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ABSTRACT

RNase E is an endoribonuclease found in many bac-
teria, including important human pathogens. Within
Escherichia coli, it has been shown to have a ma-
jor role in both the maturation of all classes of RNA
involved in translation and the initiation of mRNA
degradation. Thus, knowledge of the major deter-
minants of RNase E cleavage is central to our un-
derstanding and manipulation of bacterial gene ex-
pression. We show here that the binding of RNase
E to structured RNA elements is crucial for the pro-
cessing of tRNA, can activate catalysis and may be
important in mRNA degradation. The recognition of
structured elements by RNase E is mediated by a re-
cently discovered groove that is distant from the do-
mains associated with catalysis. The functioning of
this groove is shown here to be essential for E. coli
cell viability and may represent a key point of evo-
lutionary divergence from the paralogous RNase G
family, which we show lack amino acid residues con-
served within the RNA-binding groove of members of
the RNase E family. Overall, this work provides new
insights into the recognition and cleavage of RNA by
RNase E and provides further understanding of the
basis of RNase E essentiality in E. coli.

INTRODUCTION

The translation machinery is amongst the most abundant
cellular components in all domains of life (1–3). In rapidly
growing Escherichia coli ∼250 000–400 000 tRNAs deliver
charged amino acids to 30 000–60 000 ribosomes in the
translation of a dynamic pool of mRNA transcripts that at
any moment number 1500–3000 (4,5). Under conditions of
rapid growth, despite the RNA components of the trans-
lational machinery being relatively stable (6), the need to

populate both daughter cells at each division dictates that
the production of RNA components of the translation ma-
chinery is one of the major activities associated with cell
growth. In E. coli, the tRNA genes are transcribed as either
polycistronic or monocistronic transcripts, which undergo
extensive processing on both the 5′ and 3′ side of the tRNAs
to generate the mature forms that can be aminoacylated (7).

RNase E, an endoribonuclease that is found in many bac-
teria including important pathogens of humans and in some
plant plastids (8), plays an important, if not essential, role
in E. coli tRNA processing by separating the individual pre-
tRNAs from polycistronic transcripts (9–12). Sites at which
RNase E cleaves tRNA precursor have been mapped in vivo
(10,11), many with nucleotide resolution (10,13), and prepa-
rations of RNase E have been shown to be capable of cleav-
ing at such sites in vitro (13,14). This, along with tRNAs be-
ing structurally stable and well defined (15,16), makes these
precursors suitable substrates for dissecting the molecular
basis of the recognition and cleavage of RNA by RNase E
(see Supplementary Figure S1).

RNase E also has a major role in the turnover of
the greater part of the mRNA pool in E. coli (8,13,17).
Much of the earlier work on RNase E focused on the
ability of 5′-untranslated regions (5′-UTRs) to affect the
overall rate of decay of mRNA transcripts (18). This
led to the discovery that RNase E can interact with 5′-
monophosphorylated ends (19,20), which can be converted
from 5′-triphosphorylated ends (21) by routes that appear
to be absolutely dependent on RppH, an RNA 5′ pyrophos-
phohydrolase (22,23). Whilst it has been established that the
generation of 5′-monophosphorylated ends and their acces-
sibility to RNase E can be determinants of RNA stability
for some mRNAs, the rate of decay of many, if not most
transcripts in cells lacking RppH is unaffected (22). This
is further supported by the fact that RppH itself is non-
essential in E. coli (22,24).

It has also been shown that RNase E can cleave many
substrates rapidly independent of their 5′-phosphorylation
status (13,14,25), and sites of RNase E cleavage have
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been mapped at distance from 5′-UTRs, e.g. within the
3′-UTRs of cspA and rpsO mRNA (26,27). The removal
of Rho-independent transcription terminators greatly en-
hances degradation by 3′ to 5′ exonucleases (28). In the
absence of translation, mRNAs are increasingly suscep-
tible to RNase E cleavage internal to the protein-coding
segment (29–32). Contrary to previous thinking (32), sites
of efficient RNase E cleavage independent of access to a
5′-monophosphorylated end appear to be common rather
than special cases.

The catalytic activity of E. coli RNase E is a function of
its N-terminal half (NTH) (33), which forms a tetramer via
the dimerization of dimeric units (34,35). Each dimeric unit
contain two symmetrical active sites, each located within
a DNase I-like domain, which along with an S1 domain
can form a channel that binds single-stranded RNA. Lo-
cated adjacent to each channel is a pocket called the 5′-
sensor that can bind a 5′-monophosphorylated end (34).
The recognition of 5′-monophosphorylated ends by the 5′-
sensor can contribute to the overall stability of an interac-
tion between RNase E and a substrate (36,37). The absence
of a 5′-monophosphorylated end does not appear to present
an intrinsic barrier to RNase E cleavage provided overall
binding is supported by other interactions. In work leading
to the present study, access to adjacent but not contiguous
single-stranded regions has been shown to be a requirement
for at least some RNase E cleavages within the context of
tRNA maturation (13,14). Here we present evidence that a
recently discovered RNA-binding groove (38) distant from
the domains of RNase E associated with catalysis (34,39)
also has a critical role in the processing of tRNA, is essen-
tial for the viability of E. coli and may represent a key point
of evolutionary divergence from the paralogous RNase G
family (40,41). The wider implications of our findings be-
yond the processing of tRNA precursors are discussed.

MATERIALS AND METHODS

Synthesis of RNA transcripts

Transcripts were synthesized in vitro using T7 RNA poly-
merase and polymerase chain reaction (PCR)-generated
templates and purified, as described previously (13,14). The
concentration and integrity of RNA samples were deter-
mined using a NanoPhotometer® P-300 (Geneflow) and
polyacrylamide gel electrophoresis (PAGE), respectively.
The sequences of the primers used to generate cDNA tem-
plates are provided in Supplementary Table S1.

Site-directed mutagenesis

Site-directed mutagenesis was performed using a
QuikChange Multi Site-Directed Mutagenesis Kit
according to the manufacturer’s instructions (Ag-
ilent). Primers for mutagenesis were designed us-
ing the online QuikChange Primer Design tool
(https://www.agilent.com/store/primerDesignProgram.jsp)
and are provided in Supplementary Table S2. Transfor-
mations were performed with 2 �l of mutagenic reactions
and 50 �l of chemically competent XL10-Gold cells
(Agilent). Successful mutagenesis was confirmed by Sanger
sequencing (GeneWiz).

Purification of NTH-RNase E and discontinuous cleavage as-
says

Recombinant polypeptides corresponding to the NTH of
E. coli RNase E (residues 1–529) were purified as de-
scribed previously (34). All were tagged with oligohistidine
at their N-terminus. Polypeptides with wild-type sequence,
T170V substitution and D346N substitution have been de-
scribed previously (35). New to this study was a polypep-
tide with eight substitutions (R3Q, Q22N, H268S, Y269F,
Q270N, K433N, R488Q and R490Q) within a recently de-
scribed RNA-binding groove, referred to as the 8x mutant
herein (38). Discontinuous cleavage assays were performed
in a buffer containing 25 mM bis-Tris propane (pH 8.3),
100 mM NaCl, 15 mM MgCl2, 0.1% (v/v) Triton X-100,
1 mM dithiothreitol (DTT) and 32 U of RNaseOUT™ ri-
bonuclease inhibitor (Invitrogen). Reactions were started
by combining enzyme (in reaction buffer) with RNA sub-
strate, both of which had been pre-incubated separately at
37◦C for 20 min. Aliquots were taken at each time point and
quenched by adding to an equal volume of 2× RNA load-
ing dye: 95% (v/v) formamide, 0.025% (w/v) bromophenol
blue, 0.025% (w/v) xylene cyanol and 0.025% (w/v) sodium
dodecylsulphate (SDS). The samples were analysed by de-
naturing PAGE and stained using ethidium bromide.

Kinetic analyses

For the Michaelis–Menten analysis, reactions were per-
formed under similar conditions to those above. Final sub-
strate concentrations were: 0.5, 1, 2, 4, 6, 8 and 10 �M. The
final enzyme concentration was 40 nM. Samples were sepa-
rated and analysed by denaturing PAGE alongside a series
of dilutions of the substrate at concentrations of 0, 6.25,
12.5, 25, 50, 100 and 500 nM. Initial rates of product for-
mation were calculated from time points in the linear phase
of the reaction using the calibration curve of the serial dilu-
tions. These rates were then fitted by non-linear regression
to the Michaelis–Menten equation as shown in Equation 1:

v

[E]
= kcat [S]

KM + [S]
(1)

where v represents the initial rate, [E] represents the total
enzyme concentration, kcat represents the enzyme turnover
number, [S] represents the initial substrate concentration
and KM represents the Michaelis constant.

For the single-turnover experiment, final substrate and
enzyme concentrations were 5 nM and 200 nM, respectively.
Samples were taken at the following time points: 0, 5, 15,
30, 60 and 120 s, and separated by denaturing PAGE, as
described above. Gels were stained with SYBR®Gold Nu-
cleic Acid Stain (Thermofisher) and visualized on a Fuji-
film FLA-5000 scanner with a Y510 filter and the excitation
laser set to 478 nm.

Circular dichroism

5′-hydroxylated LU13 (5′-GAGACAGU↓AUUUG; where
the arrow corresponds to the RNase E cleavage site)
and BR15 (5′-GGGGGmAmCmAmGmUmAmUmUmUmG;
where mN corresponds to 2′-O-methylated ribonucleotides)
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were diluted to a concentration of 7.5 �M in 25 mM bis-
Tris propane (pH 8.3), 100 mM KCl, 15 mM MgCl2, 0.1%
(v/v) Triton X-100 in a final volume of 240 �l. Derivatives
of these substrates have been described previously (25,42).
The solutions were placed in a quartz cuvette with a path
length of 1 mm. The cuvettes were placed into a Jasco J-
715 spectropolarimeter and allowed to equilibrate to 37◦C
for 10 min. Two circular dichroism (CD) scans were per-
formed at 50 nm/min over a range of 220–320 nm with a 2
s response time, 1 nm pitch and 1 nm bandwidth. The slit
width was set to 1000 �m. The CD spectrum of the buffer
was taken first and was subtracted from the average spec-
trum of each oligonucleotide. Molar ellipticity was then cal-
culated using the near UV equation as shown in Equation
2:

[θ ] = θ

10cl
(2)

where [θ ] represents the molar ellipticity, θ represents the
ellipticity measured, c represents the molarity and l repre-
sents the path length of the cuvette. Data were then zero-
corrected at 320 nm. High tension values remained below
450 mV for all experiments, indicating a high signal to noise
ratio.

Binding assays

Ligand binding assays (LBAs) consisted of a 2-fold dilu-
tion series of NTH-RNase E in 25 mM bis-Tris propane (pH
8.3), 100 mM KCl, 15 mM CaCl2, 0.1% (v/v) Triton X-100,
1 mM DTT and 20% (v/v) glycerol. Each reaction (final vol-
ume of 20 �l) contained final reporter concentrations of 20
nM for transcripts for LU13 or 7.5 nM for BR15. Reac-
tions were incubated at 37◦C for 20 min before separating
in 1% (w/v) agarose gels in 1× TBE at 10 V/cm for 35 min.
LBA gels consisting of transcripts as reporters were stained
with SYBR®Gold Nucleic acid stain. Gels were visualized
on the Fujifilm scanner as described above. Band intensities
were quantified using ImageJ (43) and used to plot graphs
of bound RNA (intensity of bands corresponding to bound
species normalized against total band intensities) as a func-
tion of NTH-RNase E concentration. Kd values were cal-
culated as the concentration of RNase E when 50% of the
transcript is bound to the enzyme, as determined by plot-
ting a logistics curve using OriginPro (44).

Competition binding assays (CBAs) consisted of a 2-fold
dilution series of the competing transcript prepared in a
similar manner to LBAs. Each reaction (final volume of 20
�l) contained final concentrations of BR15 (as quadruplex)
and NTH-RNase E of 7.5 nM and 20 nM, respectively. The
concentration of competitor RNA in the dilution series can
be found in each figure legend. Assays were performed and
analysed in a similar manner to LBAs. IC50 values were cal-
culated as the concentration of competing RNA required to
cause dissociation of 50% of the BR15 from the NTH.

Cell viability assays
Competent E. coli CJ1832 cells (46) were transformed with
the plasmids shown in Table 1. Cultures were plated onto
LB agar plates supplemented with 25 �g/ml kanamycin and
1 mM isopropyyl-�-D-thiogalactopyranoside (IPTG), and

Table 1. Plasmids used in cell viability assays

Plasmid Features Source

pRNE1000 Gene encoding full-length
wild-type RNase E under the
control of a constitutive
promoter

(45)

pRNE1008 As pRNE1000 with 8×
mutations associated with the
RNA-binding groove

This study. See
Supplementary
Table S2.

pNRNE1000 As pRNE1000 with a mutation
introducing a stop codon after
the codon encoding amino acid
529

This study. See
Supplementary
Table S2.

pNRNE1008 As pNRNE1000 with 8×
mutations associated with the
RNA-binding groove

This study. See
Supplementary
Table S2.

pMPM-k1 Empty vector control (45)

incubated overnight at 37◦C. To assess colony-forming abil-
ity, three separate colonies of each strain were resuspended
in 50 �l of Luria–Bertani (LB) broth and were streaked on
LB agar plates supplemented either with kanamycin only or
with kanamycin and IPTG, followed by incubation at 37◦C
overnight.

To assess growth in liquid medium, three separate
colonies of each strain were resuspended in 500 �l of LB
broth and 2 �l of that was used to inoculate 200 �l of
LB broth supplemented with either kanamycin only or
kanamycin and IPTG. Growth was monitored in a clear
96-well microtitre plate (Greiner Bio-One) by measuring
the OD600 nm of the culture using a FLUOstar Omega plate
reader (BMG Labtech) with orbital shaking at 200 rpm be-
tween readings.

Multiple-sequence alignment

The amino acid sequences of E. coli K12 RNase E (acces-
sion number P21513-1) and RNase G (accession number
P0A9J0-1) were obtained from UniProtKB. Amino acid se-
quences of the closest RNase G homologue from Xylella
fastidiosa, Pseudomonas aeruginosa, Haemophilus influen-
zae, Pasteurella multocida, Vibrio cholera, Yersinia pestis
and Salmonella enterica were obtained by BLASTp analy-
sis using the E. coli RNase G sequence. A multiple-sequence
alignment of all RNase E/G amino acid sequences was per-
formed using Clustal Omega. Data weres visualized using
Jalview (version 2.11.2.2).

RESULTS

Cleavage of tRNA precursors by RNase E is dependent on the
presence of an adjacent tRNA unit

Previous analysis of the cleavage of tRNA precursors by
RNase E revealed multiple examples where access to a
single-stranded region on one side of a tRNA enhanced
cleavage on the other, independently of interaction with a
5′-monophosphorylated end (13,14). However, further dis-
section of three tRNA precursors revealed an additional de-
terminant of RNase E cleavage (Figure 1; see Supplemen-
tary Figure S1 for nascent substrates). Analysis of the glyV–
glyX–glyY transcript (Figure 1A) revealed that efficient
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Figure 1. Identification of additional determinants of RNase E cleavage of tRNA precursors. (A) A schematic of the substrates used for analysis of
cleavage of the glyV–glyX–glyY transcript (Supplementary Figure S1A). The tRNA units are labelled and coloured. The names of the substrates are
indicated at the right, which are coloured black if these substrates were shown to be cleaved by RNase E or grey if they were not cleaved. The numbers
that are incorporated into the names of the substrates indicate their size (nt). The sequences of oligonucleotides used to generate the templates for in vitro
transcription are provided in Supplementary Table S1. Below this schematic are the cleavage assay results. Reactions were performed as described in the
Materials and Methods using the NTH half of RNase E. Final substrate and enzyme concentrations were 180 and 20 nM, respectively. Lanes 1–5 contain
samples taken after 0, 5, 15, 30 and 60 min of initiating the reaction. Lane C contains the substrate incubated without enzyme for 60 min. Lane M contains
a RiboRuler™ low range RNA ladder (Invitrogen) with the lengths of selected fragments in nucleotides indicated at the left of each image. The lengths in
nucleotides of the substrates and cleavage products are shown at the right of the image. The descriptors S, PU and PD highlight the bands representing the
substrate, the upstream product and the downstream product of cleavage at the designated RNase E site. (B) A schematic of substrates derived from the
argX–hisR segment of the argX–hisR–leuT–proM transcript (Supplementary Figure S1B), as well as the cleavage assay results for these substrates. Labelling
and numbering are as in (A). Lanes C1 and C2 represent control reactions with substrate incubated without enzyme for 0 and 60 min, respectively. (C) A
schematic of the metT–leuW–glnU–glnW–metU–glnV–glnX transcript (Supplementary Figure S1C), as well as the cleavage assay results for these substrates.
Labelling and numbering are as in (A).
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RNase E cleavage on the 3′ side of glyY-tRNA requires,
in addition to an accessible single-stranded region on the
5′ side of glyY-tRNA (13), the upstream glyX-tRNA. The
glyV-tRNA, the first of the tricistronic operon, does not ap-
pear to contribute to cleavage on the 3′ side of glyY-tRNA,
suggesting that a tandem arrangement of tRNA may be suf-
ficient. Analysis of the first half of the tetracistronic tran-
script argX–hisR–leuT–proM revealed that efficient RNase
cleavage on the 3′ end of argX-tRNA, which lacks an up-
stream tRNA as argX-tRNA is the first tRNA, requires ac-
cess not only to the 5′ leader (14) but also to hisR-tRNA,
which is immediately downstream (Figure 1B). This result
was shown within the context of a transcript truncated on
the 3′ side of hisR-tRNA. In a manner similar to the RNase
E cleavage 3′ to glyY-tRNA, cleavage on the 3′ side of metU-
tRNA within the heptacistronic transcript metT–leuW–
glnU–glnW–metU–glnV–glnX requires not only a single-
stranded region on the 5′ side of metU-tRNA (13) but
also the upstream glnW-tRNA (Figure 1C). The above
experiments indicated that tRNAs adjacent to tRNAs
bordered by single-stranded regions that are recognized
by RNase E can be important determinants of cleavage
efficiency.

Adjacent tRNA units bind to RNase E at a site distant from
catalysis

The ability of RNase E to bind tRNA substrates was then
investigated using a D346N mutant of NTH-RNase E,
which shows a substantial reduction in catalytic activity as a
consequence of the substitution of an aspartate required for
coordination of the active-site magnesium ion (34). Thus, it
was possible to study binding in the absence of detectable
substrate cleavage. RNase E was able to bind glnW-tRNA
that lacked single-stranded regions on both the 5′ and 3′
side (Figure 2A). The Kd value of 56 nM for this interac-
tion was only 2-fold higher than the Kd value of 27 nM for
the glnW–metU fragment, which includes single-stranded
regions shown to contribute to RNase E cleavage (Figure
2B). The results suggested that tRNAs as well as flank-
ing single-stranded regions contribute to RNase E bind-
ing. Consistent with this suggestion, the Kd value of 19 nM
for metU-tRNA with flanking single-stranded regions was
lower than the Kd value of 56 nM obtained for glnW-tRNA
without flanking single-stranded regions (Figure 2B). The
smearing toward the top of the gel at the highest concentra-
tions of D346N (compare lanes 16 and C2) is caused by non-
stoichiometric amounts of contaminating RNA in NTH-
RNase E preparations (estimated to be <0.01% by mass).
The affinities of the interactions assayed above are similar
to that of RNase E with 5′-monophosphorylated LU13 (Kd
value of 56 nM, Supplementary Figure S2), a synthetic ref-
erence substrate (25,42,47,48) known to be cleaved rapidly
by wild-type RNase E via interaction with the 5′-sensor
pocket and the channel that binds single-stranded RNA (see
the Introduction). In the absence of the 5′-monophosphate
group (i.e. when only a single single-stranded region is
present), the affinity of RNase E for LU13 decreases by at
least 50-fold (Kd of >10 �M; Supplementary Figure S2).
These binding results for LU13 are consistent with previ-
ous work that showed that a 5′-monophosphate group does

not enhance the turnover number of RNase E and instead
decreases the KM (14).

To determine whether binding of glnW-tRNA to RNase
E involved regions of the protein also involved in the
recognition of single-stranded regions of RNA, we used a
competition-binding assay (CBA) with another synthetic
reference substrate BR15. This substrate presents four
single-stranded regions through the formation of a stable
G-quadruplex at the 5′ end (25), which was confirmed by
CD (Supplementary Figure S3). Prior to being used in
the CBA, it was confirmed that the interaction of BR15
and NTH-RNase E has a relatively high affinity (Kd of
7.8 nM) and is susceptible to competition by a substrate
that presents a single single-stranded region provided the
5′ end was monophosphorylated (Supplementary Figure
S4).

The glnW–metU segment and the subfragment that con-
tained metU-tRNA flanked by single-stranded regions, but
not glnW-tRNA without flanking single-stranded regions,
were able to compete effectively with BR15 for binding (Fig-
ure 3). The IC50 values for the glnW–metU segment and the
subfragment that contained metU-tRNA flanked by single-
stranded regions were similar (229 nM and 147 nM, respec-
tively), whilst the IC50 value for glnW-tRNA was at least
a magnitude higher (>2.5 �M). The higher IC50 value for
glnW-tRNA (compared with the values of the other two
substrates) could not be accounted for by the smaller dif-
ferences in Kd values (Figure 2). Considered together, the
above results suggested that RNase E binds to glnW-tRNA
using a site that does not overlap functionally with the chan-
nel that binds single-stranded regions.

Adjacent tRNA units contribute to cleavage by RNase E via
an allosteric mechanism and can be substituted by simple
stem–loops in mRNA

To explore further the contribution of glnW-tRNA, we un-
dertook a Michaelis–Menten analysis of RNase E cleav-
age of metU-tRNA flanked at both its 5′ and 3′ ends by
single-stranded regions and the larger glnW–metU frag-
ment, which also includes glnW-tRNA (Figure 4A). KM val-
ues of 3.2 and 3.7 �M were obtained for these substrates, re-
spectively, which is consistent with both having similar Kd
and IC50 values (Figures 2 and 3, respectively). The corre-
sponding kcat values were 3.35 × 10−3/s and 1.85 × 10−2/s,
respectively. The 5.5-fold difference in these values sug-
gested that the interaction with glnW-tRNA at a site not
overlapping with the site of catalysis (as shown in Figure 3)
is allosteric and increases catalytic turnover. Moreover, un-
der conditions of enzyme excess, which minimize any effect
of differences in product release (49), the rate of cleavage 3′
to metU-tRNA was 12-fold faster when glnW was present
upstream (Figure 4B). The cleavage rates in the absence and
presence of glnW-tRNA upstream were 1.16 × 10−5/s and
1.43 × 10−4/s, respectively. This suggests that the presence
of glnW-tRNA may reduce the rate of product release and
the level of allosteric activation may exceed that indicated
by Michaelis–Menten analysis (Figure 4A).

In order to explore the substrate requirements of tRNAs
in binding to and allosterically activating RNase E, modi-
fied fragments of tRNA precursors were generated and sub-
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Figure 2. Binding of RNase E to fragments of the metT tRNA precursor. (A) Electrophoretic mobility shift assays (EMSAs) of metT RNA fragments
incubated with increasing concentrations of NTH-RNase E with the D346N substitution. Lanes 1–14 contain 20 nM RNA fragments incubated with 0.3,
0.6, 1.2, 2.4, 4.9, 9.8, 19.5, 39, 78.1, 156.3, 312.5, 625 nM, and 1.25 and 2.5 �M NTH-RNase E D346N, respectively. Lanes C1 and C2 contain 20 nM
RNA fragments and 2.5 �M NTH-RNase E D346N, respectively. The first, second and third images (from top to bottom) correspond to glnW-tRNA, the
entire glnW–metU segment and metU-tRNA with 5′- and 3′-single-stranded regions, respectively. A schematic is provided for all three fragments at the left
of the images, with numbering and labelling as described in Supplementary Figure S1. (B) Binding curves of the assays in panel A. The blue, black and red
curves correspond to glnW-tRNA, the glnW–metU segment and metU-tRNA with 5′- and 3′-single-stranded regions, respectively. Schematics are provided
as in (A).

jected to further cleavage assays (Figure 5). Removal of the
T or D arm or both of these arms, of hisR-tRNA on the
argX–hisR fragment did not affect the ability of RNase E
to cleave at its site downstream of argX (Figure 5A), de-
spite the fact that removal of the entire hisR-tRNA does
abolish cleavage (Figure 1B). Given that removal of both
arms of the tRNA could potentially form an RNA sec-
ondary structure that was more similar to a basic stem–
loop, a further substrate was generated that replaced the en-
tire hisR-tRNA with the Rho-independent transcriptional
terminator of the rpsO transcript. Cleavage of the RNA
fragment downstream of the argX-tRNA even when the

adjacent hisR-tRNA was replaced with the rpsO termina-
tor was still prominent (Figure 5B), suggesting that the al-
losteric site on RNase E can interact with relatively simple
stem–loops.

The allosteric site is associated with a recently discovered
RNA-binding groove, which is essential for cleavage of long
RNA substrates and cell viability in E. coli

In parallel with the functional studies presented here, oth-
ers had identified through X-ray crystallographic stud-
ies a groove on RNase E that binds stem–loops within
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Figure 3. Assaying the requirement for interaction with sites that bind single-stranded segments. (A) The result of competition assays between the glnW–
metU segment and subfragments. Lanes 1–14 contain 7.5 nM labelled BR15 (quadruplex) and 20 nM NTH-RNase E incubated with 0.3, 0.6, 1.2, 2.4, 4.9,
9.8, 19.5, 39, 78.1, 156.3, 312.5, 625 nM, and 1.25 and 2.5 �M competing transcript. Lanes C1, C2, C3 and C4 contain 30 nM LU13 with a 3′-fluorescein
label, 7.5 nM BR15, 7.5 nM BR15 incubated with 20 nM wild-type NTH-RNase E and 20 nM NTH-RNase E incubated with 2.5 �M unlabelled competing
transcript. The expected binding states of each band are shown at the right of each image. The first, second and third images (from top to bottom) correspond
to competition with a fragment containing glnW-tRNA without a 5′- or 3′-single-stranded extension, the entire glnW–metU segment and the metU-tRNA
flanked at both its 5′ and 3′ ends by single-stranded regions, respectively. A schematic is provided for all three fragments at the left of the images, with
numbering and labelling as described in Supplementary Figure S1. (B) Binding curves of the assays in panel A. The blue, black and red curves correspond
to glnW-tRNA, the glnW–metU segment and metU-tRNA with 5′- and 3′-single-stranded regions, respectively. Schematics are provided as in (A).
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Figure 4. Analysing the influence of glnW-tRNA on cleavage downstream of metU-tRNA. (A) A Michaelis–Menten plot for RNase E cleavage down-
stream of metU-tRNA for the fragment containing metU-tRNA flanked at both its 5′ and 3′ ends by single-stranded regions, and the entire glnW–metU
fragment, as shown by open and filled circles, respectively. The concentration of NTH-RNase E (monomer) in each reaction was 40 nM. Rates normalized
against enzyme concentration (v0/[E]) were calculated as described previously (14,25,50), plotted against substrate concentration ([S]), and were fitted
to the Michaelis–Menten equation. A schematic is provided for both fragments at the left of the images, with numbering and labelling as described in
Supplementary Figure S1. (B) A graph of the proportion of substrate over time following incubation with RNase E under single-turnover conditions. The
concentration of substrate and NTH-RNase E (monomer) in each reaction was 5 nM and 200 nM, respectively. The colouring is the same as for (A).
Schematics are provided as in (A).

small regulatory RNAs (38). To determine if this groove
binds tRNA, a variant of RNase E (termed the 8x mu-
tant) was generated by introducing eight amino acid sub-
stitutions simultaneously along the length of this groove
(R3Q, Q22N, H268S, Y269F, Q270N, K433N, R488Q and
R490Q), which is non-overlapping with the sites of catal-
ysis and the 5′-sensor, and encompasses the RNase H and
small domain (Figure 6A). These substitutions did not af-
fect the activity of the protein for 5′-monophosphorylated
substrates, as observed using a Michaelis–Menten analysis

with the substrate 5′-monophosphorylated LU13 (Figure
6B). KM and kcat values of 6.28 �M and 1.93/s, respectively,
were obtained for the mutant with the eight substitutions
in the groove. These values are similar to those reported
for wild-type RNase E (14,25,50). In contrast, mutation of
residues within the groove resulted in complete abolishment
of cleavage of the argX–hisR–leuT–proM precursor (Figure
6C). The same groove substitutions also reduced the affin-
ity of RNase E for the rpsO stem–loop (Figure 6D). Thus,
the groove can bind a range of structured RNA segments
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Figure 5. Investigating the contribution of hisR-tRNA to cleavage downstream of argX-tRNA. Schematics of the substrates are provided at the top of each
gel. Vertical arrows show the position of an RNase E site that is not crucially dependent on 5′ sensing. Reactions were performed using the NTH of RNase
E. Final substrate and enzyme concentrations were 180 and 5 nM, respectively. Lanes 1–5 contain samples taken after 0, 5, 15, 30 and 60 min of initiating
the reaction. Lanes C1 and C2 contain substrate incubated without enzyme for 0 and 60 min, respectively. The sizes of the substrates and cleavage products
are shown at the right of the image. (A) The cleavage assays of the entire argX–hisR fragment with dissections of the hisR-tRNA. (B) The cleavage assay of
the argX–hisR fragment with replacement of the hisR-tRNA with the rpsO Rho-independent transcriptional terminator.

and is likely to be a site of allosteric regulation of RNase E
cleavage.

The finding that the substitutions within the groove had
a substantial effect on the cleavage tRNA precursors pre-
dicted that they would also affect the growth and possibly
the viability of E. coli given that RNase E cleavage activity
is essential (24,48,51). This was tested in the context of full-
length RNase E and an established system (45,46) to avoid
the need to account for growth effects caused by the trun-

cation of RNase E (48,52,53) and to allow direct compar-
ison with previously published work (45,52). Mutations in
the RNA-binding groove were introduced into the plasmid
pRNE1000, which encodes the full-length RNase E under
the control of the constitutive IS10 promoter and without
autoregulation (45). To provide a control for reduced cell vi-
ability, site-directed mutagenesis was also used to introduce
a stop codon after the codon encoding amino acid 529 in
a wild-type sequence. The corresponding plasmids were in-
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Figure 6. Substitutions within the groove that interacts with structured elements and their effects on tRNA binding. (A) The nature of the amino acid
substitutions (R3Q, Q22N, H268S, Y269F, Q270N, K433N, R488Q, R490Q; this mutant is referred to as the 8x mutant herein) in the duplex-binding
groove and their location relative to domains within the NTH of RNase E (PDB: 6G63). The domains coloured light grey, cyan, yellow, red and blue
represent the RNase H-like domain, S1 subdomain, 5′-sensing domain, DNase I-like domain and the small domain, respectively. (B) A Michaelis–Menten
plot for the cleavage of 5′-monophosphorylated LU13 by the RNase E 8× mutant. (C) Cleavage assays of argX–hisR–leuT–proM RNA in the presence
of wild-type or mutant (8×) RNase E. Conditions were as described in Figure 1. (D) EMSAs of an RNA fragment consisting of the Rho-independent
transcriptional terminator of rpsO incubated with increasing concentrations of NTH-RNase E. Lanes 1–13 contain 20 nM RNA fragments incubated with
1.2, 2.4, 4.9, 9.8, 19.5, 39, 78, 156.3, 312.5, 625, 1250, 2500 and 5000 nM NTH-RNase E, respectively. Lanes C1 and C2 contain only 20 nM RNA fragments
and only 5000 nM NTH-RNase E, respectively. The top and bottom panel correspond to assays using wild-type or mutant (8×) RNase E, respectively.
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troduced into the E. coli strain CJ1832 (46), which contains
a chromosomal copy of RNase E that has been placed un-
der the control of the lac promoter. Growth was detected
on all plates in the presence of IPTG, indicating that there
was no dominant-negative phenotype associated with the
presence of the mutants. Strains harbouring the wild-type
sequence, but not the sequence containing substitutions in
the groove, were able to grow in the absence of IPTG (Fig-
ure 7A), indicating that the functional groove is essential
for growth. As expected, the NTH of RNase E was insuf-
ficient to support normal growth within this system. The
C-terminal half of RNase E has many important functions
including sites of interaction with other proteins that drive
assembly of the RNA degradosome complex (52,53). Simi-
lar results were found using liquid cultures (Figure 7B).

The RNA-binding groove may represent a key point of
evolutionary divergence of RNase E from its paralogue
RNase G, which does share sequence and structural ho-
mology but has limited functional overlap (41,54–56). Pre-
viously it has been shown that many residues of the groove
found in E. coli RNase E were conserved in the orthologues
of other bacterial species (38). However, an expanded se-
quence alignment revealed little to no conservation of these
residues between E. coli RNase E and RNase G (Supple-
mentary Figure S5). RNase G homologues found in vari-
ous � -proteobacteria were found to have conserved residues
at these positions of a chemical nature less likely to make
strong contacts with RNA. The arginine at position 3 in
RNase E is conserved as an aspartate in RNase G or-
thologues, which reverses the charge at this position and
could potentially disrupt ionic interactions with the RNA
phosphodiester backbone. The glutamine at position 22 in
RNase E is conserved as a glycine in RNase G, which would
eliminate a potential hydrogen bond between the R group
of the glutamine and the RNA. The histidine at position
268 in RNase E is present as leucine, valine or methionine
in RNase G, which could all eliminate the ability to form
hydrogen bonds with RNA. The tyrosine as position 269
seems to be conserved between RNase E and RNase G.
The glutamine as position 270 in RNase E is present as ei-
ther a glycine or an aspartate in RNase G. The residue ly-
sine at position 433 in RNase E is mostly conserved as a
leucine or alanine in RNase G. The arginine at position 488
in RNase E is mostly conserved as a leucine, valine or ala-
nine in RNase G. The arginine at position 490 in RNase
E is not present in RNase G, as all the peptide sequences
for the orthologues shown here end before this amino acid.
The last three residues associated with the RNA-binding
groove of RNase E are similarly missing from RNase G and
would be predicted to form strong ionic contacts with the
phosphodiester backbone of the RNA. In contrast, other
residues that are highly conserved in RNase E homologues,
such as those involved in 5′-monophosphate interactions
(R169 and T170) (34,39,48,57), the active site (F57, F67,
D303 and D346) (34,57) and Zn link formation (C404 and
C407) (34,58) are also found in RNase G and are conserved
between RNase G homologues in other bacteria. Given that
RNase G does not appear to be involved in the processing
of tRNA or cleavage of many mRNA substrates (13,54,56)
and is not essential for cell viability (56,59), these findings
suggest that the RNA-binding groove may be a major fea-

ture that distinguishes RNase E and RNase G both func-
tionally and phylogenetically.

DISCUSSION

It has been shown here that the binding of tRNAs via a
recently discovered groove in the N-terminal catalytic half
of E. coli RNase E is a major determinant of the rate
of processing of tRNA precursors (Figures 1–7). More-
over, the binding of structured elements is likely to be
a widespread determinant of cleavage by E. coli RNase
E. The groove that binds structured elements was located
through co-crystallization of RNase E with small regula-
tory RNAs (38) and has been implicated in the genera-
tion of the 3′-UTR-derived small RNA MicL (60). Inter-
action with structured regions, which has long been impli-
cated in the recognition and cleavage of RNA by RNase E
(61–64), alongside interaction with single-stranded regions
and 5′-monophosphorylated ends (13,14,19,25,36,39,42),
may allow RNase E to recognize, cleave and remain as-
sociated with substrates via multiple and changing com-
binations of cooperative interactions in many aspects of
RNA biology.

Interaction with the recently discovered groove, which
is at distance from the site of catalysis, appears to stim-
ulate RNA cleavage by an allosteric mechanism (Figures
2–4). It is interesting to note that a kink of ∼40◦ within
the dimer–dimer interface is one of the major differences
in the quaternary structure of the RNase E tetramer in the
‘open’ apoprotein form (39) compared with a ‘closed’ holo-
protein form in which 5′-monophosphorylated oligonu-
cleotides are bound via the 5′-sensor and the compos-
ite single-stranded RNA-binding channel formed by the
DNase I and S1 domain (34). Each side of the dimer–
dimer interface is composed of a pair of ‘small’ domains
linked via chelation of a shared zinc (58). We suggest as a
working model that interaction of RNA with the groove,
which is a composite of surfaces from the small domain
and the RNase H domain in the remainder of the NTH
of RNase E, may reduce the kink, thereby promoting the
adoption of the ‘closed’ confirmation, which in turn would
enhance cleavage. What is being proposed is essentially
a modified ‘mouse-trap’ model (34) in which conforma-
tional closing can be promoted by RNA interacting with the
groove.

The recent study of the processing of the 3′-UTR-derived
small RNA MicL has found a requirement for two stem–
loops 3′ to the site of cleavage (60). Thus, as found here for
tRNA [Figures 1 and 4; see also (14)], a tandem arrange-
ment of structured elements may be a requirement for effi-
cient RNase E cleavage at many sites including those at a
distance from native 5′ ends. There is now no need to in-
voke models in which efficient cleavage within intergenic re-
gions (13,14,25), 3′-UTRs (25–27,65) and other similarly
distant sites (13,66,67) requires RNase E to remain teth-
ered to a 5′-monophosphorylated end (8) with the interven-
ing RNA being looped out (27). It seems more likely that
within these regions structured segments in combination
with single-stranded regions (13,14,25,26) contributed to
‘direct entry’ (25,26,32). The finding that RNase E can rec-
ognize a transcriptional terminator as part of an interaction
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Figure 7. Complementation of RNase E deficiency to assess cell viability. CJ1832 strains contained the pRNE1000 plasmid encoding either full-length or
NTH RNase E with the wild-type sequence or 8× substitutions. Full-length wild-type is indicated as black, full length 8× mutant as cyan, NTH wild-type
as dark green and NTH 8× as red. CJ1832 containing the empty pMPM-k1 vector was included as a control and is shown as dark blue. (A) LB agar
plates streaked with three separate colonies of the indicated strains with or without IPTG supplementation (1 mM). (B) Growth curves from liquid culture
measured at OD600 nm with (left) or without (right) IPTG supplementation. Three separate replicates were used for growth curves and the average curve is
displayed with the standard error shown as solid lines. Western blots were performed to confirm similar expression levels between all the constructs (data
not shown).

that produces a cleavage upstream of the terminator (Fig-
ures 5 and 6) suggests that RNase E may have a widespread
role in initiating 3′ to 5′ degradation. It is well established
that transcriptional terminators impede the progress of 3′
to 5′ exonucleases (68–71).

Given the considerable capacity to bind RNA via a large
number of combinations of individual sites, the question
arises as to why the normal rates of decay of some tran-
scripts are dependent on the RppH RNA pyrophosphohy-
drolase (22). The answer may simply be that in these but
not all cases an interaction with a 5′-monophosphorylated
end makes a substantial, non-replaceable contribution to
RNase E cleavage. The close coupling of translation and
transcription in E. coli and at least some other bacteria (72)
means that much of the length of mRNAs will be protected
by ribosomes (29,30,32), limiting the contacts initially avail-
able to 5′-UTRs. This is not to say that all mRNA degrada-
tion initiated at the 5′ end may require the generation of a 5′-
monophosphorylated group: RNase E has been mapped in
E. coli cells to 5′-UTRs of many mRNAs (30,31,73,74) and
binds to a number of 5′-triphosphorylated UTRs in vitro
(our unpublished data).

The study of tRNA processing in vivo has revealed that
RNase E is not involved in the maturation of all tRNAs
(10,11,75–77) despite the presence of tandem arrangement

of tRNAs or tRNA and transcriptional terminators. This
suggest that other features are important determinants of
cleavage, probably a combination of the spacing of structure
elements, the accessibility of single-stranded regions and
5′-monophosphorylated ends, and the sequence of single-
stranded regions accessible by the catalytic site. There are
many other cases where individual features that are recog-
nizable by RNase E are present on RNAs but appear to be
insufficient to promote cleavage; for example, whilst it ap-
pears that many small regulatory RNAs deliver RNase E to
specific sites in mRNA (73), there is a class of small RNAs
that activate translation without initiating rapid RNA de-
cay (78). A better understanding of the overall control of
RNase E cleavage will almost certainly require atomistic de-
scriptions of further RNase E–RNA complexes. Although
progress is being make with computational protein–RNA
docking, it is hampered by the inherent flexibility of RNA,
the transient nature of many protein–RNA interactions
and the propensity for global rearrangement upon binding
(79).
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(2000) Hfq (HF1) stimulates ompA mRNA decay by interfering with
ribosome binding. Genes Dev., 14, 1109–1118.
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