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A B S T R A C T

Deciphering the mechanism, kinetics and energetics of biological electron-transfer reactions requires a robust,

rapid and reproducible protein-film voltammetry information recovery process. Here we describe a semi-auto-

mated computational approach for inferring the chemical reaction parameters for a simple protein system, a

bacterial cytochrome domain from Cellvibrio japonicus that displays reversible one-electron Fe
2þ=3þ redox chem-

istry. Despite the relative simplicity of the experimental system, developing a robust data analysis approach to

find the global optimum in 13-dimensional parameter space is a challenging task because the Faradaic-to-back-

ground current ratio in such experiments is often low. We describe how a multiple-technique approach,

whereby data from three voltammetry techniques (direct-current, pure sinusoidal and Fourier transform alter-

nating current voltammetry) is combined, ultimately enables the automatic extraction of both (i) quantitative

“best-fit” redox reaction parameter point values that are robust across multiple experiments performed on dif-

ferent protein-electrode films, and (ii) a statistical description of parameter correlation relationships, along

with uncertainty in the individual parameter values, obtained using Bayesian inference. It is the latter achieve-

ment which is particularly important as it represents a method for visualising the possible limitations in the

mathematical model of the experimental system. Our multi-voltammetry analysis approach enables such pow-

erful insight because of the complementarity between the information content, simulation-speed and parame-

ter sensitivity of the current–time data generated by the different techniques, illustrating the value of adding

purely sinusoidal voltammetry to the bioelectrochemistry measurement toolkit.

1. Introduction

Electron-transfer reactions underpin many of the fundamental

chemical processes that are required for the existence of life, such as

the splitting of water, the fixation of nitrogen, and carbon capture.

Such catalytic redox processes are of significant biotechnological inter-

est because they are achieved at ambient temperatures and pressures

using commonly available metals at the catalytic active sites [1,2].

To understand these processes, protein-film voltammetry can be used

[3,4], where redox active proteins or enzymes are immobilised on

the surface of an electrode to overcome problems caused by slow rates

of macromolecular diffusion [1]. In voltammetry, a time-varying

potential is used to drive electron-transfer reactions, so that the

recorded experimental current–time data directly reports on the reac-

tions that take place. In this paper, we seek to define a voltammetric

modelling framework that incorporates a complementary set of exper-

imental measurement techniques and computational analysis tools,

with the aim of extracting as much accurate information as possible

about biological electron-transfer reactions. We demonstrate how the

inclusion of purely sinusoidal voltammetry into the suite of protein

film electrochemistry techniques enables Bayesian statistical analysis

to be used as a quantitative means of visualising uncertainty in the

voltammetric modelling.

In voltammetric modelling, the aim is to reconstruct the underpin-

ning reaction process that generated the experimentally measured data

[5]. For protein film voltammetry, the resulting mathematical model

takes the form of a system of non-linear ordinary differential equa-

tions. Embedded within this system are the key parameters of interest
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that govern the biological redox reaction — that is, the electron trans-

fer mechanism, reaction rates, and electrochemical potentials that

directly report on the thermodynamics of the reaction [6,7]. For the

one-electron reaction studied here, these parameters are detailed

below, with their mathematical relationships detailed in the SI. Using

a single set of input parameter values, it is possible to simulate (typi-

cally computationally) a current–time-potential output — this is

known as the forwards problem. Of much greater interest is the use

of the underpinning mathematical model to recover estimates of these

key parameters from experimental data — known as the inverse or

parameter inference problem [5,8]. This involves finding an optimal

set of parameters that minimises a distance (or “objective”) function

between the experimental and simulated data.

In protein film voltammetry, solving the inverse problem is chal-

lenging since the experimentally-measured current–potential-time

data result not only from the Faradaic signal of interest, but also a typ-

ically very large “background” current, arising from charging at the

electrode-solution interface, compounded by the effects of uncompen-

sated resistance [9–13]. To fully compensate for such non-Faradaic

processes, terms modelling capacitance and resistance are incorpo-

rated into the mathematical model, and these parameters must also

be estimated as part of the inverse/inference process. This typically

results in a very high-dimensional problem (in this study the inference

problem is in 13 dimensions). The Faradaic signal is further obscured

within the measured current by experimental measurement error, aris-

ing from processes such as shot noise, or thermal electron fluctuations

[14], and can be additionally complicated by spurious Faradaic pro-

cesses, such as from quinones [15]. In the field of biological electro-

chemistry there is also a great deal of literature, including detailed

review papers [3,4], exploring the difficulty in establishing the correct

mathematical voltammetric model; there are challenges in (a) incorpo-

rating kinetic and/or thermodynamic parameter dispersion [16–18],

(b) distinguishing between different catalytic mechanisms and inacti-

vation reactions for redox enzymes [19–21], and (c) substrate trans-

port [22,23]. As has been demonstrated previously [17,18], several

of the parameters in a mathematical model of protein/enzyme film

electrochemistry have similar effects over the potential window of

interest and finding an optimal solution to the inverse problem is

therefore made very challenging by the presence of multiple local min-

ima values for the objective function, located in disparate parts of the

overall parameter space. This study describes a new approach to over-

come these problems; by analysing a complementary set of voltammet-

ric measurements we aim to overcome low Faradaic current-to-

background limitations, rapidly extract a set of “best-fit” redox-reac-

tion parameters, and also use statistical tools to probe model

uncertainty.

In previous work on surface-immobilised ferrocene, we demon-

strated the advantages of combining Purely Sinusoidal Voltammetry

(PSV) and ramped Fourier Transform Alternating Current Voltamme-

try (r-FTACV) when using voltammetric modelling to solve the inverse

problem for film voltammetry data, demonstrating the substantial

increase in speed of analysis that is possible when assessing PSV data

relative to r-FTACV [18]. This decrease in simulation time is driven by

the reduced number of sinusoids required for a complete experiment

— 30 for PSV, vs. 412 for r-FTACV in the experiments analysed in this

paper. The time reduction is important because the slow rate of r-

FTACV analysis had previously made it practically unfeasible to model

high frequency experiments that enable quantitative determination of

rapid rates of electron transfer [24]. PSV and r-FTACV are particularly

useful when analysing protein film voltammetry data as they show

high sensitivity to Faradaic parameters of interest. The sensitivity of

PSV and r-FTACV predominantly arises from the non-linearity of the

current response to a sinusoidal potential with large amplitude —

when the current is Fourier transformed, harmonics are observed at

multiples of the frequency of the input potential [1,18,25]. As the

background current is less highly non-linear, appropriate harmonic

selection can yield a signal that reports exclusively on the Faradaic

process of interest. The extension of our work to a protein system addi-

tionally required the incorporation of direct current voltammetry

(DCV) measurements into our experiment-analysis protocol. We use

DCV to estimate electron transfer rates and protein-electrode coverage

values in a manner analogous to the work pioneered by Armstrong and

co-workers [11,12], and building on historic voltammetric theory by

Laviron [26].

There are alternative electrochemical measurement methods upon

which we could have based our technique development for the rapid

inference of ”best-fit” model parameter point values: square wave

voltammetry (SWV) also amplifies the Faradaic-to-background current

sensitivity of a voltammetric measurement albeit via a different mech-

anism to PSV and r-FTACV [27], while electrochemical impedance

spectroscopy (EIS) is widely used to probe the capacitance–resistance

model of an electrochemical system [28]. Indeed, there are numerous

bioelectrochemistry studies which have made powerful use of DCV

[10,9,4], SWV [29,30] and EIS [31,32]. We and others have previously

shown how r-FTACV alone can be applied to analyse protein electron

transfer [33,1,24]. In this study, the reason we use PSV is because

extending the PSV fitting procedure to include Bayesian analysis is rel-

atively simple, meaning that we can generate inferred 1D parameter

histograms to obtain confidence limits for parameter values, and also

2D histograms to show parameter correlation relationships (this is

explored in more detail in the SI in Figs. S1 and S2). This is the first

time such an exploration of parameter space has been achieved in a

bioelectrochemical context, although such statistical analysis has been

applied in EIS [34], small-molecule voltammetry [35] and other

domains of chemistry [36].

The experimental system characterised in this study is a simple pro-

tein from Cellvibrio japonicus, referred to as CjX183 [37]. This is a type-

c cytochrome domain of Cbp2D, a probable activating partner for a

cellulose degrading enzyme known as a lytic polysaccharide monooxy-

genase (LPMO) [37]. LPMOs facilitate industrial biofuel production

from biomass [38]. It has recently been shown that CjX183 can trans-

fer electrons to LPMOs via the reversible one-electron redox reactivity

of the heme centre [37]. DCV measurements of the CjX183 Fe
3þ=2þ

redox chemistry were obtained previously via adsorption of the pro-

tein onto a pyrolytic graphite edge electrode [37], and here we use

the same immobilisation approach to probe this redox process using

more complex potential inputs, to enable a correspondingly more pow-

erful interrogation of the Fe-centered redox chemistry.

2. Experimental methods

The CjX183 protein was purified as per the established protocol in

work by Hemsworth [37] except with buffer A as pH 8.0, 20 mM Tris,

200 mM NaCl, and 30 mM imidazole, and buffer B which is the same

except with 300 mM imidazole. Additional details can be found in the

SI.

A custom-built electrochemical cell was set-up exactly as previously

described for studies of wild type CjX183 [37], inside an anaerobic

chamber (< 40 ppm oxygen). A 10 μL aliquot of protein was pipetted

onto the working pyrolytic graphite electrode tip and left to adsorb

until a film has formed. The cell was maintained at 5 °C and all mea-

surements were performed in pH 7, 50 mM sodium phosphate,

150 mM NaCl buffer.

Three different voltammetric methods were carried out, DCV, r-

FTACV and PSV. The reference electrode (Ref) was a saturated calomel

electrode filled with aqeous 3 M KCl solution. Calibration experiments

with ferricyanide gave a value of E(Ref+ = E(SHE) + 0.239 V.

Within this paper, all potentials are reported in V versus Ref. The

DCV experiments were carried out initially after protein absorption

and then after r-FTACV and PSV experiments. These experiments were

conducted using an Ivium potentiostat and IviumSoft control software.
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The potential was cycled between−0.39 V to 0.30 V (vs the reference

electrode, which is + 0.239 V vs. SHE) for 4 scans with a 5 s equili-

bration at the start potential, using a scan rate of 30 mV s−1 and a

potential step of 5 mV. The same method was carried out for the trum-

pet plot analysis with a scan rate varying from 10 to 30000 mV s−1.

The r-FTACV experiments were conducted using a custom poten-

tiostat and the instrument was controlled using custom software

[25]. Each r-FTACV experiment commenced with a 5 s pre-treatment

at −345 mV (vs the reference electrode) and an r-FTACV potential

input between −345 mV and 255 mV was applied with a scan rate

of 22.35 mV s−1, as well as a sinusoidal oscillation with a known fre-

quency close to 9 Hz and amplitude of 150 mV [25].

The PSV experiments were conducted using the same potentiostat

and software as for r-FTACV, using a 5 s pre-treatment at −45 mV

(vs the reference electrode). The voltage was cycled between

−344 mV to 254 mV with a frequency of approximately 9 Hz and a

phase of 4.71 rads for 26.8 s (equivalent to 268 oscillations). As in pre-

vious work, the PSV current was truncated to the first 30 oscillations,

to reduce simulation times [18].

Forwards problem simulation code for the model derived in the SI

was written using a combination of C++ and Python, and all infer-

ence was performed using the PINTS repository [39].Code for repro-

duction of results from the paper, along with experimental data, can

be found on Github [https://github.com/HOLL95/

Cytochrome_paper_results].

3. Results and Discussion

3.1. Approach for parameter recovery

Sequential application of DCV, r-FTACV and PSV to an electrode

functionalised with CjX183 was repeated for three different function-

alised electrodes, generating three experimental datasets, referred to

hereafter as experiments 1–3. For each experimental run, the electrode

was also subjected to the three voltammetry techniques prior to func-

tionalisation with CjX183 (i.e. a “blank” electrode). The potential

inputs that define the three techniques are shown in Figs. 1 A-C respec-

tively. The resulting total current obtained during experiment 3, in the

presence and absence of CjX183 (in blue and red respectively) is

shown for the three techniques in Fig. 1D-F. The harmonics of the r-

FTACV and PSV current responses can be observed in the Fourier

domain in Figs. 1G and H, and Figs. 1J and K show those same har-

monics in the time domain. As reported previously [40], in experi-

ments without protein there is still a non-linear component to the

current, resulting in significant background current contributions to

harmonics 1–3. In the mathematical model, we incorporate the non-

linear pseudo-capacitive contributions as a third-order polynomial.

In experiment 3, multiple DCV experiments were conducted at differ-

ent scan rates, and the oxidative/reductive peak position was

extracted. These are presented in Fig. 1I, in the form of a trumpet plot.

The starting point for the data analysis was the derivation of the

forwards problem simulation model of the single-electron Fe
2þ=3þ

redox process undertaken by CjX183, and this is described in the SI.

The model assumes Butler–Volmer kinetics and incorporates thermo-

dynamic dispersion, assuming a normal distribution of E0 values,

defined by a mean μ and a standard deviation σ [17,41]. In previous

work, it was determined that explicit modelling of thermodynamic dis-

persion had to be included when fitting film r-FTACV voltammetry

data [41,17,18]. This has been attributed to the range of protein orien-

tations that can be achieved on the rough graphite electrode surface

[41,17,18]. Other relevant Faradaic parameters include k0, the rate

at which the redox reaction occurs at E0; α the symmetry factor, which

is a measure of the relative ease with which the transition state is

formed and Γ, the surface coverage of electroactive species on the elec-

trode. Background current parameters include Cdl, the magnitude of

the background current arising from linear double-layer capacitance

effects, and CdlEX , which model non-linear capacitance effects (X is

the order number, as discussed in the SI). Ru corresponds to the

uncompensated resistance, ω the frequency of the input sinusoid (for

PSV and r-FTACV), η the phase of the Faradaic current and correspond-

ingly Cdlη the phase of the capacitive current.

Accurate parameters inferred from a voltammetry dataset should

correctly predict the current response of the interrogated film to any

potential input. This was demonstrated in previous work on surface-

confined ferrocene, when fitting PSV total current a single best-fit

parameter vector could be obtained that also predicted r-FTACV har-

monic data collected for the same electrode film. As detailed in the

SI and Fig. S3, obtaining a similarly good fit for total PSV current of

CjX183 was not possible, this is ascribed to the much lower Fara-

daic-to-background current ratios arising from voltammetry of a bio-

logical, rather than a small molecule, system. This decrease in

Faradaic current arises due to the much larger molecular footprint of

a protein compared to a small molecule, resulting in a smaller elec-

trode film coverage density, and more dominant background currents.

Subsequent attempts to solve the inverse problem for CjX183 initially

involved unconstrained fitting of a filtered portion of the PSV total cur-

rent, obtained by selecting harmonics 4 to 10 in the Fourier spectrum.

This did not yield parameters that could also predict an r-FTACV

experiment, details of which can again be found in the SI and

Fig. S4. In response to these challenges, an iterative fitting procedure

was developed.

3.1.1. The iterative parameter inference loop

The core loop of this iterative parameter recovery process was to fit

to PSV harmonic data in the frequency domain (as opposed to time-

domain data), use the best-fit parameters to simulate an r-FTACV cur-

rent, and assess the resulting fit to the r-FTACV harmonics. If the result

of this process is a single best-fit parameter vector that predicts both

sets of data, (i.e. a “good fit to both” in Fig. 2), then these are judged

to be the parameters that represent the underlying chemical reality. In

other cases (such as a good fit to one form of data but not the other, or

when there are multiple competing “best-fit” vectors), the obtained

best-fit vector represents a local optimum, and the parameter search

needs to be constrained to exclude that region of parameter space.

The analysis choices that led to the final best fit, presented below in

the section “Resulting parameter inference”, have been formalised into

the “recipe” in the next section, for use by the interested

experimentalist.

3.1.2. A recipe for parameter inference

The following process is summarised in Fig. 2.

1. Collect experimental data. For each electrode functionalised with

protein, it is recommended to collect PSV, r-FTACV and DCV data

(the latter at different scan rates), in that order. This is because

there will naturally be some film-loss as a result of consecutive

experiments, and consequently the experiments have been ranked

in order of how important having good signals is for the purposes

of analysis.

2. Define boundaries for fitting PSV data. Initial boundaries should

encompass a reasonably large area of parameter space, but as a rule

of thumb should not cover more than two orders of magnitude (and

if this scale of coverage is necessary, consider log-transformations).

For many parameters, it is possible to obtain an order-of-magnitude

estimate from analysing particular current features that are sensi-

tive to the parameter in question. As summarised in Fig. 2, in this

paper we obtained order-of-magnitude estimates for E0μ , (Fig. S5),

k0 (Fig. S10), Cdl, (Fig. S7) Γ (Fig. S9) and the phase parameters

(Fig. S13). As the exact values of the parameters reported are
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Fig. 1. r-FTACV (top), PSV (centre) and DCV (bottom) experimental data. A-C: Potential inputs for the three experiments. D-F: Total current response of CjX183

(blue) and a bare glassy-carbon electrode (red) to the three experimental inputs. G-H: magnitude of the Fourier spectrum corresponding to harmonics 1–7 for

CjX183 (blue) and a bare electrode (red) for r-FTACV and PSV. I: Trumpet plot of DCV peak position data from CjX183 experiments conducted at different scan

rates. J-K: r-FTACV and PSV harmonics 1–6 from CjX183 (blue) and a bare electrode (red).

Fig. 2. Flowchart representation of the fitting methodology proposed in this paper. For certain parameters the mechanism by which boundary values can be

obtained has been presented graphically; these figures are written in brackets as appropriate.

H.O. Lloyd-Laney et al. Journal of Electroanalytical Chemistry 935 (2023) 117264
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dependent on the choice of the boundary, this is an extremely

important part of the inference process. We describe the reasoning

for each bound in the SI.

3. Determine if it is feasible to fit PSV data in the time domain, with-

out using dispersion. If inferred Faradaic parameters are highly

divergent between different time-domain fitting runs (as exempli-

fied in Fig. S3), then it is recommended to fit in the Fourier domain.

If this is the case, inspect the harmonics of the blank PSV data

(shown in Fig. 1)) to see what portions of the Fourier domain needs

to be zeroed-out.

4. Fit the form of the PSV data chosen above, using a simulation with-

out dispersion. Using the parameters resulting from this inference

process, generate a ramped simulation and compare to the r-FTACV

data harmonics to assess the translatablity of the parameters. It

should be reasonably clear if you are neglecting thermodynamic

dispersion, as the simulated harmonics will be narrower, and will

not decrease in magnitude with harmonic number to the extent

observed in the experimental data — this effect is demonstrated

in detail in previous work [17]. If thermodynamic dispersion is pre-

sent, you should go back to fitting the PSV data accordingly. If the

kinetics of the system are irreversible/quasi-reversible then it may

be worth considering kinetic dispersion as well [17], but this sce-

nario has not been encountered to date.

5. Keep on comparing your PSV fits to the r-FTACV harmonics.

• If filtering of the data is taking place (e.g. excluding the lower

harmonics of a PSV experiment), assess how well the predicted

current fit the total current — an example of the pitfalls of this

approach can be found in Fig. S7.

• If a parameter is consistently hitting a defined boundary, then

consider raising or lowering this bound as appropriate, unless

this is outside of the realms of chemical plausibility. Beware

of parameter compensation effects.

• A good rule of thumb is that you will see a set of “good-fit

parameters” multiple times in ten runs with random initialisa-

tions. Using the boundaries in Table 1, the values reported were

observed 2–4 times out of ten.

6. Choosing which parameter values to report is something of a per-

sonal choice — the rationale was that the inferred parameters for

the three experiments should be in the same regime while provid-

ing a good fit to each.

As can be gleaned from this recipe and Fig. 2, the process of bounding

parameter space required many fitting runs to gain a deeper under-

standing of the inference problem. This is a situation in which the

speed advantage of PSV becomes relevant. A single fitting run to return

a best-fit parameter set for PSV took approximately 45 min, while the

same attempt with r-FTACV took several hours. As the fitting process is

repeated ten times to ensure a high search coverage of parameter

space, r-FTACV fitting timescales quickly become untenable. It should

be noted that this process is as-described for obtaining point estimates

of the parameters, and does not recover parameter distributions. How-

ever, once the parameter space is appropriately constrained, these

same boundaries can be used to define the prior distribution for Baye-

sian inference, as discussed below in the Bayesian inference section.

This process is fraught with danger, and must be performed as consci-

entiously as possible.

3.1.3. Constraining parameter space

Constraining parameter space is a process that must be undertaken

with great caution; it carries the obvious danger of excluding the

region of parameter space in which the “true” parameter values reside,

and obtaining false values. The fitting algorithms used in this work

require upper and lower bounds as part of their initialisation, and so

attempting to pick “reasonable” bounds is the starting point of any fit-

ting process, and these were initially set to prevent only physically

implausible values. Because this part of the process can have strong

effect on the reported results, the mechanism by which the boundary

values are chosen must be informed by the data as much as possible.

For several parameters (E0μ; E0σ;Γ;Cdl; k0 and η=Cdlη) there exist par-

ticular features of the experimental current response that can be used

to estimate the values of these parameters, which can in turn be used

to define boundaries, as shown in Fig. 2. Additionally for any param-

eter, as shown in Fig. 2, if the inverse problem solver consistently

returns the value of a parameter boundary, this implies that the bound-

ary should be raised or lowered as appropriate, as long as this does not

clash with existing chemical knowledge. This process is iterated until a

good fit to both PSV and r-FTACV harmonics has been achieved. The

final bounds used for each parameter when fitting experiments 1–3

are shown in Table 1. For brevity the reasoning for each parameter

bound has been placed in the SI, but the authors recommend that those

wishing to use these methods should read these justifications with care

before beginning an inference attempt.

3.2. Resulting parameter estimates

Using the bounds shown in Table 1, it was possible to infer param-

eters from three experiments interrogating different experimental

datasets for CjX183, where for each preparation both PSV and r-

FTACV measurements were obtained. The resulting best fits are shown

in Fig. 3, with the inferred best-fit parameters shown in Table 1, where

each column shows data from a different electrode film. In Figs. 3A-C,

A-C, PSV harmonics 4–10 for both the experimental and simulated cur-

Table 1

Best fit parameters for harmonics 4 and above of PSV experiments 1, 2 and 3. The resulting simulated PSV current is shown in Figs. 3A-C. The same values (except the

frequency and phase) were used to generate r-FTACV simulations shown in Figs. 3 D-F, and the values in brackets were used to generate the r-FTACV simulations in

Figs. 3G-I

Parameter Symbol Bounds Experiment 1 Experiment 2 Experiment 3

Midpoint potential mean E0
μ (V) [-0.1, −0.04] −0.072 (-0.061) −0.067 (-0.063) −0.065 (-0.061)

Midpoint potential standard deviation E0
σ (V) [1e-4, 0.06] 0.045 (0.033) 0.053 (0.036) 0.051 (0.035)

Rate constant k0ðs
�1) [50, 500] 173.8 176.5 172.9

Surface coverage Γ (mol cm�2) [9e-12, 9e-11] 1.35e-11 (1.68e-11) 2.05e-11 (1.83e-11) 1.79e-11 (1.45e-11)

Linear double-layer capacitance Cdl (F) [1e-7, 1e-5] 9.8–6 1.0e-5 1.0e-5

1st order Cdl CdlE1 [-0.1, 0.1] 0.014 0.079 0.095

2nd order Cdl CdlE2 [-0.05, 0.05] 0.04 0.021 0.045

3rd order Cdl CdlE3 [-0.05, 0.05] -5.6e-4 −4.4e-4 −3.8e-4

Uncompensated resistance Ru (Ω) [0, 900] 148.7 316.8 81.5

Potential frequency ω (Hz) [8.56, 9.46] 9.015 (8.96) 9.015 (8.75) 9.015 (8.83)

Cdl phase Cdl phase (rads) [3.77, 5.65] 4.73 (0) 4.70 (0) 4.71 (0)

Phase Phase (rads) [3.77, 5.65] 4.57 (0) 4.60 (0) 4.63 (0)

Symmetry factor α [0.4, 0.6] 0.6 0.6 0.6
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rents are shown, with the simulations using the parameters in Table 1.

In Figs. 3D-F r-FTACV simulations also use the input simulation param-

eters written in Table 1, except for the input frequency and phase. The

sinusoidal frequency ω was fitted, because this is different for r-FTACV

and PSV experiments, and the phase was set to the experimentally

defined value of 0. For Figs. 3G-I, G-I, limited optimisation was per-

formed on parameters thought likely to change as a result of so-called

desorbtion/inactivation “film-loss” effects, i.e. the Γ parameter, which

reflects the number of adsorbed protein molecules, was allowed to

vary and so were the so-called “dispersion” E0
μ and E0

σ parameters

which were optimised based on the assumption that CjX183 molecules

adsorbed in certain orientations will be lost from the electrode at a

more rapid rate than molecules bound via different surface interac-

tions. The altered values are written in brackets in Table 1. This was

done to show that only four of the model input parameters need to

be re-optimised in order to go from an excellent fit to the PSV harmon-

ics to an excellent fit to the r-FTACV harmonics. Because the r-FTACV

inference approach only requires searching in four-dimensional

parameter space (with all other parameters held constant at the values

reported in Table 1), the time for a single fitting run is shorter than it

would be for the full 13-dimensions searched in the PSV case. In prac-

tice, this limited optimisation fitting to r-FTACV harmonic data, took

2-3 h. It is predicted that fitting r-FTACV data would take 10 + hours

when fitting in all dimensions.

The multiple comparison approach for validating the “best-fit”

reaction model parameters using both inter-technique and inter-exper-

Fig. 3. Best-fit simulations and data for harmonics 4–10 of PSV experiments 1–3 (figures A-C), using simulation parameters reported in Table 1. Figures D-F show

r-FTACV harmonics 4–7, from r-FTACV experiments 1–3 (performed using the same CjX183 modified electrode as the appropriate PSV experiment), and

simulations obtained using the same parameters as those used to generate the top row, except for the values of the phases (both of which were set to 0) and the

input frequency (which was set to 8.96, 8.75 and 8.83 Hz respectively). Figures G-I show the same r-FTACV harmonic data as figures D-F, along with best-fit

simulations, obtained using the parameters in brackets in Table 1.
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iment comparisons, such as the type performed in Fig. 3, enables

removal of spurious parameter combinations, or the identification of

parameter values that only provide a good fit to one subset of the data.

Consequently the best-fit parameter values inferred from PSV data that

with a small level of alteration provide a good fit to r-FTACV harmon-

ics obtained during the same set of measurements are believed to rep-

resent the true underlying redox chemistry of CjX183. This reinforced

by the consistency of the values obtained across different experiments

performed on different days. Furthermore, our hypothesis that these

are “true” protein redox reaction parameters can also be evaluated

in light of values obtained by other analysis methods. In this study,

these methods are the estimates of the kinetic parameter from surface

coverage estimates from analysis of a single scan-rate DCV experiment.

DCV analysis is discussed in more detail in the SI and Fig. S8 including

charge calculated from peak area and trumpet plot data [26,9–12],

shown in Figs. S9 and S10 respectively. In one sense, it is unsurprising

that there is agreement between these PSV and DCV values, as the lat-

ter were used to derive the bounds for the former. However, these

boundaries were drawn quite broadly (for example, the k0 boundaries

were 50–500 s−1, as informed by a DCV estimate of ∼172 s−1), and

consequently, there is utility in comparing the PSV and DCV parameter

estimates. With regards to the trumpet plot, the value of the kinetic

parameter inferred from the trumpet plot was within 60 s−1 of the

value inferred from the PSV currents, and as shown in Fig. S10, simu-

lating trumpet plot data with the PSV-inferred value of ∼172 s−1 does

not significantly alter the peak-position divergence point. This value is

fully consistent with the range of values determined in previous elec-

trochemical studies of different cytochrome proteins. At the lower end,

the electron transfer rate constant for cytochrome-c incorporated onto

a calcium alginate film on a glassy carbon electrode was found to be

20.9 s−1 [42]. In the same regime as CjX183, the electron transfer rate

constant for human, bovine and porcine cytochrome P450c17 on a

PGE electrode were determined to be 164, 157 and 153 s−1 respec-

tively [43], and at the upper end, while more varied due to changing

chain length, the electron transfer rate constant for rat heart cyto-

chrome-c adsorbed onto gold electrodes modified with self-assembled

monolayer has been determined to fall around 700 s−1. [44].

With regards to the DCV-estimated surface coverage, although the

exact value inferred from the peak-integration technique is dependent

on the subtraction approach (in the range of 1.8–3.1e-11 mol cm−2),

the values inferred from PSV are in agreement with the range of values

inferred by this method. Based on the geometric surface area of the

working electrode (0.03 cm2) and the width of the protein structure,

by assuming spherical close-packing of protein on the electrode, a the-

oretical maximum monolayer surface coverage of CjX183 on the elec-

trode can be calculated as 4.4 pmol cm−2. Although the extracted best

fit surface coverage parameter from the experimental data is 17.3 pmol

cm−2, this difference can be attributed to a non-spherical protein with

better packing efficiency and a non-planar electrode surface (i.e. area

greatly exceeding 0.03 cm2 due to abrasive treatment of the graphite

creating a rough surface). In general, protein film voltammetry exper-

iments report pmol cm−2 coverage values [4]. The parsimonious

experimentalist may conclude that DCV analysis alone can yield simi-

lar insights, using both trumpet-plot and single-scan rate analysis.

However, it should be noted that DCV-obtained estimates are less reli-

able. In the case of the trumpet plot, for example, the best-fit simula-

tion did not accurately capture the rate of redox peak divergence

with scan rate, and the constant redox peak separation observed at

very low scan rates. Additionally, the Ru parameter has to be fixed

when fitting trumpet plot data, otherwise the k0 parameter becomes

unidentifiable. The authors believe these issues are primarily caused

by challenges associated with background subtraction of capacitance

required for DCV analysis, as detailed extensively in the SI for the sin-

gle scan-rate case. These issues are at least partially resolved by com-

parison to other techniques, hence the development of a multi-

experiment approach. The uncertainty around modelling DCV means

that its primary role is to provide initial order-of-magnitude estimates

that inform on how to bound parameter space.

What it is essential to note, however, is that the exact reported

parameters are conditional on the modelling choices made. In all cases

the reported α value is the value of the upper bound, and the solver

converged to the value of the upper bound regardless of what this

boundary was set to. This is not unexpected — as detailed in previous

work, when the kinetic regime is approaching reversibility (reaction is

approaching equilibrium on the timescale of the experiment), the

effect of the symmetry factor is low. To explore this effect further, in

the SI, in Table S6 and Fig. S14 show the effect of holding the α param-

eter constant in the range 0.5–0.6 while fitting the other parameters.

When α was below the critical value of 0.55, the solver always

returned a k0 value of 3000 s−1, which is incompatible with the value

obtained from the trumpet-plot analysis above. On the basis of this

analysis, the true value of α is likely to reside in the region between

0.55–0.6; the value of the symmetry factor for Fe
2þ=3þ reactions has

consistently been reported to be in the region of 0.4–0.6, and conse-

quently values above 0.6 were considered to be outside of the region

of chemical plausibility [45].

In terms of the non-Faradaic parameters, looking at the linear

capacitance parameter values in Table 1, the values for all three exper-

iments is at or close to the upper bound of 1e-5F. This may indicate

that the capacitance values are not physically realistic. As obtaining

accurate estimates of the Faradaic parameters is the aim of this proce-

dure, the primary concern is that the unrealistic capacitance estimates

are not affecting the accuracy of the other inferred parameters. For

example, inaccurate estimates of the background current could lead

to inaccurate estimates of the level of uncompensated resistance

through the Ohmic drop effect. The uncompensated resistance is in

turn known to be correlated with changes in the kinetic parameter

(which can also be demonstrated using Bayesian inference analysis,

vide infra), and consequently poor estimates of the background current

could lead to poor estimates of the kinetic value. This is why a DCV

trumpet plot measurement is highly useful for setting the bounds of

k0. Indeed, the key strength of the multi-experiment approach

described here is to be able to address such concerns about spurious

parameter combinations. A longer and more detailed description of

the capacitance modelling choices can be found in the SI.

3.3. Bayesian inference

Given that an optimum in parameter space has been found (after

parameter space was appropriately constrained), Bayesian inference

can be used to recover the probability that a particular set of parame-

ter values around this optimum describe the observed data: the poste-

rior parameter distribution. These are obtained using the adaptive

Markov-Chain Monte Carlo algorithm, with 30000 simulations of the

forward model generated in a little over an hour. Specific implementa-

tion details can be found in other work [46,47]. Three independent

chains were run for 10,000 iterations, starting from the best-fit values

in Table 1, and the resulting samples used to generate histograms (cor-

responding to the frequency with which the binned parameter values

have been observed) that approximate the parameter posterior distri-

bution for each parameter. Fig. 4, presents these histograms for key

parameters obtained from fitting PSV harmonics 4–10 from experi-

ments 1–3 as presented in Fig. 3, along with appropriate parameters

as inferred from the trumpet plot (E0 from the trumpet plot has been

graphed alongside the E0
μ parameter extracted from PSV analysis as

they both have the same effect on the appearance of the total current

[17]). The parameters Cdl and α are excluded because the MCMC algo-

rithm does not converge if the chains get stuck at an upper or lower

bound, and these were instead fixed at the appropriate value listed

in Table 1. It was not practically feasible to undertake a Bayesian infer-

ence analysis for r-FTACV, because of the high computational cost of
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the multiple ∼10 + hour fitting runs required for a many-parameter

MCMC. Fig. 4 demonstrates that despite the above discussed issues

of parameter correlation and the possibility of spurious minima, the

parameter values inferred for the three separate PSV experiments are

very much in the same regime, as are parameters inferred using an

entirely separate experimental technique. It should be noted that there

is a very good agreement between the predicted “underlying” distribu-

tion of dispersed E0 values, which is not immediately apparent from

inspection of Fig. 4. These underlying distributions are presented in

Fig. S15 in the SI.

In Fig. 5, the degree of correlation using MCMC-inferred posterior

distributions for PSV experiment 1 can be assessed, with the results for

experiments 2 and 3 shown in Figs. S16 and S17. The histogram of

samples for each parameter is shown along the diagonal (with the

parameter indicated on the x-axis), and a scatter plot for each pair-

wise combination of parameters are shown on the off-diagonals, with

the y- and x-axes indicating which parameters are being plotted

together. If two parameters are uncorrelated, then the histogram will

be a circle. An ellipse angled upwards indicates positive correlation,

i.e. an increase in the value of the x-axis parameter is associated with

an increase in the y-axis parameter, and vice versa for negative corre-

lation. The narrower the ellipse, the stronger the degree of correlation.

From the figure it is therefore clear that many parameters are corre-

lated with each other. In particular, of the reaction model parameters

there are correlations between k0, the uncompensated resistance,

phase, Cdl phase and CdlE2. Thus, it is clear how challenging it is to

define the electron-transfer rate. The positive correlation between E0
σ

and Γ explains that the discrepancy between the best-fit PSV and r-

FTACV values is driven by these parameter correlation effects. As

the two-step fits presented in Fig. S11 in the SI show, an increased

Cdl value is associated with lowered E0
σ and Γ values — indicating that

the choice of Cdl bound (such that the returned value is relatively

small) has led to slightly over-inflated predicted values for the posi-

tively correlated E0
σ and Γ parameters. This again shows the utility of

the multiple-experiment approach. As r-FTACV is more sensitive to

the Faradaic parameters, it allows for the detection of the slight

over-estimation of the E0
σ parameter, as described above in Fig. 3.

What Fig. 5 shows is that the choice of how to bound parameter

space is not a neutral decision; because of parameter correlation, these

choices affect every value returned. Consequently, although the

MCMC analysis reports very high confidence in the inferred values,

the exact values are contingent on the modelling choices that have

been made. This is an inescapable problem with attempting to find a

global minimum in high-dimensional parameter space that contains

multiple local minima. However, the multi-experiment verification

approach allows for the mitigation of this issue. It allows for verifica-

tion of the inferred model parameters, which do not exhibit the same

degree or kind of parameter correlation, which is specific to the form

of the data being analysed. Comparisons of experiments of the same

type can be used to avoid the problem of fitting to noise in a single fit-

ting run, and comparisons of different types of experiments allow for

checking the out-of-sample predictive power of the inferred parame-

ters. This in turn allows for a deep understanding of the relationships

between the various parameters, as with the example of Cdl; E
0
σ and Γ in

the previous paragraph. The fact that it is possible to have this highly

granular discussion about the precise values of the returned parame-

ters is an indication of the power of this framework. The use of PSV

is essential to obtain this level of understanding, as the 600,000 for-

ward problem simulations required for a single MCMC run can be com-

pleted in just over an hour.

Fig. 4. Inferred parameter histograms generated by pooling three independent MCMC chains, discarding the first 6000 samples as burn-in, using harmonics 4 and

above of the respective PSV experiments in the likelihood function, and using the parameters in Table 1 as the starting point. Cdl and α were not included in this

parameter inference approach for technical reasons mentioned in the text. The DCV histograms were as inferred from running an MCMC process on the trumpet

data in Fig. S6s, and as such only values for the parameters E0 and k0 were inferred.
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4. Conclusions

In this work, the inverse problem is solved for PSV harmonics, and

the results from the inference process are checked against r-FTACV

harmonics, to take advantage of the former’s improved simulation

speed, and the latter’s higher sensitivity to the parameters of interest.

The heuristic estimates provided by analysis of DCV data although pre-

senting significant analytical challenges, ultimately prove essential for

appropriate order-of-magnitude bounding of the parameter space

searched when fitting PSV data. Furthermore, the relatively rapid sim-

ulation time required for PSV ultimately enables the application of

Bayesian statistical analysis to the analysis of protein film voltammetry

data, allowing for unprecedented insight into the fitting process. A

summary of how the techniques relate to one another is provided in

Fig. 6. Overall, in terms of the accuracy of the point estimates, param-

eter sensitivity studies demonstrate that r-FTACV is the most sensitive

Fig. 5. 2D histograms generated from the MCMC process for PSV experiment 1.

Fig. 6. The three experiments analysed in this paper, direct current voltammetry (DCV) as a current vs. potential plot, purely sinusoidal voltammetry (PSV)

current harmonics 4–7 vs. potential, and ramped-Fourier Transform Alternating Current Voltammetry (r-FTACV) current harmonics 4–7 vs. time. The experiments

are ranked according to how interpretable they are, and the amount of Faradaic information they provide. Orange arrows indicate simulation of current using a

vector of chemical parameters θ, and black arrows indicate that the results of these simulations are used to assess the goodness-of-fit.
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of the three techniques [48], and consequently the parameter vector

which provides a good fit to the r-FTACV harmonics is judged to be

the best representation of the redox chemistry of CjX183. There is a

small discrepancy between these parameters and the best-fit PSV

parameters; the source of this discrepancy is parameter compensation,

as uncovered by MCMC, and as such these values are judged to be

slightly less accurate. Finally, DCV is primarily used for order-of-mag-

nitude estimates for key parameters, because of the challenges of back-

ground subtraction.

The overall goal of this work is to obtain an understanding of pro-

tein bio-electrochemistry by extracting inferred redox reaction param-

eters. To achieve this, the parameter inference process needs to be

rapid, accurate and reproducible. We have described how this can

be facilitated by complementing protein-film PSV analysis, which

makes it possible to obtain parameter estimates on a short timescale,

with parameter validation based on DCV and r-FTACV analysis. Baye-

sian inference, also facilitated by the rapid simulation speed of PSV,

allows for an understanding of how parameters compensate for each

other during the fitting process. It is hoped that such approaches will

become an indispensable component of analysing protein film voltam-

metry data in the future, and we have listed a detailed “recipe” for our

methodology in the SI.

In future work, the authors intend to extend the repertoire of tech-

niques to include higher frequency PSV experiments, square wave

voltammetry and electrochemical impedance spectroscopy, and to

move towards systems that have more complex chemistry, including

multiple electron-transfer reactions and catalytic processes.
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