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Object Image Size Is a Fundamental Coding Dimension in Human
Vision: New Insights and Model

Tim S. Meese a and Daniel H. Baker b*
aCollege of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK

bDepartment of Psychology and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK

Abstract—In previous psychophysical work we found that luminance contrast is integrated over retinal area sub-

ject to contrast gain control. If different mechanisms perform this operation for a range of superimposed retinal

regions of different sizes, this could provide the basis for size-coding. To test this idea we included two novel fea-

tures in a standard adaptation paradigm to discount more pedestrian accounts of repulsive size-aftereffects. First,

we used spatially jittering luminance-contrast adaptors to avoid simple contour displacement aftereffects. Sec-

ond, we decoupled adaptor and target spatial frequency to avoid the well-known spatial frequency shift afteref-

fect. Empirical results indicated strong evidence of a bidirectional size adaptation aftereffect. We show that the

textbook population model is inappropriate for our results, and develop our existing model of contrast perception

to include multiple size mechanisms with divisive surround-suppression from the largest mechanism. For a given

stimulus patch, this delivers a blurred step-function of responses across the population, with contrast and size

encoded by the height and lateral position of the step. Unlike for textbook population coding schemes, our human

results (N = 4 male, N = 4 female) displayed two asymmetries: (i) size aftereffects were greatest for targets smal-

ler than the adaptor, and (ii) on that side of the function, results did not return to baseline, even when targets were

25% of adaptor diameter. Our results and emergent model properties provide evidence for a novel dimension of

visual coding (size) and a novel strategy for that coding, consistent with previous results on contrast detection

and discrimination for various stimulus sizes.� 2023 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Key words: adaptation, size perception, gain control, visual psychophysics, computational model.

INTRODUCTION

A common view of early vision is that it performs local

analyses of the retinal image to encode basic image

features. Physiological evidence points to cells in early

visual areas with appropriate selectivity, and

psychophysical adaptation aftereffects suggest a

population basis for the coding. This includes, motion

(Sutherland, 1961; Mather et al., 2008), colour (Webster

and Leonard, 2008), orientation (Gibson and Radner,

1937; Coltheart, 1971), spatial frequency (Blakemore

and Sutton, 1969), binocular disparity (Blakemore and

Julesz, 1971; Tsai and Victor, 2003) and duration

(Walker et al., 1981; Heron et al., 2012). Adaptation after-

effects are also found in other sensory domains including

those for pitch (Christman, 1954), loudness (Marks,

1994), temperature (Arnold et al., 1982), odour (Lawless,

1991) and audio-visual timing (Roach et al., 2011).

These perceptual phenomena have been used to

develop our understanding of the sensory coding

dimensions used by the human brain, but one obvious

candidate missing from the list above is that of size.

There are probably several reasons for this. First, retinal

image size is often lumped in with retinal spatial

frequency (e.g. Webster and Leonard, 2008) but as we

shall show, these are two separate adaptable stimulus

dimensions with different underlying mechanisms.

Second, there is a view that sizemechanisms have already

been identified psychophysically by using adapt and test

stimuli with different diameters, for example. However, as

we review in this discussion, results from those studies

might derive from perceptual contour displacement, not

size-mechanisms per se. Finally, there is a view that the

problem of retinal image size and position is solved in the

primary visual cortex because it is retinotopically mapped.

While local signs might at least be involved in the encoding

of relative position on the retina (Morgan et al., 1990), it is

no more suitable as a route for encoding size as it is for ori-

entation, a feature for which dedicated orientation-tuned

mechanisms are well-known and celebrated.

On the face of it, one might suppose that the size of a

patch of grating, for example, could be encoded by a

population of size-selective mechanisms along the lines

of the standard population model. Fig. 1(A–D) shows

https://doi.org/10.1016/j.neuroscience.2023.01.025
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the textbook idea for orientation coding and the tilt

aftereffect (see caption for details). A similar

arrangement can be envisaged for spatial frequency.

Note that the narrow tuning of the mechanisms derives

A

B

C

D

E

F

G

H

Fig. 1. The standard ‘textbook’ model for orientation-coding and adaptation (the tilt aftereffect) (A–D) applied to size-coding and adaptation (E–H). A

bank of orientation-tuned spatial filters (A) responds selectively (B) to stimulus orientation (black arrow) encoded by the peak of the response

distribution. Following adaptation at this orientation, the sensitivities of nearby mechanisms are attenuated in proportion to their response to the

adaptor (C), distorting the population codes (D) for nearby stimuli (black arrows) and resulting in a repulsive tilt aftereffect. (In (D) the thin curves show

the response distributions for two stimuli (black arrows) pre-adaptation, and the filled curves are for those same stimuli post-adaptation.) For a

population of size mechanisms, the arrangement of mechanism sensitivities along the coding dimension is different (E) from the orientation case (A).

The population response to a stimulus of a given size (e.g. an adaptor; black arrow) resembles a blurred step-edge (F). For this situation the

population code is not summarised by the location of its peak, as in (B), but its gradient maximum (black dot). (This happens to be to the left of the

nominal stimulus size (black arrow), but this is unimportant for our purposes here). This blurred step-edge distribution means that adaptation

desensitises all of the mechanisms smaller than the adapter and, to a lesser extent, some of those that are larger (G). It follows that this model

predicts that adaptation will increase the perceived size of stimuli both larger and smaller than the adaptor (note the rightward shifts in gradient

maxima (dots) in panelH)—i.e. it is not generally repulsive. The purpose of (E–H) is to illustrate the details of a basic size adaptation model, but thus is

not the model we advocate. See text for further details, including the problems involved in trying to achieve an arrangement like that in (A–D) for size.
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from the difference of Gaussian-type arrangement of the

underlying receptive fields (i.e. elongated excitatory

centres for luminance with subtractive inhibition from

flanking surrounds; not shown).

Modelers of size-adaptation might proceed by simply

relabeling the orientation axes in Fig. 1(A–D). However,

this would leave the problem of how to get from retinal

image size to a standard population code with the

appropriate characteristics. For orientation and spatial

frequency, this is straightforward, but the situation is not

so simple for retinal image size. Fig. 1(E) shows that

(unlike for orientation and spatial frequency), a

population of mechanisms that integrate luminance

contrast over area (Meese and Summers, 2012; Richard

et al., 2019) do not sample the coding dimension at regu-

lar intervals, but with considerable overlap and a common

centre, which means the population response for a given

stimulus is not the familiar bell-shaped curve (Fig. 1(B)),

but a blurred step-edge (Fig. 1(F)), where the rising region

owes to the benefit of contrast integration within mecha-

nism. The arrangement might be revised by supposing

difference of Gaussian-type second-order mechanisms

with contrast integration windows of various sizes and

inhibitory contributions from contrast in the surrounds.

However, this is not the remedy it might seem. First, while

the arrangement benefits mechanism selectivity, in that

small mechanisms are quashed by large stimuli, it fails

the other way around, in that small stimuli will excite

equally all the mechanisms that are greater than or equal

to the stimulus size. A fix for this is to normalise each

mechanism’s sensitivity by its integration area, but that

arrangement kills the benefit of stimulus area at detection

threshold for which evidence shows a signal integration

process (Meese and Summers, 2009, 2012; Meese,

2010). Second, surround suppression from outside the

classical receptive field is not subtractive, but divisive.

This is true for cortical cells (Cavanaugh et al., 2002)

and for the mechanisms derived from visual psy-

chophysics (Foley, 1994; Snowden and Hammett, 1998;

Meese, 2004) and is inconsistent with the assumptions

underlying the standard model. Third, regardless of the

arrangement for suppression, these mechanisms will con-

found an increase in stimulus contrast area (within the

excitatory part of its mechanisms) with an increase in

image contrast. Similarly, as stimulus size increases, lar-

ger mechanisms will respond more strongly than the

smaller mechanisms did for the same level of contrast

(e.g. compare the two solid pre-adapt curves in Fig. 1

(H)). This model feature is consistent with contrast detec-

tion thresholds (Meese and Summers, 2012) but not with

the perception and discrimination of suprathreshold con-

trast (Cannon and Fullenkamp, 1988; Meese et al.,

2005) and is all very different from the population beha-

viour of the standard model (Fig. 1(A–D)). Of course,

one might appeal to the process of contrast gain control

(as we have done elsewhere and will do here) but this

raises questions about the method of implementation

and still leaves the problem of how to extract an estimate

of stimulus properties from the population code which is

not as simple as it is for the tidier standard model (see

Fig. 1). We suggest that the first derivative of the

response distribution (Fig. 1(F,H)) is a useful approach,

and return to this in a later section.

With the above in mind, our motives were twofold.

First, we wanted to know whether we could find

evidence for size mechanisms in human vision. Second,

should they be evidenced by repulsive adaptation

aftereffects, the standard population model would need

considerable development for it to provide a plausible

account of this result while remaining consistent with

contrast perception. However, we were far from daunted.

Our previous work on the detection and discrimination of

luminance contrast provided evidence for the spatial

integration of contrast signals across the retinal image, a

sound starting point for the construction of size

mechanisms. This contrast integration was found in both

the excitatory and suppressive pathways of a contrast

gain control network (Meese and Summers, 2007, 2012;

Meese and Baker, 2011, 2013; Baker et al., 2013). For

example, by manipulating both stimulus size and extrinsic

uncertainty, Meese and Summers (2012) rejected con-

temporary (signal detection theory) accounts of probability

summation for area summation of grating contrast at

detection threshold. Instead, those results provided evi-

dence for a process that sums (exponentiated) contrast

and internal noise over contiguous regions of the retina.

Other experiments using novel spatial stimulus designs

tailored to the issue came to the same conclusion

(Meese and Summers, 2007, 2009; Meese, 2010;

Meese and Baker, 2011; Baldwin and Meese, 2015). Fur-

thermore, strong evidence for this spatial integration of

contrast was found when the enquiry was extended above

threshold using pedestal masking (Meese and Summers,

2007; Meese and Baker, 2011) and contrast matching

(Meese et al., 2017). Crucially, in those experiments, the

suprathreshold integration process was seen only with

help of ‘Battenberg’ or ‘Swiss cheese’ stimuli (essentially,

these are gratings containing evenly spaced holes)

because under normal circumstances, when the area of

both target and pedestal increase together, the benefit of

signal integration is hidden by a concomitant process of

suppression. This provides the solution to one of the prob-

lems outlined above: the visual system does not confound

stimulus area with contrast because of the opposing oper-

ations of spatial integration and spatial suppression.

These findings prompted a cartoon model involving a pop-

ulation of size-mechanisms each subject to suppressive

gain control from the largest spatial region in the pool

(Meese and Baker, 2011). From this, we developed the

hypothesis that spatial pooling of luminance contrast might

provide the basis of a population code for retinal image

size in visual cortex (Meese and Baker, 2011) (e.g. for a

patch of grating), and that adapting this population would

distort the perception of stimulus size.

To test this prediction, we conducted a series of novel

adaptation experiments designed to isolate the putative

size-coding mechanisms predicted by our hypothesis.

The outcome is supported by our formalisation of a

computational model developed from the earlier work on

contrast perception referred to above, where surprising

asymmetric features in our size-adaptation data are

emergent properties of the model.

T. S. Meese, D. H. Baker / Neuroscience 514 (2023) 79–91 81



EXPERIMENTAL PROCEDURES

Participants

Participants were eight undergraduate students in their

early twenties, who participated for course credit. They

had no known visual abnormalities and gave written

informed consent. The second author also served as a

participant in a follow-up experiment. Any prescribed

optical correction typically used for near work was also

worn during testing. The work was conducted with the

ethical approval of Aston’s School of Life and Health

Sciences (now the College of Health and Life Sciences).

Equipment

Stimuli were displayed on a Phillips MGD403 19-inch

greyscale monitor, running at a resolution of

1280 � 1025 pixels, with a refresh rate of 80 Hz. The

mean luminance of the monitor was 150 cd/m2. The

monitor was viewed from 103 cm, at which one degree

of visual angle subtended 64 pixels on the display.

Participants placed their heads in a head-and-chin rest

positioned at the appropriate distance and were

instructed to fixate on a central cross throughout. We

generated stimuli using Matlab and rendered them using

a VSG2/5 framestore device (Cambridge Research

Systems Ltd., Kent, UK). Participants made responses

using a Kensington Expert Mouse Pro trackball device –

this is a stationary device housing a ball that could be

rotated to provide dynamic adjustment of the stimulus

on the screen.

Stimuli

Stimuli were sinusoidal gratings, windowed by a raised

cosine envelope with a blur width of four pixels added to

each side of the plateau of the envelope. (The width of

the plateau was the nominal width of the stimulus). All

stimuli had a Michelson contrast of 50%. Target stimuli

were always horizontal, whereas adapting stimuli were

either horizontal or vertical depending on the

experiment. In experiments where size was

manipulated, all stimuli had a spatial frequency of 4c/

deg, and adaptors and targets varied in size (adaptors

either 1 or 2 degrees, and targets from 0.25 to 8

degrees at seven levels in proportion to the adaptor;

see Fig. 3(A) for examples). In experiments where

spatial frequency was manipulated, target stimuli were

the same size as the adaptor (either 1 or 2 degrees) but

varied in spatial frequency between 1 and 16c/deg (see

Fig. 3(B) for examples).

Procedure

Fig. 2 outlines the main procedure. Trials were blocked by

adaptation condition throughout. The adaptor was

presented to the left of a central fixation cross for 60 s

at the start of a block (initial adaptation), and 10 s

before each trial (top-up adaptation). The adaptor was

always a sinusoidal grating with a spatial frequency of

4c/deg and a diameter of either 1 degree (four cycles)

or 2 degrees (eight cycles). During adaptation, the

adaptor moved to a random spatial position every

250 ms, with the range of possible positions constrained

to lie within the boundary of an invisible circle with a

diameter of 4 degrees (for the small adaptor) or 8

degrees (for the large adaptor; see upper panel of

Fig. 2). After adaptor offset, there was a blank period of

500 ms, followed by a target presentation of 250 ms,

accompanied by a beep. The target was offset to the

left of fixation by 2.5 degrees (for conditions with a 1

degree adaptor), or 5 degrees (for conditions with a 2

degree adaptor). The target then disappeared, and a

matching stimulus was presented to the right of the

fixation cross, offset by the same distance. In some

blocks this was a thin grey ring, the diameter of which

was adjusted by moving the trackball. In the remaining

blocks it was another sine-wave grating, and moving the

trackball adjusted the spatial frequency. The starting

size or spatial frequency of the match had equal

probability of being larger or smaller (or lower or higher

in frequency) than the target. Once the participant was

●

●
●

●

●

Adapt

60 s initial

10 s top−up

Jitter every 250 ms

500 ms blank

Test
250 ms

Beep

Match

or

Adjust size Adjust SF

Fig. 2. Schematic illustration of the stimulus arrangement and

adaptation regime. Adapting stimuli (top panel) moved to random

spatial positions to the left of a central fixation cross (the dotted circle

shows the region covered by the adaptors) for a 60 s adaptation

period at the start of each block of trials, and a 10 s top-up period

between trials. The target stimulus was then presented to the left of

fixation for 250 ms, indicated by a beep (middle panel). In different

experiments, participants adjusted either the diameter of a black ring

or the spatial frequency of a grating patch, both shown to the right of

fixation in the unadapted region of the visual field, until it matched

their perception of the target.
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satisfied with their judgement, they clicked a button on the

trackball to initiate the next trial.

Baseline conditions were as described above, except

that there was no adaptation sequence. We collected

baseline data for each session before any adaptation

took place, and each participant adapted to only one

orientation on a given day. For conditions in the main

experiment where the target size varied and spatial

frequency was judged, the matching stimulus always

had the same diameter as the target. In the control

experiment, the matching stimulus had a fixed diameter

of either 1 or 2 degrees. Each target condition (target

size or spatial frequency) was repeated four times in

each block, and each adaptation condition was repeated

twice by each participant. Overall, participants

completed 1,344 settings each across 168 distinct

conditions (7 target levels � 2 adaptor types � 2

adaptation conditions � 6 sub-experiments) in the main

experiment, and a further 112 settings each across 14

conditions (7 target sizes � 2 match sizes) in the control

experiment.

Quantification and statistical analysis

All analyses were conducted in R. The mean setting (in

log units) for each participant and condition was

calculated across all 8 repetitions. We calculated the

percentage shift in perceived size (or spatial frequency)

relative to the baseline settings. The mean and standard

error of this adaptation effect were then calculated

across participants. We performed a frequentist 2

(adaptor size) by 7 (target size or spatial frequency)

repeated measures ANOVA for each experiment using

the log values. All degrees of freedom were

Greenhouse-Geisser corrected where Mauchly’s test of

sphericity was significant, and we report generalised

eta-squared as a measure of effect size (Olejnik and

Algina, 2003). We also conducted a Bayesian ANOVA

(Rouder et al., 2012) (using the BayesFactor R package),

allowing us to report Bayes factor scores corresponding

to the main effects and interactions.

Data and software availability

Experimental scripts, raw data, analysis scripts and

modelling code are available at: https://osf.io/kthg3/

https://doi.org/10.17605/OSF.IO/KTHG3.

RESULTS

Main Experiments: Manipulations of size, spatial

frequency and orientation

Human participants (N = 8) were presented with an

adapting stimulus (a patch of sine wave grating) on the

left side of a computer monitor, which jittered in position

(Baker and Meese, 2012; Storrs and Arnold, 2017) every

250 ms to avoid causing retinal afterimages (Köhler and

Wallach, 1944). They were then shown a target stimulus

in the adapted region of the display and asked to report

its perceived size by adjusting the diameter of a ring on

the opposite side of the display (see Fig. 2). Compared

to unadapted baselines (which were approximately veridi-

cal as summarised in Supplementary Fig. S1), when the

target was smaller than the adaptor, its perceived size

reduced by around 20%. When the target was larger than

the adaptor, its perceived size increased by around 10%

(see Fig. 3(A)). These effects were consistent across

two different sizes of adaptor and are robust and com-

pelling in demonstrations (see Supplementary Movie

S1). A factorial (7 stimulus size � 2 adaptor size)

repeated measures ANOVA indicated that the main effect

of relative stimulus size was significant

(F(2.3,16.3) = 18.64, p < 0.001, gg
2 = 0.54, log10-

BF10 = 15.1), but there was no effect of absolute adaptor

size (F(1,7) = 0.004, p = 0.95, gg
2 < 0.001, log10BF10 =-

�0.7), nor any interaction (F(6,42) = 1.44, p = 0.22,

gg
2 = 0.04, log10BF10 = �0.80).

We then sought to replicate a classic aftereffect in

which the coarseness of the texture (but not the size of

the patch) is affected by adaptation (Blakemore and

Sutton, 1969) using our jittering adaptor (see Supplemen-

tary Movie S2). The method remained the same but this

time the targets had a constant size and varied in spatial

frequency (i.e. bar width). The perceived target spatial fre-

quency was indicated by adjusting the spatial frequency

of a matching patch of grating on the opposite side of

the display. This experiment also produced a repulsive

aftereffect of around 20% in each direction (see Fig. 3

(B); note the logarithmic y-axis). The effect of target spa-

tial frequency was significant (F(6,42) = 24.74, p < 0.001,

gg
2 = 0.60, log10BF10 = 15.9), but there was no effect of

adaptor size (F(1,7) = 0.05, p = 0.82, gg
2 < 0.001, log10-

BF10 = �0.68), nor any interaction (F(6,42) = 0.59,

p = 0.74, gg
2 = 0.03, log10BF10 = �0.89). Note that spa-

tial frequency-specific aftereffects of this kind were origi-

nally referred to as ‘size adaptation’ (Blakemore and

Sutton, 1969) and understood in terms of a population

code for spatial frequency. In principle, this scheme can

explain the distorting effects (Kreutzer et al., 2015; Zeng

et al., 2017; Altan and Boyaci, 2020) of perceived size

for luminance-defined objects (see Supplementary Movie

S4) by assuming that perception of size is mediated by

spatial frequency selective channels. However, this

approach does not explain the size adaptation aftereffects

reported in Fig. 3(A) where object size and spatial fre-

quency are decoupled; the perceptual judgement here is

specific to the size of the patch, not the spatial frequency

of the grating texture it contains.

To reveal more about the level of processing at which

these adaptation effects occur, we asked whether the

aftereffects are tuned for orientation (see Supplementary

Movie S3). For size adaptation, we found effects of

similar magnitude when the adaptor orientation was

orthogonal to that of the target (see Fig. 3(C)). There

was a main effect of target size (F(6,42) = 27.51,

p < 0.001, gg
2 = 0.59, log10BF10 = 15.0) but no effect

of adaptor size (F(1,7) = 1.01, p = 0.35, gg
2 = 0.03,

log10BF10 = �0.43) or interaction (F(6,42) = 1.27,

p = 0.29, gg
2 = 0.06, log10BF10 = �0.63). In fact, our

informal explorations suggest that the size adaptation

aftereffect is insensitive to the texture content of the

stimuli and occurs even when this is substantially

T. S. Meese, D. H. Baker / Neuroscience 514 (2023) 79–91 83



Judge size Judge spatial frequencyA B

C D

Targets Targets

Matches Matches

Adaptor

Adaptor

Adaptor

Adaptor

Fig. 3. Adaptation aftereffects for four experiments (N = 8 participants). The stimulus icons (top row) depict examples of the target stimuli relating

to the x-axes. (They are for the 1 and 2 deg adaptor conditions on the left and right, respectively, where the adaptors are shown by the lower right

inset patches.) Panel (A) shows the percentage change in perceived size as a function of target size, expressed relative to the size of the adaptor.

Data are shown for two adaptor sizes (different symbols). The spatial frequency was 4c/deg. For the 2 deg adaptor, the targets had twice the

diameter shown by the icons. Panel (B) shows adaptation aftereffects for perceived spatial frequency (SF). Adaptors, targets and matches were the

same size. Panels (C) and (D) show results for orthogonal orientations between target and adaptor. All panels show results relative to baseline

measures where there was no adaptation (see Supplementary Fig. S1). Error bars in all panels indicate ± 1SE across participants (N = 8), and

horizontal dashed lines show baselines in the absence of adaptation.
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mismatched between the adaptor and target. For

example, we get the same effects when the adaptor is a

grating and the target is a face (see Supplementary

Movie S5).

For spatial frequency adaptation (Fig. 3(D)),

aftereffects were also found when using an orthogonal

adaptor, with a significant main effect of target spatial

frequency (F(6,42) = 18.07, p < 0.001, gg
2 = 0.51,

log10BF10 = 10.8) but no effect of adaptor size

(F(1.7) = 0.34, p = 0.58, gg
2 = 0.003,

log10BF10 = �0.68) or interaction (F(6,42) = 1.27,

p = 0.29, gg
2 = 0.08, log10BF10 = �0.34). Early work

on spatial frequency aftereffects showed strong

orientation tuning, but did not test target-adaptor

orientation differences beyond 40� (Blakemore et al.,

1970; Blakemore and Nachmias, 1971). In the context

of these classic early studies, our findings with an orthog-

onal adaptor might be surprising as they appear to show

no orientation tuning for the aftereffect. However, subse-

quent work on the same phenomenon found strong

effects on perceived spatial frequency from orthogonal

adaptors (Heeley, 1979), consistent with our results.

Do the size and spatial frequency adaptation

aftereffects derive from a single process?

Both of our adaptation aftereffects involve aspects of

stimulus size – overall size in one case, the width of the

stripes in the other. Might these two effects be different

aspects of a single phenomenon? For example, when

the perceived size of a target shrinks, do its stripes also

appear closer together, causing the perceived spatial

frequency to increase? To test this, we instructed

participants to judge the perceived spatial frequency of

the targets from the size adaptation experiment, and the

perceived size of the targets from the spatial frequency

experiment. Perceived size did not show any clear

modulation following spatial frequency adaptation (see

Fig. 4(A)) suggesting that our size aftereffect was not a

consequence of perceived bar width pulling in or

pushing out the perceived diameter of the patch. There

were no effects of target spatial frequency

(F(1.07,7.46) = 0.79, p = 0.58, gg
2 = 0.04,

log10BF10 = �1.01), or adaptor size (F(1,7) = 0.44,

p = 0.53, gg
2 = 0.01, log10BF10 = �0.58), nor any

interaction between them (F(1.12,7.84) = 0.79, p = 0.59,

gg
2 = 0.04, log10BF10 = �0.81). All Bayes Factor scores

offered support for the null hypothesis (all

log10BF10 < �0.5).

Judgements of perceived spatial frequency for targets

of different sizes did show a reduction in perceived spatial

frequency for small target sizes (see Fig. 4(B)). This was

confirmed by ANOVA, showing a significant main effect of

target size (F(2.19,15.33) = 4.99, p < 0.01, gg
2 = 0.20,

log10BF10 = 1.86) but no effect of adaptor size

(F(1,7) = 0.11, p = 0.75, gg
2 = 0.002,

A B CTargets Targets Targets

Matches Matches Matches

Adaptor Adaptor No Adaptor

Fig. 4. Results from three control experiments (N = 8 participants). Panels (A) and (B) show effects of adaptation. Panel (C) shows the effect of

size on perceived spatial frequency. The stimulus icons (top row) depict examples of the target stimuli relating to the x-axes. (All are for the 1 deg

adaptor conditions, where the adaptors are shown by the lower right insets. Adaptors and targets had twice the diameters shown for the 2 deg

adaptor condition.) (A) Perceived size for targets differing in spatial frequency from the 4c/deg adaptor but of the same physical size as the adaptor

(see symbol shapes). The matching stimulus was a ring (second row of icons). (B) Perceived spatial frequency for targets differing in size from the

adaptor but with the same physical spatial frequency (4c/deg) as the adaptor. The matching stimulus was a patch of grating which was the same

physical size as the target. Panels (A) and (B) show results relative to baseline measures where there was no adaptation. (C) The results of a

control experiment in which the spatial frequencies of various sized targets were compared to matching stimuli of fixed size (see symbol shapes)

and spatial frequency of 4c/deg (dashed line). There was no adaptor in this experiment. The difference between this experiment and the baseline

condition for (B) is that in (C), the size of the matching stimulus was fixed, whereas in (B) it was the same as the target. Error bars show ± 1SE

across participants (N = 8).
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log10BF10 = �0.66) and no interaction

(F(1.74,12.17) = 0.50, p = 0.81, gg
2 = 0.03,

log10BF10 = �0.94). The effect of target size is

surprising because the bar width appears larger (lower

spatial frequency) for grating patches that in fact look

smaller due to the size adaptation aftereffect (Fig. 3(A)).

In other words, the adaptation aftereffect here (Fig. 4

(B)) is in the direction opposite to that expected if the

size and spatial frequency aftereffects (Blakemore and

Sutton, 1969) were caused by a single process.

Note that in our matching paradigm, the target grating

would be reduced in perceived size (due to size

adaptation), whereas the matching grating would not.

Could this mismatch between the perceived sizes of

target and adaptor (even when the physical sizes are

identical) be somehow responsible for the low spatial

frequency settings in Fig. 4(B)?

To test this possibility, our participants completed a

control experiment in which the size of the matching

stimulus was constant in all conditions. Participants

matched the perceived spatial frequency of targets of

different sizes to the perceived spatial frequency of a

match of fixed size. There was no adaptation. The

results (Fig. 4(C)) showed a significant main effect of

target size (F(1.18,8.28) = 15.17, p = 0.003, gg
2 = 0.61,

log10BF10 = 17.4) with small and large targets

underestimated and slightly overestimated in spatial

frequency, respectively. There was no effect of match

size (F(1,7) = 0.24, p = 0.64, gg
2 = 0.002,

log10BF10 = �0.69). There was a significant interaction

(F(6,42) = 5.35, p = 0.01, gg
2 = 0.05,

log10BF10 = �0.57) but the Bayes Factor score

indicated greater evidence for the null hypothesis, and

the result carries no particular theoretical importance in

any case. This control experiment confirmed the

perceived spatial frequency bias in the previous

experiment (Fig. 4(B)) when target and match stimuli

were different sizes, but in this case, it cannot be

attributed to size adaptation since there was no adaptor.

This suggests that at least some of the spatial

frequency effect seen in Fig. 4(B) is a secondary effect

deriving from a mismatch in the perceived sizes of the

target and match stimuli. Thus, we are confident that

the unexpected quirk in our data (Fig. 4(B)) does not

undermine our investigation, and that the effect might be

related to other spatial frequency biases that have been

reported before (Georgeson, 1980; Harris and Wink,

2000). We also conclude that the size and spatial fre-

quency adaptation aftereffects derive from different

processes.

Computational modelling

To understand the relationship between size adaptation

and population coding involving mechanisms with

superimposing selectivity for size, we developed a

computational model (described more fully in Appendix

A). This was guided by earlier work on contrast

perception (e.g. Meese and Summers, 2007; Meese

and Baker, 2011; Meese et al., 2017), and devised to

overcome the difficulties involved with a simple applica-

tion of the population model for size coding as described

earlier (Fig. 1).

For simplicity, our spatially-one-dimensional model

(see Fig. 5(A)) takes stimulus contrast as input over the

spatial extent of the stimulus1 (i.e. it treats the envelope

of the stimulus as a local measure of contrast),2

regardless of spatial frequency and orientation (Meese

and Baker, 2013). (Our model was not intended to explain

the spatial frequency aftereffect which has been modelled

elsewhere (e.g. Klein et al., 1974), but could be extended

to do this with little or no impact on our conclusions here).

These spatially distributed contrast responses (Moutsiana

et al., 2016) are multiplied by each element in a one-

dimensional ‘size’ array of Gaussian pooling mechanisms

of various spatial extents (windows) (dashed red curve in

Fig. 5(C)), each member of the array being subject to non-

linear gain control. This includes (i) self-suppression to pro-

tect the system’s image contrast code from the influence of

stimulus size above threshold (Meese and Baker, 2011)

(green curve in Fig. 5(C)), (ii) a divisive surround suppres-

sion term (Sengpiel et al., 1998; Xing and Heeger, 2001;

Cavanaugh et al., 2002; Webb et al., 2003), where each

mechanism is suppressed by the largest mechanism in

the array (black curve in Fig. 5(C)) to provide the initial

basis for size coding (Meese and Baker, 2011) and (iii) a

saturation constant (Z) that allows for the benefit of stimu-

lus size at detection threshold (Meese and Summers,

2012). This has the same initial value for each mechanism

(Meese, 2004) but is influenced by the mechanism’s

response to the adaptor (R) and the gain of adaptation

(a) (Foley and Chen, 1997; Meese and Holmes, 2002) such

that Zj = 1 + aRj, where j indexes the array (i.e. popula-

tion) of size mechanisms. In general, with no adaptation

this model arrangement produces a distribution of activity

across the size array (model Layer 1) with the form of a

blurred step edge (black curve in Fig. 5(C)). (See Supple-

mentary Figs. S3-S5 and their captions for further discus-

sion of the model development with and without

adaptation.).

First-order image contrast (Meese and Baker, 2011)

(not our focus here) and stimulus size (Meese and

Baker, 2011) are encoded by the height and location of

the distribution of activity across Layer 1, respectively.

Note that mechanisms with excitatory pooling regions

1 Our model here is devised to deal with psychophysical stimuli—
patches of luminance grating in a nominal world of otherwise uniform
luminance. In this simple case, no stopping rule is needed for the
contrast integration process at the stimulus boundary since the
absence of stimulus contrast does the job. In the more general case,
an additional process of image segmentation would be needed to
identify the boundary of the integration process. We pick up on this
point in the discussion.
2 To a first approximation this simplification is equivalent to a

measure of local (receptive field size) RMS contrast at each point
across the image which can be derived from the square root of the sum
of the squares of a quadrature pair of filter outputs (i.e. a standard
model complex cell). All of our stimuli were uniform patches of grating
(albeit of various sizes). Thus, across most of the stimulus, the local
RMS contrast is simply the contrast of the stimulus which is uniform
across the stimulus region and zero beyond the stimulus region (see
footnote 1). By using the stimulus envelope as a proxy for this
measure, we are ignoring minor edge effects (contrast blurring) that
would be produced by first-order spatial filters had we included a
convolution stage in the model.

86 T. S. Meese, D. H. Baker / Neuroscience 514 (2023) 79–91



greater than or equal to the size of

the stimulus have comparable

responses because they receive

the same excitatory drives and sup-

pression. This sets our Layer 1 pop-

ulation code apart from many others

in visual perception, where the usual

bandpass properties of the mecha-

nisms involved (Fig. 1(A)) result in

peaked (bell-shaped) distributions

(Fig. 1(B)). Instead, the computa-

tional task here is to find where the

response transition in the Layer 1

array is located (see black curve in

Fig. 5(C)). Following the logic of

edge-emphasis by lateral inhibition

in the retina (Barlow, 1953), Layer

2 of our model takes a copy of the

Layer 1 responses and subjects

each to subtractive inhibition from

its immediate neighbour, approxi-

mating first-order differentiation.

This results in size-tuning of the pop-

ulation (blue curve in Fig. 5(C)), with

perceived size being given by the

peak of the spline-interpolated distri-

bution (Marr and Hildreth, 1980)

(see points in the upper row of

Fig. 5(B)).

Adaptation is implemented by

setting the saturation constant (Z,

see (Foley and Chen, 1997; Meese

and Holmes, 2002)) in the gain con-

trol of Layer 1 such that Zj-1 is pro-

portional to the jth mechanism’s

response to the adaptor (see Appen-

dix A for details.) Adaptation

changes the population size-tuning

curves, such that the peaks of the

tuning curves in Layer 2 shift away

from the adapting stimulus (i.e.

smaller sized stimuli produce peaks

at smaller mechanism widths, and

vice versa), as shown in the lower

row of Fig. 5(B): the peaks (marked

by the coloured dots) are repulsed

laterally from the location of the

adaptor following adaptation. The

ratio of adapted to unadapted per-

ceived size is shown in Fig. 5(D)

(curve) and produces the same bi-

directional size adaptation afteref-

fect that we observed empirically

(symbols). Note that the decreases

in size are around twice as large as

the increases, and that this asym-

metry is present in both model and

human behaviour. Further investiga-

tion on the second author confirmed

that the size reduction effects

remained strong for even smaller

A

B C

D

Fig. 5. Overview of the computational model. Panel (A) is a schematic of the model. The contrast

envelope (C) of a stimulus (blue shading) is multiplied by a bank of contrast pooling mechanisms of

different spatial widths (only 3 are depicted here; the model had 91). Since we are not modelling the

spatial frequency aftereffect, we have excluded the bandpass spatial filtering details for simplicity.

Thus, the first explicit stage of our model (Layer 1) is what is traditionally described as a second-order

pooling stage where outputs of spatially tuned linear filter-elements are summed over space, phase,

orientation and spatial frequency. The results of pooling are passed through a nonlinear stage of gain

control involving surround suppression from the largest window (Bm). Note that in general, the gain

control coefficients, A & B, depend on the sizes of both the stimulus and the relevant pooling window

as set out formally in the Methods section. The outputs of Layer 1 are then passed to a second layer

involving subtractive inhibition between adjacent mechanisms. The size label of the mechanism with

the greatest response in Layer 2 (implied by spline interpolation) delivers an estimate of image size.

Adaptation increases the value of Z in Layer 1 in proportion to the mechanism’s response to the

adaptor. Panel (B) shows the Layer 2 responses for different sized excitatory pooling windows (x-axis)

to stimuli of different sizes (curves), before (top) and after (bottom) adaptation to a 256 pixel-wide

adaptor (indicated by the black arrow). The coloured dots indicate the peak response for each

condition. Panel (C) shows the effects of the various inhibitory stages on the response distributions

across Layers 1 (red, green, black) and 2 (blue) for a single 256 pixel-wide stimulus. Panel (D) shows

the adaptation aftereffect, expressed as the percentage change in perceived size (derived from the

lateral positions of the coloured dots in panel (C) (N = 8 participants)). The curve is the model

behaviour, and the symbols are the 1 deg results replotted from Fig. 3(A).
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targets, and that size increase effects returned to baseline

for larger targets. This is also predicted by the model (see

Supplementary Fig. S2). These unusual effects derive

from natural asymmetries in our model’s architecture.

For example, within the mechanisms of Layer 1, adapta-

tion is more influential for smaller integration windows

because with less potential for the summing of signal (in

the inhibitory pathway as well as the excitatory pathway)

these mechanisms are more labile. This is to say that

the impact of an increase in Z (see Fig. 5(A)) is greater

when the values of A and B (A1 � A2 � Am; and B1 � B2-

� Bm) are small than when they are large, and since Z is

the parameter that carries desensitisation by adaptation,

aftereffects are larger for smaller mechanisms. Similarly,

for any given mechanism, as target size becomes smaller

than the integration window, the impact of adaptation

increases for that mechanism. (See Supplementary

Figs. S4 and S5 and their captions for further discussion.)

In general, the behaviour of our model derives

primarily from its architecture; the black curve in Fig. 5

(D) was derived by setting a single adaptation

parameter (a) by eye (see Methods), yet the model

describes the key features of our results (i.e. their bi-

directional asymmetries) very well.

Note that the first layer of our model is consistent with

our motivating work on area summation of luminance

contrast at threshold and above (Meese, 2004; Meese

and Summers, 2007; Meese and Baker, 2011), extending

it here by pooling over first-order spatial frequency and

orientation, the details of which no doubt deserve further

investigation. The second, subtractive, layer is a novel

extension designed to deliver the retinal image-size code.

DISCUSSION

We have used an adaptation paradigm to provide the first

psychophysical evidence for size mechanisms in human

vision, and supported this with a computational model.

Other studies have also shown distortions of perceived

object shape or size, including various size adaptation

aftereffects (Köhler and Wallach, 1944; Pooresmaeili

et al., 2013; Kreutzer et al., 2015; Zimmermann et al.,

2016; Laycock et al., 2017; Zeng et al., 2017; Altan and

Boyaci, 2020). However, none of these studies have

demonstrated that vision involves neural mechanisms

for size coding. For example, where static luminance-

defined shapes or contours have been used, perceptual

distortions can be attributed to spatial repulsion effects

(Ganz, 1964) or to adaptation of low spatial frequency

mechanisms (Blakemore and Sutton, 1969). In some

cases, the involvement of retinal afterimages might also

have been important (see Köhler and Wallach, 1944). In

contrast, our own experiments are the first ones designed

to investigate the size-mechanism hypothesis directly, rul-

ing out the possibilities above by using (i) a rapid spatially

jittering adaptor and (ii) stimuli that are narrowband in

spatial frequency. This approach decouples object size

from (i) retinal contour location and (ii) carrier (or domi-

nant object) spatial frequency. We have also placed our

results in a computational context developed here by

building in a natural way on known cortical physiology

and a large body of previous psychophysical work on

early vision. We know of no other image-driven model of

size perception that has done this. Our model accommo-

dated our hypothesised bi-directional adaptation afteref-

fects for size, and in this respect the work here delivers

a successful test of our proposal about size-coding that

emerged from work on image contrast (Meese and

Baker, 2011). But more than that, two asymmetrical fea-

tures of our results that we had not anticipated are emer-

gent properties of our model and provide further support

for the scheme we have been advocating.

Our work is complemented by several other studies

and observations. For example, the perceived aspect

ratio of a shape can be distorted by adaptation,

appearing narrower or wider when observers were

adapted to other shapes (Storrs and Arnold, 2017) or to

large grating patterns (Frome et al., 1979). Haptic size

adaptation has also been demonstrated using paradigms

where participants grasped objects of different sizes

(Walker and Shea, 1974). And more generally, strong

simultaneous effects on perceived size can also be

induced by surrounding elements that are either smaller

or larger than a central target, such as in the well-known

Ebbinghaus illusion (Ebbinghaus, 1902).

Our focus here has not been on temporal dynamics,

but in additional pilot experiments conducted on the

second author, we found that the size effect increased

monotonically during the first 16 s of adaptation but was

constant thereafter. Size perception returned to baseline

by around 60 s after the offset of the adaptor. This rapid

attack and long persistence mean that judgements of

object size in natural environments might be affected in

repetitive tasks such as fruit picking or production line

work, for example. There might also be important

clinical implications relating to judgements of body size

in patients with eating disorders (Challinor et al., 2017).

Our motivation for this work was the prediction that

populations of neurons which pool image texture across

various regions of the visual field might code for object

size (Meese and Baker, 2011). Receptive fields in V1

are too small for this, but neurons with large receptive

fields that also exhibit suppression effects are found in

extra-striate visual areas such as V4 (Desimone and

Schein, 1987; Pollen et al., 2002) and have many of the

required properties. Results from fMRI have shown that

adaptation can reduce or increase the area of V1 acti-

vated by a stimulus (Pooresmaeili et al., 2013) and this

might suggest that our own adaptation effects occur at

an earlier stage than we suppose. However, the slow

time-course of fMRI means that feedback from later

stages might also be involved in these imaging results.

A recent study applying TMS to lateral occipital cortex

(Zeng et al., 2020) found that size judgements were dis-

rupted at an earlier time point than when TMS was applied

to early visual cortex, consistent with this feedback

hypothesis.

Our modelling shows how mutually inhibitory

mechanisms that pool over different regions of the

visual field can produce an adaptable population code

for size, but several developments are needed before a

more comprehensive understanding of perceived object

88 T. S. Meese, D. H. Baker / Neuroscience 514 (2023) 79–91



size can emerge. For simplicity, our current model is one

dimensional and (quite straightforwardly) would need to

be extended to the two spatial dimensions of the retina

to have general applicability. More challenging is that

our current model has no method for segmenting the

background to deliver a stopping rule for contrast

integration, this shortfall owing to the simplicity of our

psychophysical constraints. However, our work is not

undermined by this, and remains valid so long as the

segmentation task can be achieved. Everyday

observations serve as an existence proof for this, and

our finding that size adaptation aftereffects extend

across the orientation and spatial frequency of

luminance modulations points to the sort of general

second-order process that we should expect (see also

Richard et al., 2019): one that operates on the envelope

of pooled local contrasts (e.g. the boundary of an object).

Furthermore, visual neurons in V2 and V4 (Zhou et al.,

2000) are known to have the border ownership properties

that might be an important part of this process, the details

of which continue to be investigated (von der Heydt and

Zhang, 2018). Finally, our experiments did not distinguish

between image size (which depends on viewing distance)

and physical object size (which does not), so whether the

process identified here comes before or after the pro-

cesses of depth perception and size constancy remains

to be elucidated. We hope that future work in neuroimag-

ing and neurophysiology as well as psychophysics, will

help to illuminate these issues.
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APPENDIX A. A COMPUTATIONAL MODEL OF

SIZE ADAPTATION

We constructed a computational model to simulate the

size adaptation experiments. For simplicity, the model

operates along only one spatial dimension with i = 1 to

n pixels (n = 8,192). This gives a notional resolution of

256 pixels per degree. This is higher than in the

experiments (64 pixels per degree) which were limited

by the pixel resolution of the display. The model has a

population of j = 1 to m pooling mechanisms (m = 91)

defined by Gaussian spatial profiles (Gij) with standard

deviations ranging from 4 to 2048 pixels (or � 1 arcmin

to 8 degrees) in logarithmic steps of the index j. Model

inputs were rectangular functions (see Fig. 5(A)) with

unity height and widths between 16 and 4096 pixels

(3.75 arcmin to 16 degrees; 17 sizes in log steps). Half

a cycle of a raised cosine function (16 pixels, or 3.75

arcmin wide, consistent with the stimuli in our

experiments) was added to each end of these functions

to produce profiles with smooth edges. These inputs

describe the contrast envelope of our stimuli across

space which, to a first approximation, is equivalent to

the output of an array of standard model complex cells.

(Recall that stimulus and adaptor contrasts were fixed

and identical in our experiments.) Stimulus response

was calculated by multiplying model inputs by each

pooling mechanism, and their products were passed

through a nonlinear gain control equation (Layer 1),

given by:

L1j ¼

P
i¼1:n Gij � Ci

� �p

Zj þ
P

i¼1:n Gij � Ci

� �q
þ
P

i¼1:n Gim � Cið Þq
ð1Þ

where Ci is the model input (the contrast envelope) at each

pixel location (i). Note that the contrast terms are

exponentiated before summation, as required by

previous work (Baker et al., 2013). The exponents p and

q were fixed at 2.4 and 2 respectively, also based on pre-

vious work (Legge and Foley, 1980; Meese and Summers,

2007, 2012). Zj is a saturation constant with a value of 1 in

the absence of adaptation (described further below). The

term that includes Gim represents surround suppression

from the largest mechanism in the population (indexed

by m). The R symbol denotes summation across space

(i= 1:n). All stimuli and pooling mechanisms were centred

in the middle of the spatial array (of size n).
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There is a special case of our gain control model

worthy of consideration. This is when the target stimulus

is a uniform contrast signal, as in our experiments here.

In this case, and by ignoring the minor complication of

the small skirts of our stimuli, Equation (1) simplifies to

the following:

cL1 j �
AjC

p

Zj þ BjC
q þ BmC

q ð2Þ

where,

Aj ¼ Sj

X

i¼1:n

Gij

p
ð3Þ

and

Bj ¼ Sj

X

i¼1:n

Gij

q
ð4Þ

and where Sj is either the size of the j-th mechanism

(j = 1:m) or the size of the stimulus (both in units of i),

whichever is smaller. Equation (2) is used in Fig. 5(A) to

facilitate interpretation of our Layer 1 architecture, but

our formal modelling used the more general Equation (1).

Layer 2 of the model involves subtractive inhibition

between neighbouring mechanisms:

L2j ¼ L1j � L1j�1 ð5Þ

The model was presented with stimuli of various sizes,

and the size of each stimulus was estimated by fitting a

spline to the population response and finding the

maximum (Fig. 5(B)). We obtained equivalent results

using a maximum likelihood readout rule (Jazayeri and

Movshon, 2006), but this did not improve the analysis

and was omitted for simplicity. To model the influence of

adaptation, we set the saturation constant such that

Zj = 1+ aRj, where a is a free parameter that determines

the weight of adaptation, consistent with previous work

(Foley and Chen, 1997; Meese and Holmes, 2002), and

Rj is the normalized mechanism response of the j-th

mechanism to the adaptor. We scaled the values of vector

R between 0 and 1 by dividing by the most responsive

mechanism. (Note that R = 0 in the absence of adapta-

tion). We set a = 360 by eye (for all mechanisms) to give

an adaptation effect consistent with our empirical results.

(Note that a is the only free parameter in the model.)

Model estimates of stimulus size were then recalculated

using the adapted values of Zj. We define the adaptation

aftereffect as the ratio of perceived sizes with and without

adaptation, expressed as percentage change (see Fig. 5

(D)). We found that key model behaviours derived from

the model architecture and were not critically dependent

on precise parameter values. We also anticipate that a

more elaborate two-dimensional version of the model with

traditional bandpass front-end filters would behave simi-

larly for the experiments here.

APPENDIX B. SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.neuroscience.2023.01.025.
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