely few available samples.

2. Based on insect taxonomy, we built a new hierarchical FSIP52

data set for few-shot pest detection in natural scenarios. It

could be a valuable supplementary data set for the Intellectual

Plant Protection and Pest Control Community when

combined with the IP102 data set (Wu et al., 2019).

3. We introduce a pest ontology relationmodule that is composed of

amulti-relation detector and a correlation softmax loss function to

incorporate prior knowledge for feature discrimination and

representation. These blocks allow us to implement multi-task

joint training on our model explicitly and implicitly.

2 Related work

2.1 Pest recognition

For more than a decade now, many researchers have developed

various machine-learning-based pest identification methods. Larios

et al. (2008) proposed a method for identifying stonefly larvae based

on the scale-invariant feature transform, and it achieved a

classification accuracy of 82% on four types of stonefly larvae. Wen

and Guyer (2012) developed an image-based method for the

automated identification and classification of orchard insects using

a model that combined global and local features, and it achieved a

classification performance of 86.6% on eight species of orchard field

insects. Kandalkar et al. (2014) designed a pest identification

procedure based on saliency map segmentation and discrete-

wavelet-transform feature extraction, and utilized it in classifying

pest categories using shallow back-propagation neural networks.

These types of algorithms use close-up images of pest specimens in

a restricted background to recognize common insects and pests, but

they also require a high degree of expertise in hand-crafted feature

design and parameter selection for empirical formulas. Currently,

deep-learning algorithms based on large-scale data have replaced

traditional pest-identification algorithms. By combining low-level and

high-level contextual information of images, they have made amazing

progress in identifying the pain points of detecting tiny pests and have

realized the value of implementing and applying modern pest-

identification algorithms. Liu et al. (2020) implemented an

approach for large-scale multi-class pest detection in a stationary

light trap, which could detect 16 classes with a deep-learning-based

automatic multi-class crop-pest monitoring approach using hybrid

global and local activated features. Wang et al. (2021) used 76,595

annotations containing ambient temperature, shooting time, and

latitude and longitude information to detect Petrobia latens,

Mythimna separata, and Nilaparvata lugens (Stål) with a smart

phone in a complex field scene. However, existing deep-learning

pest-recognition methods are focused mainly on identifying over a
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dozen of the most common pest species, for which large-scale samples

of each species are required, thereby failing to meet the need for rarely

collected pests. Meanwhile, pest images in most research (Li and

Yang, 2020; Li and Yang, 2021) have been taken in a structured

environment, such as a stationary light trap, instead of in

sophisticated wild settings that are more suitable for practical

applications. Therefore, being able to identify and detect novel pest

classes using fewer data would make it possible to help agricultural

technicians and amateur entomologists by providing them with a

one-on-one expert insect encyclopedia-style service.

2.2 Few-shot learning

In the real world, conventional deep neural networks have always

suffered from sample scarcity and the high cost of acquiring labeled

data. This challenge indirectly gave rise to few-shot learning, which is

generally regarded as the method of training a model to achieve good

generalization performance in the target task based on very few

training samples. In the fine-tuning stage, there are new classes that

have never been seen before, and only a few labeled samples of each

class are available; then in the testing process, when faced with new

categories, the task can be completed without changing the existing

model. Few-shot learning is divided into transductive learning and

inductive learning, and all the models discussed herein correspond to

inductive learning, in which there are three main methods, namely,

meta-learning, metric learning, and transfer learning. Most few-shot

classification and detection methods are based on fine-tuning (Fan

et al., 2020; Kang et al., 2019; Sun et al., 2021; Wang et al., 2020b; Xiao

and Marlet, 2020), and many experiments have shown that fine-

tuning offers substantially improved prediction accuracy (Chen et al.,

2019; Dhillon et al., 2019; Chen et al., 2020). Dhillon et al. (2019)

found that a five-way one-shot fine-tuning increased accuracy by 2%–

7%, while a five-way five-shot fine-tuning also increased accuracy by

1.5%–4%. Analogous conclusions have also been drawn in another

work (Zhuang et al., 2020). This method is simple but useful, and its

accuracy is comparable to that of other sophisticated state-of-the-art

(SOTA) meta-learning methods (Li and Yang, 2020). In methods

based on fine-tuning, images in the query and support set are mapped

to the feature vectors, then the similarities between the query and

support images in the feature space are calculated, and the final

recognition result is determined by the highest similarity; thus, the

model is fine-tuned efficiently even with a limited sample.

2.3 Few-shot pest detection

Research on identifying insect pests and crop diseases based on

few-shot learning began in 2019. Li and Yang (2020) implemented

metric learning in the few-shot detection of cotton pests and

conducted a terminal realization with a field-programmable gate

array (FPGA). Li and Yang (2021) provided the Intellectual Plant

Protection and Pest Control Community with a task-driven paradigm

for meta-learning in agriculture, but it only includes 10 types of close-

up pests and plants in low resolution with few-shot classification

configuration, which is far from real-world conditions. Yang et al.

(2021) used salient-region detection and center neighbor loss to

detect insects in complex real-world settings, but the approach

focused on only visual features within images and did not introduce

prior information to aid detection even with few samples. Yang et al.

(2021) also used the iNaturalist open-source data set provided by

Google, but this still includes many images whose backgrounds are

not natural, generally simple backgrounds such as desktops, cement

floors, and specimen trays. Moreover, their samples were collected

mainly against strictly controlled laboratory backgrounds or simple

natural backgrounds, and they lacked visual external features. In

summary, this field is still in its infancy, aiming to identify more novel

pests at low data cost.

3 Data preparation

Insecta is the largest class in the animal kingdom, whose number

of known species exceeds 850,000, accounting for four fifths of all

animals. Within Insecta, nine orders are closely related to agricultural

production: Orthoptera, Thysanoptera, Homoptera, Hemiptera,

Neuroptera, Lepidoptera, Coleoptera, Hymenoptera, and Diptera.

In this paper, all pest species are represented by adults.

Conventionally, almost all image-classification and object-

detection tasks are pretrained on the data sets provided by the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) or

the Microsoft Common Objects in Context (COCO) Detection Data

set in order to obtain basic object features and increase the models’

generalization ability. Although these prestigious sponsors try their

best, their baseline data sets still contain very few images of pests or

insects. In this case, we substituted the ImageNet pre-trained data set

with the IP102 and few-shot object detection (FSOD) data sets (Fan

et al., 2020). IP102 (Wu et al., 2019) is an insect baseline data set that

contains 18,974 images with 22,253 annotations for object detection,

making it a fairly good replacement for COCO and ImageNet

(Krizhevsky et al., 2017).

However, IP102 is collected by web crawlers through common

Internet image search engines such as Google, Flickr, and Bing, so it

consistently suffers from poor resolution, rough annotation, improper

size, and copyright watermarks. As a supplement, our FSIP52 data set

contains 1,918 high-quality images that were carefully annotated and

manually reviewed by pest-identification experts at the Anhui

Academy of Agricultural Sciences and the Yun Fei Company,

aiming to improve the signal-to-noise ratio of characteristic

information in real-world pest samples with high consistency. It

comprises 52 rarely collected adult agricultural and forest fruit-tree

pest species with different natural backgrounds in the wild, with only

dozens of samples for each pest category on average. Figure 1 gives an

intuitive visual demonstration of each category in the FSIP52 data set.

The pests in each vignette are in different complex natural settings

and vary in size and pose, indicating that the FSIP52 data set is very

challenging. After removing the categories of IP102 that overlapped

with our FSIP52, we integrated the remaining categories of IP102 as

our pre-trained data set. Thus, we are able to fine-tune our model with

the FSIP52 split to detect the minority pests fairly.

Few-shot object detection is quite different from general object

detection methods. Few-shot learning is the process of method of

training a model to achieve good generalization performance in the

target task based on very few training samples. Cross-domain
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problems are inevitable, but they can be alleviated by constructing a

source data set that is as similar to the target domain as possible. As

noted by Sbai et al. (2020), base data set design is crucial for few-shot

detection, and typically, it is always more important than the small

improvements brought by a complex learning algorithm. Therefore,

we carefully designed the base data set size and similarity to test

classes and trade off between the numbers of classes and images per

class. Furthermore, the degradation of plant–pest cross-domain few-

shot classification performance shows the necessity of a scientifically

designed data set.

Because pest-victimized crops have complex and changing

backgrounds and each pest may harm various crops, it is difficult to

encode crop information as effective auxiliary information to guide

the model learning. On the other hand, because insect taxonomy

reveals inherent connections and provides the respective

characteristics of texture and shape of various insect pests, we

designed the hierarchical FSIP52 data set based on prior human

knowledge and proposed a corresponding hierarchical classifier in

our model. FSIP52 is divided explicitly into four super classes and

further divided into 52 subclasses. The numbers in brackets after the

name of each class of insects indicate the category ID in FSIP52. At

the same time, we also find no intersection between our data set and

27 common stationary-light-trap agricultural pest classes that appear

in Jiao et al. (2022) and belong to the rarer pest species in the data set.

Nevertheless, the FSIP52 data set contains various sizes and poses,

and our pre-trained data set and base class data set include three of

China’s top 10 most harmful, invasive insect species in agro-

ecosystems (Wan and Yang 2016), which indicate that ours is a

non-trivial practical approach to preventing the invasion of foreign

insect pests. For more details, see Figure 2.

4 Proposed methodology

The overall proposed architecture is shown in Figure 3. We

designed our framework based on the classic Faster R-CNN

framework just like other fine-tuning-based few-shot detection

networks. The weight-shared backbone network extracts and shares

the features of the support and query images qs, with Db∩Dn=∅ .

Normally, we use ResNet-50 as our backbone network and a multi-

input single-output (MISO) feature pyramid network (FPN) (Lin

et al., 2017; Chen et al., 2021) to introduce multiple receptive fields,

aiming at the target scale imbalance problem of custom data sets.

Attention region proposal network (RPN) focuses on a given support

set category and filters out the target candidate frames of the other

categories. Attention RPN is designed to filter out object proposals in

other categories by focusing on the given support category. Support

features are pooled equally into a 1×1×C vector, and a depth-wise

cross-correlation calculation is then performed with the query

features, the output of which is used as the attention features,

which are fed into the RPN to generate recommendations.

For K-shot training, we obtain all the support features through

the weight-shared network and use the average feature across all

the support images belonging to the same category as its support

feature. When testing, when each query image is given, these

support features can be used for classification and positioning

(equivalently, each test sample is a query image, which is shared by

all the support images of the query image). The essence of the

association between the support feature and the query feature is to

use the given support image and label information to find objects

with similar features in the query image and provide their

approximate spatial positions. For N-way training, we add an N-

1 support set branch extension network structure, where each

branch has an independent attention RPN module and a multi-

relation detection module.

4.1 Multi-relation detector

The multi-relation detector has three separate blocks: global

block, local block, and patch block. Global block is used to learn

the depth feature mapping information of global matching. Local

block is aimed at learning the channel-by-channel spatial feature

inter-correlation between the support set and candidate areas of the

query set. Patch block is used to learn the similarity of the deep

nonlinear metric between pixel blocks. These three subblocks

calculate the similarity for each candidate area of the query set and

then compare their fusion with the task threshold.

FIGURE 1

Representative demonstration images of each category in the FSIP52 data set.

Wang et al. 10.3389/fpls.2022.1033544
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FIGURE 3

Framework of the proposed few-shot pest detection network.

FIGURE 2

The hierarchical taxonomy of FSIP52 is explicitly stratified into four superclasses, namely, Homoptera, Hemiptera, Lepidoptera, and Coleoptera and 52

subclasses that follow the division of the pest class family. The numbers in brackets after the name of each class of insects indicate the category ID in FSIP52.
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4.2 Hierarchical classifier and cross-
correlation matrix

Fan et al. (2020) were unable to make good use of multi-source

category information. Rather than using labels directly, samples were

re-coded and their categories were predicted by fusing multiple

feature similarities and scoring against a preset task threshold. This

is essentially a clustering method by means of a specific distance

measure. It would work between horses and sheep therein were

similar to simple rigid bodies, and the difference between them in

terms of external characteristics would still be quite obvious.

However, insect pests are typically nonrigid, and insects are diverse

and varied, belonging to the arthropod group of invertebrates. This

paper expands the aforementioned approach by incorporating pest

ontology relation module. By fusing internal and external visual

information derived from the image-level pest features and

hierarchical insecta information derived from prior human

knowledge, multi-category information is encode to directly

supervise the model optimization. Therefore, the primary difficulty

in detecting pests with few samples lies in the classification of similar

pest categories rather than in their localization.

Prior knowledge derived from Insecta guides us to build a

hierarchical classifier. With this, we can reduce the range of class

predictions through prior human knowledge and focus more on the

accuracy of classification tasks for similar classes of pests in different

classes of the same order. The method of image similarity calculation

has a great impact. Current few-shot detection methods (Li and Yang,

2021; Sun et al., 2021) use the Euclidean distance and the cosine

similarity as the metric for the feature distance. As the dimensionality

of the data increases, the maximum and minimum Euclidean distance

and the cosine similarity approach zero, which makes distinguishing

impossible. The Euclidean distance function and the cosine similarity

function lose their meanings in a high-dimensional environment.

Alternatively, we use the differential hash algorithm to encode image-

level visual features, which is essentially a gradual perceptual hash

algorithm combining the advantages of an average hash algorithm

and a perceptual hash algorithm. We retain recognizable features at

the image level through cross-correlation matrix. The internal dhash

similarity of Lepidoptera support instances in the FSIP52 data set is

shown in Figure 4. We assume that the similarity value between the

same categories is 1. We find that although the similarity between

different categories within the same superclass varies, their difference

in similarity is not significant. Therefore, the problem of

distinguishing similar pests remains a big challenge for the

performance of few-shot pest detection.

The calculation phases of the cross-correlation matrix elements

are as follows. First, we calculate the pairwise differential hash image

similarity between each support set image of two random subclasses,

ci and cj, affiliated to the same superclass, cl, to obtain the mean

average dhash image similarity, ckl. In particular, when k and l are

strictly affiliated in prior human knowledge, we have pl = 1; otherwise,

the correlation softmax is degenerated. The purpose of this is to

distinguish pests with high similarity within the same superclass by

increasing the hyperplane distance between different subclasses

belonging to the same superclass through loss function design.

Also, the subclass distance between different superclasses is widened

by having different superclasses. Thus, we fill the cross-correlation

matrix with ckl.

4.3 Total loss function design and
correlation softmax

The total loss function (losstotal) deployed in the training process

is defined in Equation (1).

losstotal = losscls + lossbox reg + lossrpn cls + lossrpn loc

+ losscor cls + losscor super cls,
(1)

where lossboxreg, lossrpncls, and lossrpnloc are typical loss-function

terms in Faster R-CNN; losscor super cls is the label-smooth cross-

entropy function; and losscls is the loss sum of multi-relation detector.

losscor cls with correlation softmax a*k is formulated as Equation

(2).

losscor cls sð Þ = −bo
m

k=1

pk log (a
*
k ),

a*k = ezk

o
C
l=1

(2−pl) 1−cklð Þezl+ezk
,

(2)

where b is a scale variant that balances the numerical magnitude

of the correlation softmax loss-function terms with other original

loss-function terms, but it does not differentiate between easy and

hard examples. Initially, we set b = 0.25, but b would be optimized

after repeated experiments and changes in the data set. Through the

correlation softmax function, the original softmax suppression effects

between confusing pairs are weakened.

pk denotes the label of class k regarding bounding box s.

FIGURE 4

Internal dHash similarity of Lepidoptera support instances in the FSIP52 data set. The redder the heat map color block, the higher the visual similarity.

Wang et al. 10.3389/fpls.2022.1033544

Frontiers in Plant Science frontiersin.org06



ckl is the mean average image similarity between classes k and l.

Conventionally, a simple and intuitive approach would be to

transform multiple binary classification problems and fuse the

results, but that neglects the relationships between labels because

the regular softmax loss function has exclusive semantics between

labels. a*i outputs logits of correlation softmax.

Output: P = (ĉ k, ĉ l , p̂ l),  ck ∈ f0, 1, 2, 3,…, 51g,  cl ∈ f0,

1, 2, 3g,  pl ∈ f0, 1g

If there is a hierarchical relation between subclass i and its

superclass j, then pl is set to 1, otherwise, it is set to 0.

The original Faster R-CNN loss function defined in Girshick

(2015) is shown as Equation (3) and Equation (4).

L pi, tið Þ = 1
Ncls o

i

Lcls pi, p
*
i

� �

+ l
1

Nreg
o
i

p*i Lreg ti, t
*
i

� �

, (3)

Where l = 1 and

Lcls pi, p
*
i

� �

= − log p*i ∗ pi + 1 − p*i

� �

∗ 1 − pið Þ
� �

(4)

5 Evaluation metrics

5.1 Few-shot detection metrics

To better explain and illustrate the performance of our proposed

model, we briefly describe the evaluation metrics for few-shot

detection. We strictly followed the three random concepts in few-

shot learning, namely, random L-fold cross-validation, randomly

selecting N samples, and K images as support sets. The N-way K-

shot definition is as follows: Randomly select N types of samples from

the meta-data set, randomly select K+m instances from each type of

sample, and then randomly select K instances from the K+m instances

of each type of sample as the support set.

To make the obtained accuracy reasonably standardized, we use

the mean average precision (mAP) as the metric of the proposed

model. The calculation of mAP as defined in COCO is shown in

Equation (5).

mAP = 1
10�N o

:95

k=0:5 : :05

(ri − ri−1)� p, (5)

where N denotes the total number of categories. k denotes the IoU

threshold. ri denotes the recall value corresponding to the first

interpolation of the precision interpolation segment in ascending

order. p denotes the regression value of the observation point on the

smoothed Precision-Recall (PR) curve.

AverageRecall = 2

Z 1

0:5
recall xð Þdx

= 2
no

n

i=1

max IoU gtið Þ − 0:5, 0ð Þ

(6)

The definition of AverageRecall (AR) is first proposed by Hosang

et al. (2015), and it can be calculated using Equation (6). The

AverageRecall between 0.5 and 1 can also be computed by

averaging the overlaps of each annotation gti with the closest

matched proposal, that is, integrating over the y axis of the plot

instead of the x axis. x denotes the IoU overlap. IoU(gti) denotes the

IoU between the annotation gti and the closest detection proposal. AR

is twice the area enclosed by the recall-IoU curve. n is the number of

overlaps between all GroundTruth bboxes and the nearest

DetectionResult bbox in each image, that is, the COCO metric of

maxDets. AR is a measure of the accuracy of the positioning of the

model’s detection boxes. The mean average recall (mAR) can be

obtained by averaging the AR of all categories in each novel split.

6 Experiments

6.1 Implementation details

IP102 contains many web images and specimen images, and its

image resolution ranges from 87×120 to 6034×6053 with different

growth stages. There are many solid-color specimen backgrounds and

single close-up images of insects in the IP102 data set, and there are

many duplicate or extremely similar images of pests. We deleted some

categories with very few samples, and we removed some orders of

insects unrelated to what is discussed herein, specifically

Hymenoptera, Diptera, Coccinellae, Acarina, Thysanoptera,

Acarina, and Orthoptera. For fairness, we removed five duplicate

categories between IP102 and our FSIP52 data set, namely, Protaetia

brevitarsis, Cicadella viridis, Pieris canidia, Papilio xuthus, and

Nilaparvata lugens. Finally, we removed 34 irrelevant categories

from IP102, leaving IP68 to serve as our pre-trained data set.

Figure 5 and Table 1 give more details about the distribution of the

FSIP52 data set and novel class splits settings in this experiment.

Since pest postures are diverse, we performed random rotation

augmentations on pests in advance to compensate for the less-robust

rotation invariance of a traditional convolutional neural network. The

postures of pests were taken from various angles, and it is not scientific

to use only similarity for supervision; the problem of pest posture can be

partly solved by rotation enhancement. To analyze the proposed

softmax loss and model with a hierarchical structure, we conducted

extensive experiments on our well-designed FSIP52 data set. We trained

our model on a computer with an Intel 9900K CPU, 128 GB of RAM,

and a single NVIDIA Titan RTX GPU. In terms of software

experimental conditions, we deployed our algorithm on Ubuntu

18.04.06 LTS equipped with Pycharm 2021.3 Community Edition,

CUDA 11.3.1, CUDNN 8.2.1, GCC 7.5.0, Python 3.8.5, Pytorch 1.4.0,

and Detectron2 0.6. For pest detection, using default anchor box settings

would greatly affect the initial IoU value in the early training stage,

resulting in the inability to screen out the optimal prediction box.

Furthermore, the original IP102 data set was designed in the Visual

object class (VOC) data set style, so its anchor boxes had to be re-

clustered according to our data set. Moreover, the K-means++ clustering

algorithm can randomly generate custom clustering centers, which

ensures a discrete type of initial cluster center, better elevating the

effect of anchor box generation. Therefore, new anchor boxes for FSIP52

were generated, including (65,86), (78,148), (119,232), (144,142),

(179,339), (220,217), (292,326), (328,512), (601,698), and their re-

cluster anchor aspect ratios are [0.51,0.53,0.64,0.76,0.86,0.90,1.01]. Re-

clustering priori boxes helps speed up convergence.

We reported our experimental results with ResNet-50 after

computing the time consumption and training accuracy, although

Wang et al. 10.3389/fpls.2022.1033544
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we point out that our model would perform better with other more

advanced and complicated backbone networks, for example, ResNet-

101 or ResNeXt. The loss curves for the base-class training stage and

the novel-class fine-tuning stage are shown in Figure 6.

Our proposed network was trained in a class-specific and end-to-

end fashion, and the original input image resolution varied from

640×480 to 3680×2456. We utilized a multi-scale training scheme to

resize the input images to x ϵ {660×440,708×472,756×504,804×

536,852×568,900×600,1000×667}. Then, the training images were

resized to the same aspect ratio as the original input images, and

their width and height were determined by the shorter side of the

images. We trained our model for 100 epochs using the same default

settings for Detectron2 in both the base-class training stage and the

novel-class fine-tuning stage to ensure total complete convergence for

fair comparison. An early-stopping mechanism was set to capture the

best checkpoint with every 5,000 iterations, and the Dropout (Hinton

et al., 2012), SoftPool (Stergiou et al., 2021), and DropBlock (Ghiasi

et al., 2018) techniques were also introduced in the pre-training, base-

class training, and fine-tuning stages.

In the base-class training stage, the learning rate was set to 0.001

with 100 epochs and a batch size of eight. The fraction between

positive and negative samples was 0.5 and was kept the same in both

the training and testing sets in both stages. Weight-shared ResNet-50

was pretrained on the FSOD data set to extract features from the

support and query images, and its output features were the set {res2,

res3,res4,res5}. Deformable convolution was applied in the feature-

extraction and FPN stages, and the non-maximum suppression

threshold in RPN was set to 0.7. The smooth L1 beta was 1/9, the

IoU threshold in Region of Interest (ROI) head was set to 0.3, the

weight decay applied to the parameters of the normalization layers

was 1×10-5, the momentum was set to 0.937, the warm-up iterations

were set to 2 epochs, the default support ways for contrastive learning

branch were 2, and the ResNet-50 backbone network was frozen at

res3. We decoupled the fully connected layers concerning both the

cross-correlation matrix and the hierarchical matrix with the original

Faster-RNN classifier layer. We applied Kaiming normal weight

initialization (He et al., 2015) to all convolutional and fully

connected layers and inputted the concatenation of the support and

query features. MISO FPN outputted the res4 feature for further

processing, and group normalization was enabled in FPN. FPN and

RPN were jointly optimized in both stages.

In the novel-class fine-tuning stage, the learning rate was set to

0.001 with 100 epochs and a batch size of 12. Most pretrained model

parameters or layers were frozen, while only the last few layers’

parameters were updated during the novel-class training.

6.2 Comparison experiments and discussion

Research on few-shot object detection has emerged in the past 2

years, and we decided to compare our method with several typical

few-shot object detection networks, namely, those by Fan et al. (2020);

Sun et al. (2021); Wu et al. (2020) and Wang et al. (2020b). All

comparison experiments were conducted on the MMFewShot

framework produced by Open MMLab and the Detectron2

framework produced by Facebook, using exactly the same

experimental settings. Our model outperformed most state-of-the-

art (SOTA) methods without much extra calculation.

FIGURE 5

FSIP52 data set distribution is presented in ascending order according to the sample numbers. The horizontal axis represents the category ID of FSIP52

and the vertical axis represents the number of instances. Pest samples are difficult to collect due to geography, season, frequency, and pest mobility.

TABLE 1 Detailed FSIP52 data set split experimental settings.

FSIP52 Novel split 1 Novel split 2 Novel split 3 Novel split 4

Category ID 0–12 13–25 26–38 39–51

Base class Training 1,556 1,529 1,564 1,588

Novel class fine-tuning 362 389 354 330
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Before fully analyzing and discussing the results of the experiments, it

must be pointed out again that our custom data sets were all taken from

real natural scenarios that have been strictly selected by the Yun Fei

Company, Anhui Academy of Agricultural Sciences, and the Hefei Plant

Protection Station pest experts, making the samples rather representative

and complex. Note that insects are nonrigid bodies, and their tentacles

can easily expand the bounding box unnecessarily and cause a reduction

in the signal-to-noise ratio, which then leads to quite large bounding

boxes. On the other hand, due to the migratory nature of some pests,

close-up photography is not possible, so certain tiny pests add difficulty

to the current few-shot pest detection in the wild.

In Table 2, our model achieves the best results on the FSIP52 data set

based on a few-shot protocols of 13-way 10 shots on novel splits 1, 3, and 4

and is ahead of SOTA methods by 4%, 2.8%, and 2.2% on mAP,

respectively. In Table 3, it is ahead of SOTA methods by 5.9%, 2.8%,

and 0.6% on AP50, respectively. In Table 4, our model outperforms SOTA

on novel splits 1, 2, and 3 by 7%, 10.9%, and 7.8% on mAR, respectively.

The reason for this is that our model was especially designed for pest in

wild settings. We availed of multi-task learning to design a logically

interpretable prior knowledge learning task, and import the knowledge

gained by human experts in the process of pest identification as supervision

information to guide the network to achieve better detection performance

in the case of extremely limited novel class samples. The use of cosine

classifier and contrastive loss coverages very slowly in the set number of

iterations by Sun et al. (2021) may not suitable for pest detection, and its

coefficients are too many to be fine-tuned.

Nonetheless, note that our model trails that of Wu et al. (2020) by

5.3% and 11.4% on mAP on Novel split 2. A comparison of each

category in Novel split 2 shows that the model of Wu et al. (2020)

leads our model in categories 13, 14, 18, 19, 21, and 22 by 20.6%, 6.7%,

1.5%, 10.3%, 13.6%, and 29.7%, respectively. Yet the mAR of our

model prevails over that of Wu et Al. by 13.5%. We attribute this to

the presence of extra-large and tiny targets in these categories; the

predominance of frontal and abdominal photographs of the pests,

which does not capture the most recognisable parts of the pests; and

the fact that our model does not have a re-weighted strategy for these

multi-scale positive samples through especially designed

reinforcement block. Although we slightly underperformed

TABLE 2 FSIP52 novel classes’ mean average precision (mAP) in 13-way 10-shot settings.

Reference Novel split 1 Novel split 2 Novel split 3 Novel split 4

Wu et al. (2020) 6.7 22.3 9.9 10.4

Fan et al. (2020) 12.5 15.4 16.1 11.2

Wang et al. (2020b) 11.6 12.0 12.5 11.7

Sun et al. (2021) 7.2 9.7 9.8 5.3

Ours 16.5 17.0 18.9 13.9

Bold values are to highlight which models achieved the highest accuracy in the different data set splits, in order to provide strong evidence of the advantages of a particular method.

TABLE 3 FSIP52 novel classes’ AP50 in 13-way 10-shot settings.

Reference Novel split 1 Novel split 2 Novel split 3 Novel split 4

Wu et al. (2020) 17.4 44.3 23.9 19.7

Fan et al. (2020) 20.3 25.0 27.4 20.0

Wang et al. (2020b) 24.6 29.4 30.0 22.7

Sun et al. (2021) 16.8 21.7 22.2 13.3

Ours 30.5 32.9 35.9 23.3

Bold values are to highlight which models achieved the highest accuracy in the different data set splits, in order to provide strong evidence of the advantages of a particular method.

A B

FIGURE 6

(A) shows the loss curves of the novel split 3 in the base-class training stage. (B) shows the same in the novel-class fine-tuning stage. The horizontal axis

represents the number of iterations, and the vertical axis represents the loss value.
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compared to Fan et al. by 1.4% in the Novel split 4 mAR comparison,

we achieved comparable performance to SOTA in preventing missed

detections and were 2.7% and 3.3% ahead of that of Fan et al. in mAP

and AP50, respectively, which are often more important in practice

than mAP and AP50. Finally, despite the fact that our performance

improved compared with the SOTAmethods mentioned, we still have

a long way to go to be qualified for real-world agricultural

production missions.

7 Conclusion

In this paper, a few-shot insect pest detection network is introduced

to detect rarely collected pest species. Its novelty lies in combining the

hierarchical semantic relationship between superclasses and subclasses

according to insect taxonomy, guiding our model to better learn novel

concepts through causal intervention, especially when the novel class

samples are extremely limited. A new hierarchical data set FSIP52 for

few-shot pest detection in natural settings is built based on insect

taxonomy. It is emphasized that the presented few-shot pest detection

network achieves comparable performance to several representative

few-shot detection algorithms in FSIP52 data set through incorporating

pest ontology relation module designed specifically for hierarchical

structure matching in the proposed framework, and we point out that it

could be extended to other similar practical scenarios with hierarchical

structures. Last but not the least, apart from the developed fine-tuning-

based object detection algorithms, there are other branches of few-shot

learningmethods (e.g., cross-domain andmeta-learning) that are still at

a relatively preliminary stage and are quite worthy of follow-up

research. The present work highlights a new entry in the field of few-

shot pest detection.
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