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Theoretical models of the evolution of parasites and their hosts have shaped

our understanding of infectious disease dynamics for over 40 years. Many

theoreticalmodels assume that the underlying ecological dynamics are at equi-

librium or constant, yet we know that in a great many systems there are

fluctuations in the ecological dynamics owing to a variety of intrinsic or extrin-

sic factors. Here, we discuss the challenges presented when modelling

evolution in systems with fluctuating ecological dynamics and summarize

the main approaches that have been developed to study host–parasite evol-

ution in such systems. We provide an in-depth guide to one of the methods

by applying it to two worked examples of host evolution that have not pre-

viously been studied in the literature: when cycles occur owing to seasonal

forcing in competition, and when the presence of a free-living parasite

causes cycles, with accompanying interactive Python code provided. We

review the findings of studies that have explored host–parasite evolution

when ecological dynamics fluctuate, and point to areas of future research.

Throughout we stress the importance of feedbacks between the ecological

and evolutionary dynamics in driving the outcomes of infectious disease

systems.

This article is part of the theme issue ‘Infectious disease ecology and

evolution in a changing world’.

1. Introduction
There is now a vast literature of theory on the evolution of hosts and their para-

sites [1,2]. A wide range of questions about the evolutionary dynamics of host–

parasite relationships have been explored, including the nature and role of

infection genetics [3–10], the distinction between host tolerance and resistance

[11–16], the impacts of spatial structure [17–24], the effect of predation

[25–29], the impacts of co-infection and superinfection [30–35] and more

besides. The study of fluctuating dynamics in the host–parasite literature has

primarily focused on either epidemiological cycles [36–38] or fluctuating selec-

tion in the context of host–parasite coevolution (e.g. so-called ‘Red Queen

dynamics’ induced by negative frequency-dependent selection; [39]). However,

few studies have considered how fluctuating ecological dynamics affect host or

parasite evolution. Yet the ecological world is not constant. Whether owing to

extrinsic factors such as seasonality or intrinsic factors such as time lags, eco-

logical dynamics may fluctuate over time [40]. In particular, variation in

population sizes is likely to affect contact rates between hosts and parasites,

and hence the strength of selection for traits such as resistance and virulence

[41]. It is, therefore, important to understand how fluctuating population

sizes impact selection on host and parasite traits.

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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Many theoretical models assume that host and parasite

population sizes are constant or infinite or that the population

dynamics are uncoupled from evolutionary dynamics (see

[41]), in which case fluctuating population dynamics either

are prohibited by model design or are assumed to have no

impact on selection. ‘Eco-evolutionary’ models, on the other

hand, incorporate population dynamics from the outset and

therefore naturally capture feedbacks between ecological and

evolutionary processes, which may or may not feature fluctu-

ations in population sizes. Population dynamics can play a

major role in host and parasite evolution, with several recent

studies showing how feedbacks between ecological and evol-

utionary processes cause qualitative shifts in evolutionary

outcomes [41–44]. However, the effects of fluctuating popu-

lation dynamics on evolution are rarely studied in these

systems. In particular, while models of host–parasite coevolu-

tion often exhibit fluctuating ecological dynamics, most

studies instead focus on fluctuations in allele frequencies or

in trait values.

To capture the effects of eco-evolutionary feedbacks, which

invariably complicate matters, theoreticians often use tech-

niques such as evolutionary invasion analysis, also known as

‘adaptive dynamics’ [45–48], which make simplifying assump-

tions about the underlying genetics (i.e. quantitative traits) and

mutational process (i.e. mutations are rare with small pheno-

typic effects) to facilitate model analysis (this is of course just

one modelling approach and alternative frameworks can also

be used). In practice, the adaptive dynamics approach requires

a separation of timescales between ecological and evolutionary

dynamics, while still maintaining critical feedbacks between

these processes, which means that we only need to consider

the invasion fitness of a rare mutant in a resident population

at its ‘dynamic attractor’. In other words, one assumes that

the ecological dynamics of the resident population settle into

their long-term pattern of behaviour before a new mutant

arises. In most studies, the resident population tends to a

stable equilibrium, which conveniently makes the invasion

analysis relatively straightforward (see below). While non-

equilibrium population dynamics in host–parasite systems are

rarer, they can be generated by diverse factors, including free-

living parasite stages [36], parasitic castration [17], seasonality

[49], time lags [50] and stochasticity [51]. The techniques for

analysing models with non-equilibrium population dynamics

are more complicated, and therefore few host–parasite models

in the literature consider scenarios that lead to non-equilibrium

population dynamics [52–60].

Here, we focus on ‘deterministic fluctuations’, or more

mathematically speaking, limit cycles, in ecological dynamics

induced by extrinsic or intrinsic factors. Some of the

approaches we discuss would be equally applicable to chao-

tic and/or discrete fluctuations, but more likely these may

require alternative methods [61,62]. We begin by outlining

why modelling evolution with fluctuating population

dynamics is challenging, and then discuss possible modelling

approaches to overcome these challenges. We then examine

two previously unstudied worked examples of how we

could model host evolution in fluctuating environments.

Our two novel applications are (i) when fluctuations occur

owing to seasonally varying resources (as opposed to season-

ally varying births used in previous models [54,55]) and

(ii) when fluctuations occur intrinsically owing to free-

living parasite stages rather than to external forcing. We

then summarize the existing literature on host–parasite

evolution with fluctuating population dynamics, and finish

by discussing possible future directions for research in this

area.

2. Why is it challenging to model evolution with
fluctuating ecological dynamics?

To answer this question let us consider a relatively simple

model of host defence evolution. The dynamics of resident sus-

ceptible (S) and infected (I) hosts are given by the following

ordinary differential equations (ODEs),

dS

dt
¼ ða� qðSþ IÞÞS� bS� bSI þ gI ð2:1Þ

and

dI

dt
¼ bSI � ðbþ aþ gÞI: ð2:2Þ

Susceptible hosts reproduce at rate a, with a reduction

owing to crowding by q. All hosts die at natural mortality

rate b, while infected hosts have additional mortality caused

by parasite virulence at rate α. Infection is a density-dependent

process with parameter β and infected hosts can recover to

being susceptible again at rate γ. In this system, provided the

parasite’s basic reproductive ratio, R0 = βSdfe/(b + α + γ) > 1,

where Sdfe is the disease-free equilibrium, the resident popu-

lation reaches an equilibrium—a key point to remember—

with the equilibrium densities given by

S� ¼
bþ aþ g

b
, I� ¼

ða� qS� � bÞS�

ðqþ bÞS� þ g
:

We will apply the framework of adaptive dynamics to

model evolution [45–48]. We assume a rare mutant host

arises which has a small difference in the transmission rate,

with lower β meaning a better defended host (owing to

decreased susceptibility to infection). We will also assume

that there is a cost to defence through a lowered reproduction

rate, such that a = a(β). Given that the mutant is rare we can

assume mutant–mutant interactions do not impact its

dynamics at early time points. Let us initially take the simpli-

fying assumption that there is no recovery, i.e. γ = 0. This

means the mutant’s initial dynamics can be given by

dSm
dt

¼ ðaðbmÞ � qðS� þ I�ÞÞSm � bSm � bmSmI
�: ð2:3Þ

In this simple example where we assumed γ = 0, infected

hosts make no direct contribution to fitness, and the invasion

fitness is simply the exponential growth rate of mutant sus-

ceptible hosts, that is,

sðbm, bÞ ¼ aðbmÞ � qðS� þ I�Þ � b� bmI
�: ð2:4Þ

Since all parameter values here are constants, S* and I* are

equilibria, and a(β) is some specific function, this yields a

simple numeric value for any value βm, and thus the fitness

of an invading mutant can be easily determined. If s(βm,

β) > s(β, β), then the mutant can invade.

In the case where γ > 0 the mutant host fitness is no longer

simply the exponential growth rate of susceptible hosts since

infected hosts are directly contributing to fitness. In this case,

the fitness would be given by the dominant eigenvalue

of the mutant’s part of the system at the resident–mutant

royalsocietypublishing.org/journal/rstb
Phil.

Trans.
R.
Soc.

B
378:

20220006

2

 D
o

w
n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

3
 F

eb
ru

ar
y
 2

0
2
3
 



equilibrium. In practice this fitness can be found through a

number of methods, including direct determination of the

eigenvalues, the next-generation matrix [63] or a sign-equiv-

alent proxy by finding the determinant of the mutant’s part

of the system [64]. For example, by the next-generation

method the fitness in our model when γ > 0 would be,

sðbm, bÞ¼
aðbmÞ�qðS� þ I�Þ

bþ bmI
�

þ
gbI�

ðbþ bmI
�Þðaþ bþgÞ

�1: ð2:5Þ

While more complicated than the case where there is no

recovery (γ = 0), all values in this expression—including the

densities S* and I* are still constants, yielding a simple

numeric value and a straightforward criterion for invasion:

s(βm, β) > s(β, β). Given that a strain invading itself will have

0 fitness, this equates to s(βm, β) > 0.

Let us now assume that instead of an equilibrium, the

resident ecological dynamics reach a stable cycle. This may

be due to intrinsic cycles in the system or due to extrinsic

‘seasonal forcing’ of parameters. For example, let us

take our model above but where we assume the birth rate

fluctuates over the course of a year, with

aðb, tÞ ¼ a0ðbÞ � ð1þ d sinð2ptÞÞ,

where a0 is the average birth rate (and is still involved in a

trade-off with β), δ∈ [0, 1] is the amplitude of the oscillations

and the term 2πt ensures a period of 1 year. Now the resident

populations are no longer at equilibrium, but will vary

depending on the time point. This means we can no longer

substitute a single value into our expressions for invasion fit-

ness above. In the previous scenario, the timing of a mutation

did not matter as the resident population was assumed to

be at equilibrium. But if the resident population densities

fluctuate, then the invasion fitness will also fluctuate, and

so a mutant may be more fit than the resident at certain

time points, and less fit at others. This point is demonstrated

in figure 1, where the early time dynamics of the mutant den-

sities are plotted, in the first case for an ultimately successful

mutant and in the second for one that fails to invade. In both

cases, however, we see that the mutant density may be higher

or lower than its starting value (meaning a point estimate of

the density is unreliable as a fitness measure) and moreover

the densities may be increasing or decreasing depending on

when the densities are examined (meaning a point estimate

of the gradient is also unreliable as a fitness measure).

How, then, can we handle situations where the population

densities are time-dependent, and hence the timing of a

mutation matters? A number of methods have been used,

which we summarize below.

(a) Running numerical simulations
A relatively simple approach is to run numerical simulations

of the evolutionary process. A multi-strain system is estab-

lished with initially only one strain present. The dynamics

are then run using numerical ODE solvers for some fixed

time. At this point any strains below some threshold density

are taken as extinct, and a mutant strain is chosen to be adja-

cent to the current dominant resident. This routine is then

repeated multiple times, and by recording all strains present

at each mutation step the evolutionary trajectory can be visu-

alized. This approach is used in a number of studies of

standard models as a visual confirmation of the analytic

results (for example [64,65]). Alternatively, a stochastic simu-

lation algorithm could be used where numerical ODE solvers

are not required and the mutation rate is a parameter of the

model. Such simulation approaches are relatively simple

since there is no need to derive any expressions for fitness.

Of course, this itself comes at a cost to understanding of

the outcomes. Moreover, such simulations may take some

time to reach an evolutionary attractor, as the nature of the

cycles may mean that what should be a dominant strain

happens to have a low density at the mutation step and is

thus made extinct.

(b) Deriving the fitness algebraically
The formal groundwork for considering evolution in variable

environments was laid by Metz et al. [62], who noted that the

fitness of a mutant in a variable environment is given by its

dominant Lyapunov exponent. For a system where the attrac-

tor of the population dynamics is an equilibrium, this is

simply the largest eigenvalue. However, for a system with

regular cycles, as we have discussed, this is more complex.

If the population is unstructured, and so the mutant

dynamics are given by a single ODE, we can still calculate

the fitness as being the average growth rate of a rare mutant

over one cycle period. That is, we write dXm/dt = r(t)Xm, and

find the expression for r(t). For our example system, if there

were no recovery and the cycles run from time P0 to P1 with

period T, we could, therefore, write

r ¼
1

T

ðP1

P0

rðtÞdt

¼
1

T

ðP1

P0

ðaðbm, tÞ � qðS�ðtÞ þ I�ðtÞÞ � bmI
�ðtÞÞdt� b: ð2:6Þ

In some cases, we can obtain algebraic expressions for all

of the time-dependent variables and parameters, allowing us

to continue with a full evolutionary analysis much as we
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Figure 1. Example early time mutant trajectories, with envelopes created by the Floquet multipliers plotted as dashed lines. Example dynamics of mutant sus-

ceptible densities from the first example model, equations (3.1)–(3.3).
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would have in an equilibrium system. Often, however, the

integral of the variables cannot be simply expressed, and

we would need to numerically calculate those values for a

given parameter set. Studies taking this approach in host–

parasite systems include Donnelly et al. [53] and Hite &

Cressler [57].

(c) Deriving the fitness numerically
Generally, host–parasite systems are structured, however, and

the mutant’s growth rate is not a simple linearized

expression. In these cases, we can instead use a numerical

routine to calculate the Lyapunov exponents, which for fluc-

tuating systems are generally referred to as ‘Floquet

exponents’. In vector notation, if X(t) = (Sm(t), Im(t)) and the

period of the cycles is T, then the early time dynamics can

be given by

Xðtþ TÞ ¼ PðtÞ emiT :

Since P(t) is a periodic function, whether the population

grows or shrinks ultimately depends on the values of μi,

which are the Floquet exponents. We can think of the term

emiT (the Floquet multiplier) as creating an envelope from

which the dynamics cannot escape. Therefore, if μi < 0 for all

i, the envelope shrinks asymptotically towards zero and so

must the mutant densities. By contrast, if μi > 0 for any i then

the envelope grows and the density will grow asymptotically.

Examples of this can be seen in figure 1, with the Floquet mul-

tipliers shown as the dashed lines creating the envelopes that

indicate the overall trajectory (after some initial transitory be-

haviour), even though there are short time periods where the

densities are in the opposite direction—causing the problems

with simulation approaches outlined above.

This leaves the question of how we go about finding the

values of μ. As we show below using two worked examples,

we write our system as

Xðtþ TÞ ¼ XðtÞC,

calculating the values of the matrix C through a numerical

routine. The eigenvalues of this matrix are ri ¼ emiT , and we

can, therefore, calculate the values of μi. This approach has

been applied to a different ecological model by Klausmeier

[66] and to host–parasite systems by Ferris & Best [54,55]

and Ferris et al. [56].

(d) Deriving an approximate selection gradient
In recent work, Lion & Gandon [59] built on methods from

constant environments where contributions to fitness are cal-

culated as a product of a mutant’s quantity and its quality

[67,68]. In a fluctuating environment, this selection gradient

is again averaged over one period of a cycle, similarly to cal-

culating the Floquet exponent directly as above. Using this

method, while the resulting expression is only approxi-

mate—in particular requiring evolutionary and convergence

stability to be numerically checked separately—we can gain

a biologically meaningful expression for the fitness even in

a structured population.

3. Two worked examples
Here, we will demonstrate the method developed by Ferris &

Best [54] with two worked examples that have not previously

been examined in the literature. In both cases we will consider

the evolution of host avoidance of parasitism (i.e. lowered

transmission rates) at a cost to reproduction. The underlying

epidemiological model is as given above. Python code to

accompany both examples is available as a fully functional,

interactive Jupyter Notebook (https://mybinder.org/v2/gh/

abestshef/fluctuating/HEAD?labpath=evo_flux.ipynb) and

can also be downloaded from GitHub (https://github.com/

abestshef/fluctuating).

(a) Example 1. Seasonally varying resources
In our first case, we assume the amount of resources available

to hosts varies seasonally over the course of a year. This is

incorporated into the model by making the competition term,

q, a sinusoidal function of time, completing one cycle each

year. Our epidemiological model could then be updated to

dS

dt
¼ ða� qðtÞðSþ IÞÞS� bS� bSI þ gI ð3:1Þ

and

dI

dt
¼ bSI � ðbþ aþ gÞI ð3:2Þ

with q(t) = q0(1 + δsin(2πt)). The amplitude of the variation, i.e.

the ‘size’ of the effect is given by δ∈ [0, 1].

Considering the growth of a rare mutant host type, and

using the ’next generation’ approach as outlined above, the

fitness of the mutant can be given by

sðbm, bÞ ¼
aðbmÞ � qðtÞðS�ðtÞ þ I�ðtÞÞ

bþ bmI
�ðtÞ

þ
gbI�ðtÞ

ðbþ bmI
�ðtÞÞðaþ bþ gÞ

� 1, ð3:3Þ

where S*(t), I*(t) represent the stable limit cycles of the resi-

dent populations. Given the period of our varying function

is 1 year we may well expect the dynamics to vary yearly

as well. However, it is well known that such systems can

give rise to period-doubling bifurcations, leading to multi-

annual cycles (and even chaotic dynamics), so the period

should be checked. We find in this model only annual

cycles occur for the parameter ranges presented.

How can we gain a measure of host fitness in this case

given that the population densities are never at equilibrium?

Thankfully we have centuries of mathematical theory to rely

on, principally that known as Floquet theory. The method

developed by Ferris & Best [54] takes advantage of these clas-

sic results. In particular we can find the Floquet exponent

as follows:

1. Run the resident dynamics using a numerical solver for

ODEs for such time that they have reached their dynamic

attractor, i.e. their annual limit cycle in this case.

(a) A useful trick to speed up this step when looping

through parameter values is to set the initial condition

as the final value of the previous run.

(b) Seasonal models are often ‘stiff’, where the dynamics

follow two very different timescales. In these cases, stan-

dard numerical ODE solvers tend to perform poorly.

A solution is to use a numerical solver built for such

stiff systems (for example in the accompanying

Python code we use the optional argument,

method=‘Randau’).
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2. Run two numerical simulations of the resident–mutant

dynamics—with an assumption of rare mutants—for

just a single cycle period (or multiple periods if it is

known that period-doubling may occur). The two runs

should have initial conditions for the residents given by

the last values found in step 1; for the mutants the two

runs should have ‘linearly independent’ initial con-

ditions, and we can simply take [0,1] and [1,0] for ease.

3. Form the square matrix C that consists of the values of

the mutant Sm and Im densities at the end of the runs

in step 2.

4. Calculate the largest eigenvalue of C, and take its natural

logarithm to find the value of the Floquet exponent, and

hence the fitness.

This approach allows us to compute pairwise invasion

plots (PIPs), and/or further numerical routines to find the

local fitness gradient, and therefore find the location and

nature of singular strategies.

Figure 2 shows the resident dynamics for a fixed par-

ameter set and two example PIPs. PIPs are a commonly

used plot in adaptive dynamics, with the colours denoting

whether a mutant–resident pair results in the mutant invad-

ing (black) or not (grey) [46]. Through small evolutionary

steps the population will evolve up or down the main diag-

onal, as shown by the arrows, until a singular point is

reached where there is a crossing point. In this first case,

the dashed vertical line through the singular point lies

entirely in a region of negative fitness, meaning that strategy

cannot be invaded. As it is both attracting (convergence

stable) and uninvadable (evolutionarily stable) we call this

a continuously stable strategy (CSS). In the second PIP, we

identify the potential for evolutionary branching, where the

population is attracted to the singular point (convergence

stable), but once there any other mutant can invade (evolutio-

narily unstable). This means the population will undergo

disruptive selection and branch into two coexisting resident

types [46]. While this is a known result for host resistance

evolution in standard models, especially when trade-offs

are weakly decelerating [69], it is notable that it remains in

a system with fluctuating densities.

In figure 3, we focus on how optimal investment in avoid-

ance at a CSS varies with model parameters. First we directly

assess the impact of seasonality by varying the amplitude of

the oscillations. In figure 3a, we clearly see the effect of introdu-

cing fluctuations, as the location of the CSS varies substantially

when there are large-amplitude seasonal oscillations compared

with when the amplitude is 0 (i.e. no seasonality). Moreover,

we see that the direction in which the CSS changes depends

on the level of competition, with high amplitudes leading to

higher transmission (lower resistance) when baseline compe-

tition is low, but lower transmission (higher resistance) if

baseline competition is high. Why does this result arise? The

answer can be found by exploring the population dynamics

as both competition and amplitude vary, and considering

how these might affect selection. If baseline competition is
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low (e.g. q0 = 0.1), infected densities are higher than if compe-

tition is high (e.g. q0 = 0.5). Increasing the amplitude of

oscillations increases both the average and maximum infected

densities over a cycle. For low competition, this leads to extre-

mely high infected densities at large amplitudes, meaning

infection becomes almost inevitable for a host, limiting the

benefit of evolving costly resistance. As such, the CSS shifts

to higher transmission and births (since infected hosts recover,

infected hostsmay yet be able to contribute to reproduction at a

later point). By contrast, for high competition, even at high

amplitudes the average and maximum infected densities are

not too large (in fact now the susceptible densities become

much larger). In this case, the relatively small increase in infec-

tionwith increasing amplitude is worthmitigating by evolving

lowered transmission, and the high susceptible densities mean

the effect on overall reproduction is not too large.

In figure 3b, we do not directly examine the effect of

oscillations per se, but instead examine whether a well-

known result from non-fluctuating models—that resistance is

maximized at lowest virulence when there is no recovery, but at

intermediate virulence when there is—is maintained when oscil-

lations are introduced. We see that increased virulence selects for

higher transmission (lower resistance)when there is little recovery,

but that higher recovery rates lead to a ‘U-shaped’ investment

with virulence, in accordance with non-seasonal models [70,71].

This is because if hosts can return tobeing susceptible—and there-

fore to reproduce—selection to avoid infection is weakened.

(b) Example 2. Free-living parasite stages
In our second case, we do not extrinsically ‘force’ fluctuations

on the system, but instead note that in certain model formu-

lations limit cycles intrinsically arise as an outcome. In host–

parasite systems, a well-known example of this is when there

are free-living parasite stages that drive transmission. Such a

population could be modelled as follows:

dS

dt
¼ ða� qðSþ IÞÞS� bS� bSPþ gI, ð3:4Þ

dI

dt
¼ bSP� ðbþ aþ gÞI ð3:5Þ

and
dP

dt
¼ uI � dP: ð3:6Þ

Now infection is not through direct contact of susceptible

and infected individuals but through susceptible hosts picking

up free-livingparasite stages. Therearemanyways thedynamics

of the free-living stages can be modelled; here we assume that

stages are shed at a constant rate, θ, by infected hosts, that

these stages decay at rate δ and that loss of these stages due to

infection is negligible. The dynamics of this system can be both

equilibria and cycles depending on the parameter values.

It is common for the dynamics of this system to be suffi-

ciently stiff that even the specialist numerical ODE solvers

struggle to run for long time periods. In this case, we rec-

ommend log-transforming the model. This involves taking

new variables, X = ln(S), Y = ln(I ) and Z = ln(P). This leads

to a transformed model given by

dX

dt
¼ a� qð eX þ eYÞ � b� b eZ þ g eY�X ð3:7Þ

dY

dt
¼ b eXþZ�Y � ðbþ aþ gÞ ð3:8Þ

and
dZ

dt
¼ u eY�Z � d: ð3:9Þ

A simple reverse transformation of, e.g. I = eY can then be

used to plot or record the densities as in figure 4a.

The fitness of a mutant host in this system looks relatively

similar to above,

sðbm, bÞ ¼
a� qðS�ðtÞ þ I�ðtÞÞ

bþ bmP
�ðtÞ

þ
gbP�ðtÞ

ðbþ bmP
�ðtÞÞðaþ bþ gÞ

� 1: ð3:10Þ

While it is not explicit that there are fluctuations present,

it is known that for a wide range of parameter space the

attractor of the resident dynamics, and hence the densities

S*(t), I*(t) and P*(t) are limit cycles. We, therefore, must

again explore how to attain fitness in this case.

The method is in fact identical to that above, but with one

added complication. Previously we could assume that the

period of the fluctuations was the same as the forcing

period (taken to be 1 above), or perhaps some simple multiple

of it in case of period-doublings. In the case where there are

intrinsic limit cycles it is unlikely to even be an integer

value. While in simple models we can calculate the period

explicitly from details of the model, in general we must add

a stage between steps 1 and 2 above to calculate the period

numerically. This can be done by finding peaks at later time

points in the resident dynamics and calculating the time

between them. Most programming languages have such a

built-in function—in our accompanying Python code we use

the ‘find_peaks’ function in the SciPy library. We can then

continue as we did above. Figure 4 shows the resident

resident dynamics
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Figure 4. Resident dynamics and pairwise invasion plot (PIP) for the system with a free-living parasite (equations (3.7)–(3.9)). Note that since this model has

intrinsic cycles (as opposed to the externally forced model in figure 3), there is no comparison to be made between cycling and non-cycling versions of the model.

In (a), a = 10 and β = 0.1. In (b), we take a trade-off given by a ¼ 10� ðt21=t2Þð1� expððb� 0:1Þt2=t1ÞÞ, with τ1 = 75 and τ2 =−400. Default

parameter values: b = 1, α = 1, γ = 0.1, q0 = 0.1, μ = 0.1, θ = 5. (Online version in colour.)
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dynamics, with the peaks identified by the find_peaks

function picked out with ‘X’ marks. For the example used

here we find that now the period of the dynamics is 10.13

time-units (to two decimal places). Moreover the PIP demon-

strates that the method continues to work with the numerical

estimate of the period.

In figure 5, we highlight how the CSS investment changes

as model parameters are varied. In this case, we show these

CSS points against a colourmap of the period of the underlying

cycles that are present. In both cases, it is notable that the trend

of the CSS is different depending on whether the underlying

population dynamics are cycles (lighter colours) or equilibria

(dark-blue). For low levels of competition the dynamics are

cycles, and the CSS transmission rate rapidly drops as compe-

tition increases, but once it moves to a region of equilibria the

CSS transmission gradually increases. This effect is mirrored

by varying the rate of parasite production; for low production

levels the dynamics are equilibria and there is a slight down-

ward trend, but as production increases cycles emerge and

the CSS transmission increases. Why dowe see these patterns?

Focusing on competition, in the equilibrium region, increasing

competition leads to higher transmission (lower resistance).

Similarly to the high competition case in figure 3a, selection

to avoid infection is greatest at low competition when the

infected and parasite densities are highest, because the force

of infection is never too high. However, when cycles emerge,

the infected and parasite densities increase dramatically,

especially at their maximum value on a cycle. This means

that hosts are now facing extremely high probability of infec-

tion, and there becomes limited benefit to evolving costly

resistance. These plots highlight how the existence of popu-

lation cycles creates a fundamental, qualitative change to the

evolutionary dynamics, highlighting that there is a two-way

feedback between ecology and evolution.

4. What have existing theoretical models told
us?

To our knowledge, the first theoretical study to consider the

evolutionary impact of ecological oscillations in a host–para-

site system was Koelle et al. [58]. They included a seasonal

driver causing annual fluctuations in transmission, but

assuming a constant population size. The parasite was

assumed to have a trade-off between sensitivity to this cli-

mate driver and maximum transmission. Primarily using

numerical simulations, they found that increased climate

variability would lead to parasites evolving reduced

sensitivity to those fluctuations.

Following this a number of studies have examined para-

site evolution with fluctuating ecological dynamics. Sorrell

et al. [60] included a seasonally forced reproduction rate in

a study of covert parasitism with superinfection, where cov-

ertly infected hosts do not transmit horizontally (but can

transmit vertically) but can become overt at a later stage.

They found that when the amplitude of seasonality is small

there is no selection for covert infections, but once a threshold

is passed a degree of covert infection will be selected for. This

is because covertly infected hosts survive longer than those

overtly infected (as they do not suffer from virulence), creat-

ing a reservoir of infection that better copes with the drops in

population densities during a cycle. Donnelly et al. [53]

explored a more classic transmission–virulence trade-off

with seasonally forced host reproduction. Under standard

assumptions the parasite fitness could be found analytically

(since the average host density over one period is constant),

and they found that parasite fitness was in fact unaffected

by the amplitude or period of the seasonal forcing. However,

if virulence is density-dependent then parasite fitness

depends on the average total population density, which is

not constant over a period. Numerically calculating the aver-

age densities and substituting into the fitness, they found

parasites were selected to evolve higher virulence and infec-

tivity at higher amplitudes of seasonality as increased

amplitude with density-dependent virulence leads to lower

susceptible densities, requiring greater exploitation by the

parasite to survive. Hite & Cressler [57] also examined a clas-

sic transmisison–virulence trade-off, but where host growth

depends directly on resources, with fluctuations emerging

intrinsically. They found that in regions where fluctuations

occurred, there can be evolutionary bistability such that the

parasite is driven to either extremely high or extremely low

levels of virulence, but that when the high-virulence type

occurred it partially stabilized the cyclic dynamics.

Recently, Lion & Gandon [59] applied their approach (see

§2) to three case studies of parasite evolution. They found

(i) unlike in constant environments, longer-lived parasites

can become more virulent in fluctuating environments, (ii)

pathogens can evolve a preference for hosts more damaged

by infection, in opposition to standard results in constant

environments, and (iii) fluctuations reduce selection for

more virulent parasites in the presence of imperfect vaccines.

Studies have also examined the evolution of host defences

in variable environments. Best et al. [52] examined the
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evolution of immune priming, for which the underlying popu-

lation dynamics can exhibit intrinsic limit cycles in the absence

of seasonal forcing. Using a numerical approach (somewhat

more ad hoc than the method discussed above) they showed

how hosts may evolve from equilibrium dynamics to a CSS

in a region of limit cycles, particularly when host lifespan

and sterility of infected are high. Studies including seasonal

reproduction in classic host defence evolution models were

then developed, through first avoidance (lowered trans-

mission; [54]) and then tolerance (lowered mortality; [55]). In

these studies, the formal numerical routine described above

was developed. These studies showed that increased ampli-

tude selects for lower avoidance but higher tolerance owing

to the change in infected densities as amplitude increases,

and how evolution towards a CSS may cause hosts to evolve

through different underlying population dynamic regimes,

for example from period-1 to period-2 cycles. Most recently,

Ferris et al. [56] developed the first coevolutionary invasion

analysis of a host–parasite model with fluctuating ecological

dynamics, finding that when growth rates are parameterized

by experimental data, both host defence and parasite virulence

evolve to the highest levels at intermediate amplitudes of fluc-

tuations owing to non-monotonic changes in host birth rate

under the experimental conditions.

While our focus is on evolution in host–parasite systems,

models of evolution with fluctuating ecological dynamics

have been studied in other ecological scenarios. Notably

these include models of preadator–prey systems [72–74]

and discrete-time models of intraspecific competition [61,75].

5. Key trends and future questions
While there are relatively few studies in this area, there

appear clear trends in results from models with fluctuating

ecological dynamics. The first and most fundamental is that

fluctuating ecological dynamics often significantly alter evol-

utionary outcomes. In host–parasite systems it has been

shown that increased amplitude of seasonal forcing can

lead to higher virulence in parasites [53] and lower avoidance

in hosts [54], suggesting environments with greater fluctu-

ations may be expected to lead to more prevalent, severe

infections, though a full coevolutionary model would be

required to confirm this.

These models also highlight the two-way feedbacks

between ecological and evolutionary dynamics. For example,

in their model of host defence, Ferris & Best [54] showed that

increasing the amplitude of seasonal birth rate increases the

infected density such that, when there are sufficient rates of

recovery, hosts will be selected to lower their defence (as

seen in our first model here). The combination of these effects

can move the system from a region of period-1 cycles to a

region of period-2 cycles, fundamentally altering the ecologi-

cal environment of the host and parasite. Similarly, we have

shown in this study how evolution can lead the system

across the boundary between ecological equilibria and

cycles. For parasite evolution, Sorrell et al. [60] showed that

when environmental oscillations are small there could be

no selection for covert parasite infections, but increasing

the amplitude allowed covert infections to emerge, again

substantially changing the ecological background.

There remain a raft of open questions to be considered

using these methods. As already mentioned, one important

direction is to explore coevolutionary dynamics in a fluctuating

ecological environment. Previous coevolutionary models have

highlighted how coevolutionary cycles can emerge without

being driven by ecological cycles [42], yet the impact of ecologi-

cal cycles on coevolutionary cycles has received relatively little

attention [43,44]. In models of sexual versus asexual reproduc-

tion, coevolutionary cycles are often (but not always, e.g. [76]),

crucial for the evolutionary maintenance of sex by parasitism.

Hence, understanding how ecological cycles impact on coevo-

lutionary cycles may shed new light on the Red Queen

hypothesis for sex, which has been studied in depth for over

40 years [39,77]. Similarly, while examples of evolutionary

branching when ecological dynamics are cycling have been

found ([54], and herein), including one of the few examples

of branching in host tolerance [55], it is not yet known whether

ecological cycles increase or decrease diversification in general.

Furthermore, it is unknown whether evolution differs when

fluctuations are due to external forcing ([53–56,58–60], and

our first model) or due to intrinsic factors ([52,57], and our

second model). In particular, when cycles occur intrinsically

we can compare the period and amplitude of the cycles with

and without evolution to assess whether evolution is amplify-

ing or suppressing ecological cycles.

While the basic tools discussed herein can be applied fairly

broadly, an important methodological development will be to

apply similar techniques tomodelswith chaotic cycles, ormore

generally cycles without a fixed period.While numerical simu-

lations of such systems could readily be carried out, any of the

more formal techniques—including the one covered in detail in

this study—require calculation of the eigenvalues, which cur-

rently requires integrating over a known time period of a

cycle. While we can calculate the Lyapunov exponent for a

chaotic system, placing this in the context of resident–invader

dynamics is more challenging [61,62,78].

Exploring how the feedbacks between ecology and evol-

ution impact host–parasite interactions remains a key

direction for theoretical research. The work summarized in

our study stresses this importance even further, showing

that fluctuations in the ecological dynamics can alter selection

on hosts and parasites, and that in turn the evolutionary tra-

jectory can move the ecological dynamics of host–parasite

systems into different qualitative as well as quantitative

regimes. Much work in this area remains to be conducted,

and this will give us much greater insight into a wide

range of real biological systems.
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