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Abstract
The development of future technologies can be highly influenced by our deeper understanding of
the principles that underlie living organisms. The Living Machines conference aims at presenting
(among others) the interdisciplinary work of behaving systems based on such principles.
Celebrating the 10 years of the conference, we present the progress and future challenges of some of
the key themes presented in the robotics workshop of the Living Machines conference. More
specifically, in this perspective paper, we focus on the advances in the field of biomimetics and
robotics for the creation of artificial systems that can robustly interact with their environment,
ranging from tactile sensing, grasping, and manipulation to the creation of psychologically
plausible agents.

1. Introduction

In the last decade, robotics has successfully merged
knowledge from automation, computer vision, artifi-
cial intelligence, and mechatronics, as well as human
sciences (e.g. neuroscience, psychology, and philo-
sophy), to achieve autonomous and intelligent sys-
tems that robustly interact with the environment.
Despite the incredible progress in robotics, artificial
intelligence, and other relevant fields, we are still not
able to build artificial systems that can be compared
to the dexterity and adaptability of living organisms.
The development of future technologies can be highly
influenced by our deeper understanding of the prin-
ciples that underlie living systems.

This influence has also been evident in science
fiction. An example is Westworld, a TV series that
presents a futurist theme park with autonomous
robots engineered to interact with humans. However,
these robots have not achieved all human capabilities,

as for example, their hands have not yet been per-
fected. Such examples highlight the importance of
designing robust, dexterous, and reliable hands for
grasping and manipulation actions. Indeed, repro-
ducing the capabilities of the human tactile sense in
machines is an important step in enabling robotic
hands to reach the dexterity of the human hand,
as it will have a profound impact on human soci-
ety as machines become commonplace for physical
labor [1]. Additionally, for robots to successfully
interact with humans, they need to be perceived by
a human interlocutor as physically and psychologic-
ally plausible. In this case, biomimetics represents the
continuous advancement of the ‘body’ and the ‘mind’
of the robot to reproduce human-like capabilities.

Advances in the aforementioned areas have been
presented in detail at the international conference of
‘Living Machines’ over the years. The aim of the con-
ference is to present the development of artificial sys-
tems from interdisciplinary fields that are comparable
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to the functionalities, principles, and behaviors of liv-
ing organisms (hence the name Living Machines).
Indeed, there is a plethora of research domains that
have been presented over the years within the con-
text of the conference, and a first attempt to summar-
ize the various clusters of research has been presen-
ted in [2]. Celebrating the 10th anniversary of the
conference, six half-day workshops were organized
that presented major themes of the conference. Here,
we focus on the outcomes of the Robotics work-
shop9. The workshop brought together renowned
scientists to discuss the 10 years of progress and
future challenges in the fields of active touch and
vision perception, grasping and manipulation, neur-
omorphic vision systems, human–robot interaction,
brain–computer interfaces, and cognitive architec-
tures. In this perspective paper, we present the 10
years of progress and future challenges of some of the
key themes of the field presented in the workshop.
More specifically, the creation of artificial systems
that can robustly interact with their environment,
ranging from tactile sensing, grasping, and manip-
ulation to the creation of psychologically plausible
agents.

2. Robotic tactile sensing

Biomimetic tactile sensing is needed for the devel-
opment of autonomous robots capable of interact-
ing with the surrounding environment and reaching
human-like dexterity. These are easy tasks performed
by humans but they represent highly complex pro-
cesses for robots. Particularly, due to the challenge in
artificial tactile sensors tomimic the data formats that
can be captured by the human skin. For these reas-
ons, a variety of devices has been developed in the
last decade using different approaches including sens-
ing technologies, soft materials, sensor morphology
and data processing methods trying mimic recept-
ors and functionalities of human hands and fingers.
Examples of advanced tactile devices include the Tac-
Tip, Gelsight, BioTac, iCub skin, HEX-o-SKIN, and
GelTip which use single and combination of sensing
elements.

Soft biomimetic tactile sensors are sensing devices
based on principles distilled from the study of biolo-
gical touch [3, 4]. True biomimicry approaches seek
to the transduction principles of human skin into the
design of an artificial sensor. Soft robots are often
inspired by soft-bodied animals [5], therefore, bio-
mimetic tactile sensors are usually soft. There are,
however, many ways in which biological principles
can motivate soft designs. In recent years, the com-
bination of soft materials with optical and biological

9 Living Machines conference https://livingmachinesconference.
eu/2021/conference/.

principles underlying the sensor of touch has motiv-
ated the development of advanced biomimetic tact-
ile sensors. A clear example is the TacTip sensor [6],
which is described in the following sections.

2.1. Biomimicry of human touch with the TacTip
sensor
Recently, a close similarity has been found between
the neural responses from human touch and those
from the biomimetic TacTip skin [7]. Slow and rapid
adapting (SA and RA) mechanoreceptors underlie
our sense of touch. By modeling the activity of these
mechanoreceptors in the biomimetic skin, the study
found that the artificial tactile signals match those
measured from tactile nerves in the original pioneer-
ing studies of human touch from 40 years ago. This
was the first time that such a closematch between arti-
ficial and natural tactile skin had been found.

A companion study [8] focused on the comple-
mentary aspect that human skin has a vibrational
(RA-II) sense alongside the slow and rapid adapt-
ing (SA-I and RA-I) components of our skin. This
vibrational sense was built into the TacTip by using
tiny microphones embedded in the skin. This biomi-
metic tactile skin was tested for its capability to feel
the roughness of different textures. Both the artifi-
cial vibrational sense and the RA mechanoreceptors
could feel texture well, but the SA mechanorecept-
ors cannot. As this is also known to be the case for
human touch, the combined biomimetic tactile skin
acts more like human skin in combining spatial, tem-
poral, and vibration-sensing modalities.

2.2. The TacTip design
The TacTip design has evolved over a decade to diver-
sify into a family of tactile sensors, tactile hands,
and tactile robotic systems [6,17]. Two fundament-
als underlie its design and function-compliant mater-
ials and optical image sensors. First, the deforma-
tion of a soft sensing surface is transduced into a
movement of markers attached to pins on the inside
of that surface. Second, the movement of markers
is captured by an internally-mounted camera. The
fabrication process of the sensor surface is a key
aspect of this sensor going from a single-material
printed sensor body [15] to multi-material print-
ing approach [17]. Multi-material 3D printing was
crucial in easing the sensor fabrication, which led
to a rapid cycle of development, testing, and refine-
ment when combined with a simple, modular design
(figure 1).

2.2.1. Sensor outer skin (epidermis)
The original TacTip in 2009 [15] had a molded skin
with nodular pins on its underside, cast as one piece
from urethane rubber; the pin tips were (painstak-
ingly) painted white by hand, and the skin attached
to the sensor body by a cable tie. Later versions
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Figure 1. Development of the TacTip biomimetic tactile sensor. Left: relation to other types of tactile sensor; the TacTip uniquely
combines features of biomimetic [9, 10], soft [11, 12] and optical [13, 14] tactile sensors. © 2021 IEEE. Reprinted, with
permission, from [6]. Right: timeline for development from the original TacTip [15], to the 3D-printed version [16],
miniaturization for a robotic gripper [17], further miniaturization for anthropomorphic robot hands [18], open-sourced
3D-printed version [6] and open-sourced integration into a common base for GelSight/DIGIT and TacTip/DigiTac optical tactile
sensors [19]. Reproduced from [17]. CC BY 4.0. © 2021 IEEE. Reprinted, with permission, from [18]. © 2022 IEEE. Reprinted,
with permission, from [19].

included a skin made from multi-material 3D print-
ing: the sensing surface and inner pins were printed
in a black rubber-like material with attached pin tips
and mounted in hard white plastic. Numerous ver-
sions of the outer skin have been developed for the
TacTip including pin layouts, shapes/sizes, skin struc-
tures, and other modifications [6].

2.2.2. Sensor inner gel (dermis/subcutis)
The sensor skin is filled with a soft, optically-clear
silicone gel that gives the sensor tip elasticity, com-
pliance and allows the markers to be imaged. This
elastomer gel is held in place by a transparent rigid
acrylic seal on the underside of the tip. The hardness
of the elastomer varies and is analogous to the stiff-
ness contrast between the harder epidermis and the
softer dermis of human skin. This contrast underlies
the transduction of skin deformation into pin move-
ment: the outer surface bends to reorient the markers
on the pin tips, and rapidly reforms when unloaded.
Additionally, the inner gel protects the internal
electronic components of the sensor from damage,
mimicking the protective function of the human
subcutis.

2.2.3. Sensor camera and mount
The tip of the sensor, comprising the outer skin, elast-
omer gel, and sealing cap, ismounted on a 3D-printed
body that houses the camera and other electronics
and the camera used depends on the application.
Earlier versions utilized webcams like the Microsoft
Lifecam. Although such approaches eased construc-
tion, they resulted in bulkier devices (161mm) [20],
whereas more compact designs have been assembled
ever since (85mm) in newer models. The camera
choices ranged from disassembled LifeCams [17] to
high-performance, off-the-shelf ELP camera mod-
ules [21]. Multiple designs have been explored for

the TacTip to balance constraints on camera/lens size,
performance, connectivity, cost, weight, and hard-
ware availability [6].

The TacTip sensor has been integrated into a vari-
ety of robotic hands, which required innovation in the
use of a camera. For hands with large fingertips, such
as the Model-M2 [22], Model-GR2 [23] and Shadow
Modular Grasper [24], it was sufficient to use a cam-
era circuit board with wide-angle/short-focal-length
or fisheye lens. For tactile signals from multiple fin-
gertips, plug-and-play USB cameras are easier to use.
Current solutions include the ELP module (standard
TacTip), the JeVois camera for the 3-fingered Model-
O hand [25], and the Misumi Model SYD USB cam-
era integrated into the fingertips of an anthropo-
morphic Pisa/IIT SoftHand [18].

2.2.4. Modularity
A useful design feature of the redesigned TacTip
(2016) is to have a modular assembly so that indi-
vidual components can be adapted or re-used [17].
The skin is printed in a single structure attached to
a hard plastic casing, forming a tip that connects
to the TacTip base with a bayonet mount. The tip
(comprising the skin, gel, sealing cap, and plastic cas-
ing) is thus a modular component of the sensor that
is easily replaced, interchanged, or upgraded. Addi-
tionally, the tips can be either 3D-printed or mol-
ded, and can be fabricated in a variety of sizes, tex-
tures, or pin layouts. As a design, it can be an ideal
platform for tactile sensing investigation, we it can
be attached to industrial robots or integrated within
robot hands. Overall, the construction of the TacTip
is easy to assemble, requires some know-how and sol-
dering skills, but its modular design allows for cus-
tomizable and multi-material designs (3D printing)
and a wide range of materials for cheap and quick
bulk fabrication (molded skin).
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3. Robotic grasping andmanipulation

Robotic grasping has been studied extensively in the
literature as a manipulation primitive that immobil-
izes an object with respect to a robotic hand [27–33].
In the general process for grasping an object, a robot
hand positions its finger/palm links such that they
contact and apply forces at a particular set of points
on a given object. These contacts create a set of con-
straints on the motion of the object that can be ana-
lyzed to deduce whether the object is immobilized,
e.g. through form or force closure [34, 35]. This field
has seen an exponential growth of attention with
the progress made in areas of perception, planning,
and control crucial for grasping and manipulation
tasks. The interest from the general public, industries,
and government agencies has contributed to develop-
ing new applications and case scenarios from simple
pick-and-place to handling packages or assembly of
mechanical components. Nevertheless, the field has
not grown evenly; some challenges received or are
still receiving a great deal of attention, while others
remain unsolved and unpopular. The evolution of the
robotic grasping and manipulation field can be seen
in figure 2.

3.1. Robot mechanical design and software
Reliable grasping and manipulation in real-world
applications are still out of reach due to several reas-
ons. (a) At a mechatronic level, simple end-effectors,
such as parallel grippers eliminate model complex-
ity and redundancy at the cost of strong limitations
for object grasping and manipulation. Anthropo-
morphic end-effectors provide essential features for
manipulation, such as movable thumbs or rolling
fingers, but the control complexity and lack of
adequate sensing make these devices impractical.
(b) At an algorithmic level, the robotic manipula-
tion pipeline requires modules whose robustness and
resilience are challenged by even minimal changes
in the setup or environmental conditions. Further-
more, robots need to be capable of understanding
the state of the surrounding environment, however,
encoding any conceivable condition that a robot may
face is not a viable solution. Research suggests that
biological brains could work as Bayesian machines
[36, 37], offering generative models, whose priors
are combinations of model-based and data-driven
experience.

3.2. Generative models, perception and grasping
strategies
Generative models (GMs) such as kernel density
estimation (KDE) or deep learning (DL) are well-
established robotics tools. GMs attempt to learn the
true distribution of data from sampled observations.
When faced with previously unseen data, they rely
on learned features to find common patterns and

compute valid candidate solutions. Training GMs for
robotics is challenging due to the need for physical
interaction data, which is hard to generate from real
and unstructured environments.

A significant amount of work has been dedicated
to robot perception to deal with unstructured envir-
onments using depth cameras and high-precision
tactile sensors [40, 41]. Nevertheless, the robot per-
ception process can be affected by sensor limitations
such as occlusions, shiny or translucentmaterials, and
noisy tactile data. Rather than attempting to elimin-
ate the source of uncertainty, robots need to learn
how to deal with it. In [38], a deep learning frame-
work used in a simulated robot drummer collects
audio, video, and proprioception data to retrieve the
missing information from the other inputs when a
modality is faulty (figure 3(a)). Robots should use
perception uncertainty as an indicator to modify
their behavior, where high uncertainty should lead to
more conservative strategies. For example, reaching
into the fridge to grasp a bottle that they can only
partially see and how this would affect their reach-
ing strategy. Robots can achieve this by integrating
perception uncertainty from their sensors into their
motion planner [39,42–45] (figure 3(b)). Perception
uncertainty has been explored with the humanoids
Vito (Centro Piaggio at the University of Pisa) and
Boris (Intelligent Robotic Lab at the University of
Birmingham) (European FP7 grant PaCMan [46]).
In [47], the robots outsmart in-hand self-occlusions
and vision-driven uncertainty by combining visual
clues and clever tactile exploration of the object’s
surface.

Over the last decade, one of the breakthroughs
in grasping and manipulation was to shift from
a grasping-centered approach to a contact-centered
approach formulations [48]. This change had implic-
ations in terms of the world models, planners, con-
trollers, and sensing and perceptionmethods. A com-
prehensive review of this specific field can be found
in [49].

3.3. Grasping-centered approach to robotic
grasping andmanipulation
The grasping-centered approach offers multiple
advantages to develop robotic manipulation sys-
tems. First, immobilizing the object to be grasped
simplifies the problem of motion generation for the
manipulator, allowing it to be cast as a collision-
free path planning problem, solvable using e.g.
rapidly-exploring random trees [50] or probabil-
istic roadmaps [51]. This simplifies the problem
of modeling the world since only a geometric/
volumetric model is necessary to check for colli-
sion. This approach simplifies the estimation of
the world state, required only at the beginning
of robot motion through a vision/depth sensor
[26, 52], enabling the sense-plan-act paradigm and
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Figure 2. The figure shows the evolution of the robotic grasping and manipulation field. The research before early 2000 should be
considered seminal work and primarily achieved with analytic approaches on a grasp-centered perspective. In 2008, the work in
Saxena et al [26] spawned the idea of looking for visual features for synthesizing grasp poses. The availability of depth sensors in
2009 introduced new 3D features. In early 2010, the paradigm switched to contact-centered grasping, which still dominates the
field. Deep learning has revolutionized our perception capabilities and action-selection learning but at the cost of being
data-inefficient. The late trend is to investigate more data-efficient methods such as one- or few-shot learning. Very recently,
autonomous grasping and decision-making has been merged with HRI to combine users’ cognitive abilities with reliable
automation. In 2022, aerial transportation and payload stabilization have become extremely popular, catching the grasping
community’s attention.

Figure 3. (a) Top: simulation setup for drumming task in Gazebo. The colored surfaces represent target regions that generate
audio. Bottom: schematic of our framework. Input is given as a drum tab, or desired beats for each element of the drumkit.
Reproduced from [38]. CC0. (b) Justin robot in starting configuration, the mug to be grasped (glued on the desk), and the depth
camera (left). Justin executes a successful reach-to-grasp trajectory which leads to grasping the mug (right). © 2013 IEEE.
Reprinted, with permission, from [39].

‘open-loop’ manipulation. Consequently, leading
robotic manipulation systems [53–57], and soft-
ware [58, 59] focused on this grasping-centered pick-
and-place manipulation approach. The grasping-
centered approach has also significant limitations.
First, it restricts robotic manipulation to pick-and-
place operations, whereas humansmanipulate objects
in a variety of ways, e.g. pushing, toppling, bend-
ing, or folding. Second, this approach fails in uncer-
tain and cluttered environments, where collision-free

motion is difficult to achieve. Third, static volumetric
representations of the world limit the interaction to
mainly rigid objects. Fourth, this approach makes
it difficult to integrate continuous contact-sensing
information into the planning and control processes.

3.4. Contact-centered approach to robotic
manipulation
The contact-centered approach overcomes the limit-
ations of the grasping-centered approach by viewing
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Figure 4. (a) Object search by manipulation. The robot is searching for a target object (highlighted by the bounding box) on the
table, but its view is occluded (drawn as gray regions) by other objects. The robot must remove these objects to search for the
target. Objects may block the robot’s access to other objects. Reproduced from [60], with permission from Springer Nature.
(b) Real-time online re-planning for grasping under clutter and uncertainty. Top row: Naive re-planning (no added uncertainty)
fails to grasp the target. Bottom row: Online re-planning succeeds. © 2018 IEEE. Reprinted, with permission, from [61].

grasping and manipulation as a sequence of con-
tact interactions. This approach builds on the non-
prehensile manipulation method [62] with early
works on quasi-static pushing and dynamic inter-
actions with objects [63–66]. The contact-centered
approach includes grasping actions and views them
as contact-interactions with the object, while non-
prehensile manipulation excludes grasping.

Starting in the 2010s, the contact-based manipu-
lation operations gained awider interest for trajectory
optimization and optimal control methods such
as the iterative linear quadratic regulators and dif-
ferential dynamic programming [67], and direct
transcription-based methods [68, 69]. There were
also efforts to extend existing motion planners
with non-prehensile primitives and pushing primit-
ives [70–73]. Such approaches made possible what
is called ‘manipulation in clutter’, where a robot
interacts with a pile of objects simultaneously to
retrieve a particular object [74–79] or to search for
an object obstructed from view [60] (figure 4(a)).
The Amazon Picking Challenge in 2015 [80] raised
interest in robotic manipulation in warehouses,
where robots needed to performmanipulation inside
cluttered multi-object shelves and packages. This fur-
ther raised the interest of manipulation in clutter
(figure 4(b)) [81–89,104]. The deep-learning revolu-
tion also affected robotic manipulation. The react-
ive policies that can be learned through reinforce-
ment learning are a good match to contact-based
manipulation. While the collision-free motion of
the grasp-centered approach did not require a react-
ive framework, the stochasticity of contact interac-
tions [90] made it difficult to follow a pre-planned
control sequence. This motivated the training of
deep-reinforcement-learning policies for contact-
based manipulation [91–94]. The contact-centered
approach still has challenges and opportunities
including the following ones.

3.4.1. World models including contact interactions
This approach requiresmodeling contact interactions
which can use simplified quasi-static pushing models
[95], or general dynamic simulations such as offered
by Mujoco [96], PyBullet [97], or DART [98]. The
computational expense of these simulations is chal-
lenging, and motivated recent work on coarse phys-
ics predictions during manipulation planning [99].
Toussaint et al [100] use different abstractions of
physics for manipulation planning with tool use.
There is a recent interest to learn such dynamicsmod-
els [101, 102] instead of running computationally
expensive simulations during planning.

3.4.2. Reactive planning and control
Contact interactions are difficult to predict, and
therefore a generated motion plan can quickly
become invalid under unexpected object motion.
This differs from the grasp-centered approach,
where the object either does not move or moves
rigidly attached to the robot hand. Therefore,
while the grasping-centered approach requires only
one planning cycle, the contact-centered approach
requires updating often, usually achieved using
model-predictive-control approaches [61, 67, 69], or
reactive policies with reinforcement-learning-based
methods.

3.4.3. Continuous estimation of objects’ state
Reactive execution requires the continuous estima-
tion of the environment’s state. As opposed to the
grasping-based approach, which requires a single
estimation of the object poses from an initial visual
snapshot, contact-basedmanipulation requires track-
ing the object poses over time [103, 105].

3.4.4. Use of contact sensors
Contact-based manipulation offers more opportun-
ities to use tactile sensing during manipulation
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[103, 106, 107]. Existing tactile sensors usually cover
a small area on the robot end-effector (e.g. the fin-
gertip), which makes it difficult to rely on them for
continuous information during manipulation.

3.4.5. Extensions to non-rigid objects
The approach ofmodeling object and contact dynam-
ics supports extensions to deformable object manip-
ulation, which has seen growing interest [108–111]. A
challenge is the computational expense of the simula-
tion and state perception of deformable objects.

3.5. Geometrical features and learning from
demonstration
Geometrical features from the physical object con-
tacts can be obtained with the contact-centered
approach, and are typically extrapolated around the
contact points in a paradigm called learning from
demonstration. Here, a teacher presents a feasible
and robust contact to the robot; from the geomet-
rical features, enough statistic is acquired to learn
contact densities in a one-shot fashion as generat-
ive contact models [112, 113]. Since many objects
share many local geometrical features, these mod-
els tend to generalize very well within and across
object categories. Task-dependent constraints can be
added in the formulation as optimization proced-
ures, but this requires a good knowledge of the
task and ad-hoc solutions. Very recently, a contact-
based formulation has also been successfully applied
for the first time to the problem of aerial grasping
[114]. Although it should be considered a seminal
work, the proposed framework extends the one-shot
learning paradigm enabling unmanned aerial vehicles
with cable-suspended passive grippers to compute the
attach points on novel payloads for aerial transport-
ation with no need for handcrafted task-dependent
features.

3.6. Internal models for prediction while
interacting with objects
Contact-based approach and generative models have
been investigated with internal models to predict the
outcome of the interaction with an object in both
known and novel contexts. This approach is inspired
by the way that humans learn internal models of
the world from data-driven experience and curiosity-
driven interaction. In [115, 116], the contact-based
formulation enabled the learning of an internalmodel
for predicting push motions of previously unseen
objects, while in [117] a planner uses black-box
motion predictors tomove objects to the desired con-
figurations. Although the theory behind motion pre-
diction is well-established, the existing methods are
not yet used in industrial applications, as no robot
can insert a box onto an over-the-head store shelf by
exploiting push operations and the relative contacts
and forces generated [118].

3.7. Grasping andmanipulation in physical
human–robot interaction
Another field that has shown growing interest is that
of physical human–robot interaction (pHRI) [119],
where a human operates with a robot to accomplish
manipulative tasks. Remote pHRI is crucial to guar-
antee the safety of a human operator in dangerous
tasks [120–122]. Intuitive and accessible interfaces
are required in pHRI to allow the robot to reliably
interact with the human and estimate their intention
from biological and behavioral clues and map this
into appropriate robot motion commands [123]. For
example, an AI assistant for teleoperation responds to
the user’s motion intentions in a predict-then-blend
fashion by perceiving a cluttered scene, predicting
candidate grasps for the visible objects, and, for each
grasp, computing a feasible motion plan [124, 125].

4. Biomimetics in the body andmind of
social robots

Social robotics and human–robot interaction (HRI)
are two other emerging fields that have gained
increased interest over the past years. The evolution
of the field of HRI is presented in figure 5. The impact
of social robotics is two-fold. On the one hand, it
can embody human-like reasoning and mimicking of
human behaviors and movements in a robot, result-
ing in the creation of an agent that satisfies human
expectations and therefore, can socially resonate with
humans. On the other hand, such agents can be used
as a testbed for testing theories to better understand
human social cognition using a systematic approach
[126]. Thus, both the robot’s morphology and beha-
vior play a crucial role in perceived interactions and
the creation of Living Machines.

The robot’s morphology can be used to leverage
the knowledge of human communicative behavior
[139] and is critical for establishing successful
communication [140]. The versatility of possible
design strategies employed in HRI scenarios can bias
the interaction and may affect the user’s perception
and expectations about its social capabilities. The
general disposition is to design robots that allow
humans to anthropomorphize them since anthro-
pomorphism occurs naturally in humans [141], and
their appearance highly depends on the task they are
required to perform. For example, zoomorphic social
robots, like the robotic seal Paro can be beneficial
to the mental healthcare of the elderly [142], while
humanoid robots with cartoon-like features such as
the Zeno robot or the Nao have been extensively
used in Child-Robot Interactions (CRI) [143, 144].
These robots have limited expressiveness compared to
more sophisticated humanoid robots, raising fewer
expectations about their cognitive capabilities, and
so inverting the negative reaction described by the
Uncanny Valley hypothesis [127].
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Figure 5. The figure shows a short summary of the evolution of the field of human–robot interaction over the years. The work
presented before 2000 can be considered as seminal work that paved the road for the development of the field of social robotics.
For example, the Uncanny Valley [127] is still often used to explain the potential rejection of anthropomorphic robots.
Additionally, early enough, Affective computing as a field [128] highlighted the importance of the study, design, and development
of emotional systems, while embodied interactions are crucial for social cognition [126]. From that point on, a plethora of
research fields emerged, ranging from Socially Assistive robotics [129], where robots offer support to improve healthcare and
therapy outcomes, including Autism [130], to educational robots [131], while the effects of human, robot and environmental
factors that affect HRI and trust became crucial in the field [132]. In parallel to these research fields and with the advancement of
technology, a variety of robotic platforms were developed not only as research platforms but also to serve the purpose and
application for which they were designed. Early examples include Kismet (the first sociable robot with facial expressions), and
other anthropomorphic robots such as the Nao, the iCub, and zoomorphic ones like the Paro. As time passes, we observe also the
development of hyper-realistic humanoids such as Sophia, Ameca, or Abel. Finally, the generation of believable and social
behavior was highly influenced by the implementation of machine learning algorithms as well as cognitive architectures such as
ACT-R/E [133], Soar [134], SEAI [135] or DAC [136] on artificial agents that interacted with humans.

Figure 6. (a) A detail of Abel’s head. On the left the head is covered with bioinspired skin-like material; on the right the internal
mechatronics exposed, designed to perform facial expressions, gaze behavior, and lip-sync speaking. Reproduced from [137].
CC BY 4.0. (b) Experimental setup to understand human trust in machine partners: a humanoid robot with high human-likeness
(FACE), a human counter-part (Human), and a computer-box machine (Computer-Box). Reproduced from [138]. CC BY 4.0.

Nonetheless, the capability to express human-
like emotions is particularly important in education,
in interactions with individuals with neurodevel-
opmental disorders, e.g. autism spectrum disorder
[145, 146] and attention deficit hyperactivity disorder
[147], as well as individuals suffering from neurode-
generative diseases or presenting milder symptoms
of dementia [148, 149]. The development of social
robots that closely resemble humans has demon-
strated to be effective in various HRI scenarios [150],
and their similarity to humans becomes crucial if we
consider their role in the activation of motor res-
onance, which is directly linked with social reson-
ance and empathy [151]. Therefore, we can expect

an increased interest in the design and development
of highly realistic humanoid social robots, such as
Abel, which is currently under development [137]
(figure 6(a)).

Part of the research interests in HRI scenarios
is the investigation of decision-making [152], per-
ceived interactions [153, 156] and the development
of trust [138, 154] (figure 6(b)). These examples
identify anthropomorphism (or ‘humanness’) as a
key component that improved acceptance and trust.
This highlights the need for further studies of the
effects of human likeness that go beyond the sim-
plification of the Uncanny Valley hypothesis [155]
by evaluating long-term interactions in real-world
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scenarios with a deeper analysis of human emotional
reactions. The real-time extraction and analysis of
the user’s physiological parameters can give insights
into the internal state of the human and allow the
robot to adjust its behaviors accordingly. To do so,
researchers typically employ wearable or contactless
sensors for the acquisition of biosignals such as elec-
trodermal activity, electroencephalography, the ana-
lysis of thermal images, and state-of-the-art audi-
ovisual systems. Many works already confirmed the
effectiveness of analyzing these responses to optim-
ize the behavior of social robots [157–161]. Con-
sequently, a desirable evolution for social robots is
the integration of such sensors, to augment both the
robot’s body and ‘mind’. By extending the robot’s cog-
nitive and decision-making system with the real-time
extraction and analysis of these physiological para-
meters, we can achieve a more reliable assessment of
human emotions. This, in turn, will lead to a better
adaptation of the robot to the social context in which
it is immersed.

Nonetheless, a hyper-realistic morphology with
advanced expressive possibilities, and enhanced with
multi-modal perception, does not suffice for robots
to be considered social agents. For a robot to be
accepted as a social partner, it needs to be autonom-
ous, make decisions, and perform actions without
human intervention, and therefore, their cognitive
system plays an essential role. What emerges from
the recent literature regarding control architectures
for social robots, is the confirmation of a subdivision
between two suitable approaches. The data-driven
approach of machine learning algorithms (e.g. deep
learning, deep reinforcement learning) has proved to
be fundamental for the training of cognitive mod-
ules dedicated to attention [162], the extraction of
social cues from the environment [163], the classi-
fication of the extracted information [164, 165], as
well as imitation and learning [166]. This approach
is typically used for the emulation of quick or uncon-
scious human behaviors and capabilities, but neural
networks can also be useful to enhance artificial
social agents with creativity and imagination, as in
the case of generative adversarial networks, already
used to create images and videos starting from a
known dataset [167]. A symbolic approach is instead
preferred for high-level reasoning, decision-making,
behavior generation, and the modeling of emotions
influence decisions [168–170]. This approach is more
suitable to encompass mechanisms that allow for
the generation of plausible social behaviors, whose
biological basis might be too complex or unknown
but can be easily described semantically, like emo-
tional states, beliefs, or goals. An example is the dis-
tributed adaptive control (DAC) biologically groun-
ded cognitive architecture that has been integrated
into social robots for the generation of psycho-
logically valid behaviors on a variety of different
interaction scenarios [136, 171, 172], and the Social

Emotional Artificial Intelligence (SEAI), an hybrid
cognitive system inspired by neuroscience theories
on human emotional processes and decision-making,
specifically conceived for social and emotional robots
[135]. Such integrated architectures and approaches
(i.e. encompassing all sensorimotor aspects as well
as cognitive processes) are necessary for generating
plausible reactions and adaptive behaviors of robots
in complex, dynamic, and uncontrolled social con-
texts, to be able to create socially competent Living
Machines.

5. Living machines: a sneak peek of the
future

We are living in undoubtedly exciting times, where
research in biomimetic systems and a plethora of
interdisciplinary fields are advancing rapidly. For
this reason, the Living Machines conference seeks to
provide an environment that promotes the presenta-
tion, evaluation, and discussion of cutting-edge and
next-generation technologies. To celebrate its 10th
anniversary, we organized a series of workshops, and
in this perspectives paper, we present the 10 years
of progress, challenges, and future of artificial sys-
tems that can robustly interact with their environ-
ment. Examples include the presented novel approach
for robotic tactile sensing based on the human hand
to acquire rich contact information, a plethora of pro-
gress and current approaches for robotic grasping and
manipulation, as well as current advancements in the
creation of social synthetic agents.

The next decade will be evenmore exciting for the
field of robotic tactile sensing, grasping, and manip-
ulation. Although there are fundamental problems to
be addressed in intelligent robotic interaction with
complex environments, once solved, they will open
up many application areas across engineering and
robotics. In the case of tactile sensing, one key prob-
lem is that there is a huge gap between what is achiev-
able in research laboratories and what is known about
human dexterity and our sense of touch. This will
require progress toward two interconnected goals: (a)
to advance knowledge of how our sense of touch leads
to haptic intelligence by embodying those capabilit-
ies in robots; and (b) to improve the intelligent dex-
terity of robots with accessible robot hardware and
software. Reaching human-like levels of dexterity has
been the vision for industrial robotics for years and
the use of biomimetic touch to achieve that goal has
driven developments in robotic tactile sensing since
the 1970s. A combination of advances in soft robot-
ics, biomimetic tactile sensing, and AI could enable
that vision to become reality.

For robotic grasping and manipulation, we
observe a tendency toward more flexible and reliable
approaches [173] as opposed to highly-engineered
solutions. At the current state, grasping with imper-
fect perception is still one of the main issues that
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slow progress and it will require both research and
engineering work [174]. In-hand manipulation is
still at its dawn. Clever designs of tools and end-
effectors can achieve specific in-hand manipulation,
but without adequate sensory feedback and clever
control strategies, this problem remains one of the
most challenging tasks a robot can face. Hardware
and software integration is still tedious and time-
consuming, but multiple efforts have been made
to alleviate it with tools such as the Robot Operat-
ing System [175], Yet Another Robot Platform [176]
that facilitate communication, synchronization, and
modularity between software and hardware. At this
pace, it is safe to assume that robust and precise grasp-
ing will be consolidated for many different scenarios
and applications with advanced robot pick-and-place
in the agricultural industry and delivery services.
Beyond pick-and-place tasks, many of the current
solutions will fall apart. Grasping for manipulation
purposes needs planning while considering task-
dependent constrains. Many of these constrains are
hard to encode and on-the-fly generation of contacts
yields unreliable solutions even for known objects.
This will remain a hard challenge for the next decade
on which many researchers will focus their atten-
tion. Finally, in the last decade, we have observed
an increasing interest in pHRI with exoskeletons and
prosthetic devices getting smarter and a large amount
of effort has been and will be, dedicated to investigat-
ing more intuitive interfaces for manipulation as well
as augmented and virtual reality technology.

Finally, the future perspective for social robots
will focus on the development of advanced cognit-
ive systems combinedwith perceptive capabilities that
will increase the amount and reliability of the inform-
ation obtained from their social environment. Par-
ticular emphasis will be given to the social robots’
personality and behavior design, representation of
emotions and their influence on the robot’s decision-
making, and applications in real-world settings. Such
approaches will enhance the psychological believabil-
ity of expressive social robots, bringing them one step
closer to the creation of Living Machines.
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