

This is a repository copy of *Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/196207/</u>

Version: Supplemental Material

Article:

Mohan, TVR, Madhu, N, Kala, K et al. (6 more authors) (2023) Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions. Journal of Catalysis, 419. pp. 80-98. ISSN 0021-9517

https://doi.org/10.1016/j.jcat.2023.02.005

© 2023 Elsevier Inc. All rights reserved. This is an author produced version of an article published in Journal of Catalysis. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Materials

Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions[†]

Talla V.R. Mohan^{a‡}, Madhu Nallagangula^{b‡}, Krishnan Kala^{b‡}, Carlos E. Hernandez-Tamargo^{a‡}, Nora H. De Leeuw^{c,d}, Kayambu Namitharan^{b*}, Venugopal T. Bhat^{b*}, (the late) Manickam Sasidharan^{b§}, and Parasuraman Selvam^{a,e,f*}

^aNational Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India ^bSRM Research Institute and Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India ^cSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom ^dSchool of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom ^eSchool of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom ^fInternational Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 800-8555, Japan

[†] This paper is dedicated to the memory of our dear co-author Professor M. Sasidharan who passed away prematurely due to Covid-19 while this paper was being submitted/peer-reviewed.

[‡] These authors contributed equally to this work.

^{*}Corresponding authors' E-mail: <u>namithak@srmist.edu.in</u> (KN) <u>venu.iitkgp@gmail.com</u> (VTB), <u>selvam@iitm.ac.in</u> (PS)

Content of Schemes, Figures and Tables

Data	DESCRIPTION	Page No.
Scheme S1	The B-H reactions established for C-C and C-N bond formation over Metal-free nitrogen-doped ordered mesoporous carbonaceous materials. Color code: H (white), C (gray) and N (blue).	3
Scheme S2	Simulation cells were used in the DFT modeling of all-carbon and N-doped graphite, and graphitic g -C ₃ N ₄ (delimited with black lines). (a) The orthorhombic unit cell of all-carbon graphite. The orthorhombicmbic unit cell of g -C ₃ N ₄ . (c) $6 \times 2 \times$ 3 expansion of the all-carbon graphite cell with the zig-zag edge exposed. (d) $6 \times 2 \times 3$ expansion of the N-doped graphite cell with the zig-zag edge exposed. (e) $2 \times 1 \times 3$ expansion of the graphitic g -C ₃ N ₄ cell with the edge exposed. The edges are terminated with H atoms. Color code: H (white), C (gray) and N (blue).	4
Figure S1	Low angle XRD patterns of: (a) <i>g</i> -C ₃ N ₄ , (b) CSI-306 (NH ₃), (c) CSI-306, (d) CMK-306, (e) MNC-316, (f) MNC-319, (g) MNC-326 and (h) SBA-15.	5
Figure S2	Figure S2[A] N_2 -sorption isotherms and [B] pore size distributions calculated using BJH method of: (a) g -C ₃ N ₄ , (b) CSI-306 (NH ₃), (c) CSI-306, (d) CMK-306, (e) MNC-316, (f) MNC-319, (g) MNC-326 and (h) SBA-15.	
Table S1	¹ H-NMR and ¹³ C-NMR spectral data.	7-52
Table S2	ble S2 Deuterium labeling study; ¹ H-NMR spectral data.	
Table S3	Kinetic isotopic study; ¹ H-NMR spectral data.	54

Scheme S1. The B–H reactions established for C–C and C–N bond formation over metal-free nitrogen-doped ordered mesoporous carbonaceous materials. Color code: H (white), C (gray) and N (blue).

Scheme S2. Graphitic g-C₃N₄ (delimited with black lines). (a) Orthorhombic unit cell of all-carbon graphite. (b) Orthorhombic unit cell of g-C₃N₄. (c) 6 × 2 × 3 expansion of the all-carbon graphite cell with the zig-zag edge exposed. (d) 6 × 2 × 3 expansion of the N-doped graphite cell with the zig-zag edge exposed. (e) 2 × 1 × 3 expansion of the graphitic g-C₃N₄ cell with the edge exposed. The edges are terminated with H atoms. Color code: H (white), C (gray) and N (blue).

Figure S1. Low angle XRD (left) patterns and TEM images (right) of: (a) *g*-C₃N₄, (b) CSI-306 (NH₃), (c) CSI-306, (d) CMK-306, (e) MNC-316, (f) MNC-319, (g) MNC-326 and (h) SBA-15.

Figure S2. [A] N₂-sorption isotherms and [B] pore size distributions calculated using BJH method of: (a) *g*-C₃N₄, (b) CSI-306 (NH₃), (c) CSI-306, (d) CMK-306, (e) MNC-316, (f) MNC-319, (g) MNC-326 and (h) SBA-15.

 Table S1.
 ¹H-NMR and ¹³C -NMR data.

3fa	N N N	 N-benzyl-3-phenoxyaniline (3fa): Yellow oil (0.261g, 97% yield); ¹H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.24-7.30 (m, 7H), 7.03- 7.07 (m, 2H), 6.33-6.98 (m, 2H), 6.31-6.33 (m, 2H), 6.25-6.26 (m, 1H), 4.21 (s, 2H), 3.99 (br, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.5, 157.3, 149.8, 139.2, 130.3, 129.7, 128.8, 127.6, 127.4, 123.1, 119.1, 108.1, 107.9, 103.4, 48.3.
3ga		N-benzyl-4-butylaniline (3ga): Orange liquid (0.219g, 92% yield); ¹ H-NMR: (500 MHz, CDC13, 25°C, TMS) δ 7.31-7.37 (m,4H), 7.23- 7.27 (m,1H), 6.98 (d, J=8.4 Hz, 2H), 6.56-6.58 (m, 2H), 4.29 (s,2H), 3.85 (br, 1H), 2.49 (t, J=7.7Hz, 2H), 1.50-1.56 (m, 2H), 1.32-1.36 (m, 2H), 0.91 (t, J=7.4 Hz, 3H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 146.2, 139.7, 132.1, 129.2, 128.7, 127.6, 127.2, 113.0, 48.7, 34.8, 34.1, 22.4, 14.1.
3ha	N CI	N-benzyl-2-chloroaniline (3ha): Yellow oil (0.195g, 90% yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.21-7.28 (m, 6H), 7.02 (t, J=7.5Hz, 1H), 6.55-6.59 (m, 2H), 4.68 (br, 1H), 4.29 (d, J=5.1, 2H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 143.9, 138.8, 129.2, 128.8, 127.9, 127.4, 127.3, 119.2, 117.5, 111.6, 47.9.
3ia	CI	N-benzyl-4-chloroaniline (3ia): Yellow oil (0.211g, 97% yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.22-7.31 (m, 5H), 7.04- 7.07 (m, 2H), 6.46-6.48 (m, 2H), 4.22 (s, 2H), 3.98(br, 1H).
- . .	^	129.1, 128.7, 127.4, 127.4, 122.1, 113.9, 48.4.
3ja	N N	N-benzyl-3-fluoroaniline (3ja): Yellow oil (0.195g, 97% yield); ¹ H-NMR: (400 MHz, CDCl3, 25°C, TMS) δ 7.25-7.33 (m,5H), 7.03- 7.08 (m, 1H), 6.3-6.53 (m, 2H), 6.28 (d, J=8.5 Hz, 1H), 4.26 (s, 2H), 4.10 (br, 1H).
	F	13C-NMR (100 MHz, CDCl3) δ 164.2 (d, J=200 Hz), 150.0 (d, J=10.5 Hz), 138.9, 130.3 (d, J=10.5 Hz),128.8, 127.6, 127.5, 108.8, 104.0 (d, J=20 Hz), 99.5 (d, J=10.6 Hz), 48.2.

3ka	\wedge	N-benzyl-2,3-dichloroaniline (3ka): Yellow oil
	H Í H	(O.242g, 97% yield); ¹ H-NMR: (500 MHz,
		CDCl3, 25°C, TMS) δ 7.28-7.36 (m, 5H), 6.79 (t,
		J=7.5 Hz, 1H), 6.51 (d, $J=1.5$ Hz, 1H), 6.49 (d,
		J=1.5 Hz, 1H), 4.89 (br, 1H), 4.38 (d, J=5.5 Hz,
	Υ ČΙ	2H).
	ĊI	13 C NMR (126 MHz, CDCl ₃) δ 145.3, 138.3,
		132.9, 128.9, 127.8, 127.6, 127.3, 118.2, 117.2,
		109.4, 48.0.
3la		N-benzyl-2,4-dichloroaniline (3la): Yellow oil
	H Í Í	(0.227g, 91% yield); ¹ H-NMR: (500 MHz,
	\mathbb{N}	CDC13, 25°C, TMS) δ 7.25-7.37 (m, 6H), 7.02-
		7.04 (m, 1H), 6.51 (d, J=9 Hz, 1H), 4.72 (br,1H),
		4.37 (s, 1H).
		13C NMD (126 MHz CDC1) \$ 142.6 128.2
		$128 \times 128 \times 127 \times 127 \times 127 \times 127 \times 127 \times 127 \times 121 \times 119 \times 128 $
		112 1 47 9
3ma		N-benzylpyridin-2-amine (3ma): Colour less
	H	crystal (0.178g, 97% yield); ¹ H-NMR: (500
	\mathbb{N}	MHz, CDCl3, 25°C, TMS) δ 8.10-8.11 (m, 1H),
		7.32-7.40 (m, 5H), 7.21-7.39 (m, 1H), 6.58-6.60
	Ų ∠N	(m, 1H), 6.37(d, J=7.3Hz, 1H), 4.84 (br, 1H),
	\sim	4.50 (d, J=6.1 Hz, 2H).
		13 C NMP (126 MHz CDCL) § 159.6 149.2
		$120 \ 2 \ 127 \ 5 \ 128 \ 6 \ 127 \ 4 \ 127 \ 2 \ 112 \ 2 \ 106 \ 8$
		46.3.
3na	\sim	N-benzylpyrimidin-2-amine (3na):Colour less
	Н	crystal (0.179g, 97% yield); ¹ H-NMR: (500
	N, N, N	MHz, CDCl3, 25°C, TMS) δ 8.25 (d, J=3.5 Hz,
		2H), 7.25-7.36 (m, 5H), 6.53 (t, J=7.0 Hz, 1H),
	Ų _≫ Ň	5.68 (br, 1H), 4.64 (d, J=6.0Hz, 2H).
	~	13C NMP (12C MIL- CDC1) \$ 1(2.2, 159.1
		1301 1286 1275 1272 1108 454
308		N-benzylpyrazin-2-amine (30a):Colour less
204	н	crystal (0.178g, 96% yield); 1 H-NMR: (500
	N N N	MHz, CDCl3, 25°C, TMS) δ 7.97-7.98 (m, 1H),
		7.80 (d, J=1.5 Hz, 1H), 7.85 (d, J=2.5 Hz, 1H),
		7.29-7.34 (m, 4H), 7.25-7.28 (m, 1H), 5.06 (br,
	N [°]	1H), 4.55 (d, J=6.1 Hz, 2H).
		^{13}C NMR (126 MHz, CDCl ₃) δ 154.5, 142.0,
3ne	<u>^</u>	150.3, 155.1, 152.1, 128.8, 127.0, 127.0, 45.0.
эра	ц	Black solid (0.195 σ 86% vield): ¹ H ₋ NMP: (500
		MHz, CDCl3, 25°C, TMS) & 7 14-7 25 (m 5H)
		6.53 (d, J=8.3Hz, 1H), 6.14 (d, J=2.3Hz, 1H).
		5.93-596 (m, 1H), 5.70 (s, 2H), 4.13 (s, 2H),
	0- 1	3.70 (br, 1H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 148.3, 143.9,
		139.7, 139.4, 128.6, 127.5, 127.3, 108.6, 104.4,
		100.6, 96.0, 49.3.

	-	
3ab	N N N N N N N N N N N N N N N N N N N	N-(4-methoxybenzyl)aniline (3ac): Brown oil (0.200g, 94% yield); ¹ H-NMR : (500 MHz, CDCl3, 25°C, TMS) δ 7.20-7.22 (m, 2H), 7.08-7.11 (m, 2H), 6.79-6.65 (m, 2H), 6.62 -6.65 (m, 1H), 6.52-6.57 (m, 2H) 4.18 (s, 2H) 3.73 (s, 3H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 158.9, 148.2, 131.4, 129.3, 128.8, 117.5, 114.0, 112.9, 55.3, 47.8.
3ac	S C H	N-(4-(methylthio)benzyl)aniline (3ad): Yellow oil (0.219g, 95% yield); ¹ H-NMR: (500 MHz, CDC13, 25°C, TMS) δ 7.03-7.16 (m, 6H), 6.60 (t, J=7.5 Hz, 1H), 6.48 (d, J=8.2Hz, 2H), 4.13 (s, 2H), 3.80 (br, 1H), 2.33 (s, 3H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 148.1, 137.2, 136.5, 129.4, 128.1, 127.0, 117.7, 113.0, 47.9, 16.1.
3ad		N-(3-phenoxybenzyl)aniline (3ae): White crystals (0.231g, 84% yield); ¹ H-NMR: (500 MHz, CDC13, 25°C, TMS) δ 7.24 – 7.31 (m, 3H), 7.12 – 7.15 (m, 2H), 7.05 – 7.08 (m, 2H), 6.96 – 6.98 (m, 3H), 6.87 – 6.89 (m, 1H), 6.69 (tt, J = 7.4, 1.0 Hz, 1H), 6.56 – 6.68 (m, 2H), 4.26 (s, 2H), 4.00 (br, 1 H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 157.5, 157.0, 147.8, 141.6, 129.9, 129.7, 129.2, 123.2, 122.1, 118.9, 117.7, 117.6, 117.4, 112.8, 47.9.
3ae	N N	N-(2-methylbenzyl)aniline (3af): Yellow oil (0.189g, 96% yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.26 (d, J=7.3 Hz, 1H), 7.10-7.13 (m, 5H), 6.65 (t, J=7.5 Hz, 1H), 6.57 (d, J=7.8 Hz, 2H), 4.19 (s, 2H), 2.29 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 148.2, 136.9, 126 (4, 120 4, 120 2, 127 5, 126 2, 117 6)
		130.4, 130.4, 129.5, 128.5, 127.5, 120.2, 117.0, 112.8, 46.5, 19.0.
3af		N-(3-methylbenzyl)aniline (3ag): Yellow oil (0.189g, 96% yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.21-7.24 (m, 1H), 7.20 – 7.13 (m, 4H), 7.09 (d, J = 7.4 Hz, 1H), 6.71 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 7.8 Hz, 2H), 4.28 (s, 2H), 4.05 (br, 1H), 2.35 (s, 3H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 148.2, 139.4, 138.3, 129.3, 128.6, 128.3, 128.0, 124.6, 117.6, 112.9, 48.4, 21.5.
3ag	N N N N N N N N N N N N N N N N N N N	N-(4-methylbenzyl)aniline (3ah): Yellow oil (0.191g, 97% yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C, TMS) δ 7.18 (d, J=8.1Hz, 2H), 7.06-7.11 (m, 4H), 6.63 (t, J=7.3 Hz, 1H), 6.56 (d, J=8.3Hz, 2H), 4.20 (s, 2H), 2.26 (S, 3H).

		¹³ C NMR (126 MHz, CDCl ₃) δ 148.2, 136.9,
		136.3, 129.3, 129.3, 127.5, 117.6, 112.9, 48.1,
		21.1.
3ah	N	N-(pyridin-4-ylmethyl)aniline (3ai):Colour
		less crystal (0.178g, 97% yield); ¹ H-NMR : (500
		MHz, CDCl3, 25°C, TMS) δ 8.49 (d, J=4.9Hz,
		2H), 7.22 (d, J=4.9 Hz, 2H), 7.06-7.11 (m, 2H),
		6.66 (t, J=7.3Hz, 1H), 6.50 (d, J=8.4Hz, 2H),
	~	4.29 (s, 2H), 4.16 (br, 1H).
		13C NM (12C MU CDC1) \$ 140.0 140.1
		15 C NMR (126 MHZ, CDCl ₃) o 149.9, 149.1,
20:	~	14/.4, 129.4, 122.2, 110.1, 112.9, 4/.1.
Sai		$(0.201 \text{ g} - 0.2\% \text{ yield}) \cdot {}^{1}\text{H NMD} \cdot (500 \text{ MHz})$
		(0.2019, 95%) yield), H -INNE. (500 WHZ, CDC13 25°C TMS) δ 7 26 (s 1H) 7 08-7 14 (m
		2 CDC15, 25 C, 1103 O, 20 (s, 111), 7.08-7.14 (lll, 34), 7.05-7.07 (m, 24), 6.63 (t, 1=7.5 Hz, 14)
		650 (d I=80 Hz 2H) 419 (s 2H) 395 (hr
		1H)
		111).
		¹³ C NMR (126 MHz, CDCl ₃) δ 147.8, 141.8,
		134.6, 130.0, 129.4, 127.5, 127.4, 125.5, 117.9,
		113.0, 47.8.
3aj	Н	N-octylaniline(3ak):Color less oil(0.071g, 86%
		yield); ¹ H-NMR: (500 MHz, CDCl3, 25°C,
		TMS) δ 7.05-7-09 (m, 2H), 6.49-6.60 (m, 3H),
		3.45 (br, 1H), 2.99 (t, J=7.5 Hz, 2H), 1.48-1.54
		(m, 2H), 1.18-1.24 (m, 10H), 0.81 (t, J=7.7 Hz,
		3H).
		¹³ C NMR (126 MHz, CDCl ₃) δ 148.5, 129.1,
		117.0, 112.6, 43.9, 31.8, 29.5, 29.4, 29.2, 27.1,
		22.6, 14.0.
600	0	1.3 dinhanylpronan 1 and (6aa): Colorless oil
vaa	U U	I I.J-UIDHEIIVIDI UDAH-I-UHE IDAAI. COIDHESS OH
		(0.203 g - 97% yield): ¹ H NMR (500 MHz
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl: 25 °C TMS) δ 7 93 (d, $I = 7.2$ Hz 1H)
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H)
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, $J = 7.2$ Hz, 1H), 7.51 (t, $J = 7.4$ Hz, 1H), 7.41 (t, $J = 7.7$ Hz, 1H), 7 31 – 7 16 (m 3H) 3 26 (t, $J = 7.7$ Hz, 1H) 3 05
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H), ¹³ C NMR (126 MHz, CDCl ₃)
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79.
		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33.
6 b a	0	(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba):
6ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500
6ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz,
6ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H),
6ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR
6 ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56,
<u>6ba</u>		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26,
6ba		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80.
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J = 7.7Hz, 2H), 3.05 (t, J = 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, $J = 7.2$ Hz, 1H), 7.51 (t, $J = 7.4$ Hz, 1H), 7.41 (t, $J = 7.7$ Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, $J = 7.7$ Hz, 1H), 3.05 (t, $J = 7.7$ Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, $J = 8.2$ Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, $J = 7.7$ Hz, 2H), 3.05 (t, $J = 7.8$ Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one (6ca): Yellow oil (0.207 g, 87% yield); ¹ H NMR
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, $J = 7.2$ Hz, 1H), 7.51 (t, $J = 7.4$ Hz, 1H), 7.41 (t, $J = 7.7$ Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, $J = 7.7$ Hz, 1H), 3.05 (t, $J = 7.7$ Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, $J = 8.2$ Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, $J = 7.7$ Hz, 2H), 3.05 (t, $J = 7.8$ Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one (6ca): Yellow oil (0.207 g, 87% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.81 (dd, $J =$
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, $J = 7.2$ Hz, 1H), 7.51 (t, $J = 7.4$ Hz, 1H), 7.41 (t, $J = 7.7$ Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, $J = 7.7$ Hz, 1H), 3.05 (t, $J = 7.7$ Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, $J = 8.2$ Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, $J = 7.7$ Hz, 2H), 3.05 (t, $J = 7.8$ Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one (6ca): Yellow oil (0.207 g, 87% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.81 (dd, $J =$ 8.1, 1.3 Hz, 2H), 7.25 – 7.16 (m, 6H), 7.16 – 7.09 (a) 14.20 (c, b) 7.05 (c, b) 7.55 (c) (c) (c) 7.55
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one (6ca): Yellow oil (0.207 g, 87% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.81 (dd, J = 8.1, 1.3 Hz, 2H), 7.25 – 7.16 (m, 6H), 7.16 – 7.09 (m, 1H), 3.20 (t, J= 7.6Hz, 2H), 2.98 (t, J = 7.7
6ba 6ca		(0.203 g, 97% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.93 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 – 7.16 (m, 3H), 3.26 (t, J = 7.7 Hz, 1H), 3.05 (t, J = 7.7 Hz, 1H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.42, 141.49, 137.07, 133.24, 128.79, 128.72, 128.62, 128.23, 126.32, 40.64, 30.33. 3-phenyl-1-(p-tolyl)propan-1-one (6ba): Yellow oil (0.204 g, 91% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.86 (d, J = 8.2 Hz, 2H), 7.35 – 7.13 (m, 7H), 3.24 (t, J= 7.7Hz, 2H), 3.05 (t, J= 7.8Hz, 2H), 2.40 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 199.09, 144.01, 141.56, 134.53, 129.44, 128.67, 128.59, 128.33, 126.26, 40.51, 30.37, 21.80. 1-(4-ethylphenyl)-3-phenylpropan-1-one (6ca): Yellow oil (0.207 g, 87% yield); ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.81 (dd, J = 8.1, 1.3 Hz, 2H), 7.25 – 7.16 (m, 6H), 7.16 – 7.09 (m, 1H), 3.20 (t, J= 7.6Hz, 2H), 2.98 (t, J = 7.7 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.18 (t, J = 7.6 H, 2H), 136 APP

		150.04, 141.43, 134.62, 128.53, 128.44, 128.29,
6de	0	128.12, 120.11, 40.38, 30.23, 28.94, 15.21.
oua		1-(4-isobutyipnenyi)-3-pnenyipropan-1-one (6da): Vellow oil (0.240 g. 90% yield): ¹ H-NMR
		$(500 \text{ MHz} \text{ CDCl}_2 25^{\circ}\text{C} \text{ TMS}) \delta 7.86-7.88 \text{ (m}$
		$(300 \text{ MHz}, 626 \text{ Cs}, 25 \text{ Cs}, 146) \circ 7.00 (\text{m}, 24)$ 2H), 7.18-7.30 (m, 7H), 3.27 (t, J= 7.8Hz, 2H),
		3.05 (t, J= 7.6Hz, 2H), 2.52 (d, J= 7.2Hz, 2H),
		1.85-1.93 (m, 1H), 0.91 (s, 3H), 0.89 (s, 3H). ¹³ C
		NMR (126 MHz, CDCl ₃) δ 199.14, 147.74,
		141.61, 134.84, 129.50, 128.69, 128.62, 128.22,
		126.27, 45.56, 40.54, 30.40, 30.29, 22.51. HRMS
		for $C_{19}H_{22}O$ [M+H] Calculated: 267.1750,
		Found: 267.1745.
6ea	O II	1-(2,5-dimethyl phenyl)-3-phenylpropan-1-
		one (6ea): Yellow oil (0.197 g, 83% yield); ¹ H
		NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.29 (s,
		1H), $/.00-/.20$ (m, $/H$), 3.11 (t, $J=/.5Hz$, $2H$),
		2.94 (I, J= 7.0HZ, 2H), 2.52 (S, 5H), 2.22 (S, 2H) 13 C NMB (126 MHz CDCL) S 202.66
		141 45 137 08 135 30 135 05 132 11 132 01
		21.05, 20.92.
6fa	0	1-([1,1'-biphenyl]-4-yl)-3-phenylpropan-1-one
		(6fa): White solid (0.160g, 56% yield); ¹ H NMR:
		(500 MHz, CDCl ₃ , 25°C, TMS) δ 8.01 (d, J=8.5
		Hz, 2H), 7.59-7.66 (m, 4H), 7.37- 7.46 (m, 3H),
	Ph ^r V	7.25-7.29 (m, 5H), 3.31 (t, J=7.8Hz, 2H), 3.08 (t,
		J= 7.6Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃) δ
		198.87, 145.78, 141.32, 139.88, 138.70, 135.53,
		128.96, 128.66, 128.56, 128.45, 128.24, 127.27,
	â	126.16, 77.28, 77.02, 76.77, 40.52, 30.20.
oga		1-(4-metnoxypnenyl)-3-pnenylpropan-1-one
		$(500 \text{ MHz} \text{ CDC})_{2} 25 ^{\circ}\text{C} \text{ TMS}) \delta 7.92 - 7.94 \text{ (m}$
		2H) 7 17-7 30 (m 5H) 6 90-6 92 (m 2H) 3 83
	0	(s, 3H), 3.23 (t, J=7.7Hz, 2H), 3.04 (t, J=7.8Hz)
		2H). ¹³ C NMR (126 MHz, CDCl ₃) δ 198.03,
		163.64, 141.67, 130.50, 128.70, 128.62, 126.27,
		113.92, 55.65, 40.31, 30.53.
6ha	Q .	1-(4-ethoxyphenyl)-3-phenylpropan-1-one
		(6ha): Yellow solid (0.236 g, 93% yield); ¹ H
		NMR (500 MHz, CDCl ₃ , 25 °C, TMS) & 7.89-
		7.92 (m, 2H), 7.22-7.27 (m, 5H), 6.87-6.89 (m, 2H), 4.04 (m, 2H), 7.5 Hz, 211 (m, 2H), 7.5 Hz, 7.5
		(2H), 4.04(q, J= 7.5 Hz, 2H), 5.21 (l, J=7.5Hz, 2H) 2.02 (t, J= 7.6 Hz, 2H) 1.41 (t, J= 7.7Hz,
		(11), (12), (12), (12), (12), (13), (14), (13), (14), (15)
		163 05 141 66 130 48 129 94 128 67 128 60
		126.24, 114.32, 63.91, 40.27, 30.51, 14.84.
6ia	<u>o</u>	1-(benzo[d][1,3]dioxol-5-yl)-3-phenyl propan-
		1-one (6ia): Yellow oil (0.195 g, 77% yield); ¹ H
		NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.52 (d,
		J= 7.8Hz, 1H), 7.42 (s, 1H), 7.17-7.29 (m, 5H),
		6.8 (d, J= 8.6Hz, 1H), 5.98 (s, 2H), 3.19 (t,
		J=7.5Hz, 2H), 3.03 (t, J=7.6Hz, 2H). ¹³ C NMR
		(126 MHz, CDCl ₃) δ 197.32, 151.73, 148.20,

		141.34, 131.77, 128.53, 128.43, 126.13, 124.26, 107.90, 107.87, 101.84, 40.23, 30.36
6ah	0	1-nhenyl-3-(0-tolyl)nrongn-1-one (6gh):
Uab	Ŭ Ŭ	Vellow oil (0 204 σ 92% vield): ¹ H NMR (500
		$MH_z CDCl_2 25 °C TMS) \delta 7.95-7.97 (m. 2H)$
		7 53-7 57 (m 1H) 7 43-7 46 (m 2H) 7 12-7 20
		(m, 4H), 3.25 (t, J=7.6Hz, 2H), 3.06 (t, J=7.5Hz)
		2H), 2.35 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ
		199.56, 139.57, 137.04, 136.18, 133.27, 130.53,
		128.92, 128.81, 128.23, 126.51, 126.36, 39.30,
		27.70, 19.53.
6ac	0	1-phenyl-3-(pyridin-4-yl)propan-1-one (6ac):
		Brown solid (0.200g, 95% yield); ¹ H NMR: (500
		MHz, CDCl ₃ , 25°C, TMS) δ 8.49 (dd, J=4.4HZ,
	$ \dot{N}_{\otimes} $	1.8Hz, 2H), 7.93-7.95 (m, 2H), 7.53-7.57 (m,
	✓ ✓	1H), 7.43-7.46 (m, 2H), 7.16-7.18 (m, 2H), 3.31
		(t, J=7.4 Hz, 2H), 3.05 (t, 7.5 Hz, 2H). ¹³ C NMR
		(126 MHz, CDCl ₃) δ 198.23, 150.42, 149.75,
		136.57, 133.35, 128.72, 128.00, 123.94, 77.28,
		77.02, 76.77, 38.85, 29.18.
6ad	O II	3-(4-methoxyphenyl)-1-phenylpropan-1-one
		(6ad): Yellow solid (0.232 g, 97% yield); ¹ H-
		NMR (500 MHz, $CDC1_3$, 25 °C, 1MS) 8 7.92-
		7.94 (m, 2H), 7.50-7.55 (m, 1H), 7.40-7.45 (m, 2H), 7.12, 7.16 (m, 2H), 6.81, 6.84 (m, 2H), 2.75
	Ī	(11, 21), (11, 22), (11, 21), (11,
		(3, 511), 5.25 (1, 3-7.5112, 211), 2.59 (1,
		158 17 137 08 133 49 133 21 129 53 128 77
		128.22, 114.12, 55.45, 40.88, 29.46.
9aa		2-phenylquinoline (9aa): White solid (0.195 g,
		97% yield); ¹ H-NMR (500 MHz, CDCl ₃ , 25 °C,
		TMS) $\delta 8.18 - 8.06$ (m, 4H), 7.81 (d, $J = 8.6$ Hz,
		1H), 7.76 (d, <i>J</i> = 8.1 Hz, 1H), 7.67-7.63 (m, 1H),
		7.50 – 7.43 (m, 3H), 7.40-7.37 (m, 1H). ¹³ C NMR
		(126 MHz, CDCl ₃) δ 157.58, 148.47, 139.88,
		136.98, 129.92, 129.85, 129.51, 129.03, 127.77,
		127.65, 127.38, 126.48, 119.22.
9ab		3-methyl-2-phenylquinoline (9ab): White solid
		(0.213 g, 97% yield); 'H-NMR (500 MHz,
	\sim N \sim	$(JUC_{13}, 25 \text{ °C}, 1 \text{ MS}) \circ 8.01 (d, J = 8.5 \text{ Hz}, 1\text{H}),$ 7.81 (c, 1H) 7.50 (d, $J = 8.1 \text{ Hz}, 1\text{H}),$ 7.52 7.48
		(m, 111) 7.46 7.44 (m, 211) 7.25 7.22 (m, 211)
		(III, 1II), 7.40-7.44 (III, 2II), 7.30-7.32 (III, 3H), 7.31, 7.25 (III, 1H), 2.28 (III, 2H), 13C NMP (126)
		(1.51 - 7.25) (III, 111), 2.20 (8, 5H). CONVIR (120 MHz CDCl ₂) & 160 52 146 68 140 02 136 74
		$129 \ 30 \ 129 \ 16 \ 128 \ 90 \ 128 \ 75 \ 128 \ 32 \ 128 \ 20$
		127.61 126.74 126.41 20.63
	1	127.01, 120.7 1, 120.11, 20.05.

 Table S2.
 Deuterium labeling study; ¹H NMR data.

 Table S3.
 Kinetic isotopic study;
 ¹H NMR data.