

This is a repository copy of *Tuning the excited state of water-soluble IrIII-based DNA intercalators that are isostructural with [RuII(NN)2(dppz)] light-switch complexes.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/196159/</u>

Version: Supplemental Material

Article:

Stimpson, S., Jenkinson, D.R. orcid.org/0000-0002-2237-4578, Sadler, A. et al. (4 more authors) (2015) Tuning the excited state of water-soluble IrIII-based DNA intercalators that are isostructural with [RuII(NN)2(dppz)] light-switch complexes. Angewandte Chemie International Edition, 54 (10). pp. 3000-3003. ISSN 1433-7851

https://doi.org/10.1002/anie.201411346

This is the peer reviewed version of the following article: Stimpson, S., Jenkinson, D.R., Sadler, A., Latham, M., Wragg, D.A., Meijer, A.J.H.M. and Thomas, J.A. (2015), Tuning the Excited State of Water-Soluble IrIII-Based DNA Intercalators that are Isostructural with [Rull(NN)2(dppz)] Light-Switch Complexes. Angew. Chem. Int. Ed., 54: 3000-3003, which has been published in final form at https://doi.org/10.1002/anie.201411346. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley **Ruline** Library must be prohibited.

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

$\begin{array}{c} \mbox{Conventional and cyclometalated Ir^{III}-based DNA intercalators that are isostructural} \\ & \mbox{with } [{\rm Ru}^{II}({\rm NN})_2({\rm dppz})] \mbox{ light-switch systems} \\ & \mbox{Supplementary information} \end{array}$

Sasha Stimpson,¹ Dan Jenkinson,¹ Andrew Sadler,¹ Anthony J. H. M. Meijer,¹ and Jim A. Thomas^{1, *}

¹Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom (Dated: November 21, 2014)

^{*} james.thomas@sheffield.ac.uk

CONTENTS

S1. Experimenta	al Details	3
S1.1. Synth	nesis of $[Ir(bpy)_2(dppz)](PF_6)_3; [1](PF_6)_3$	3
S1.2. Synth	nesis of $[Ir(phen)_2(bppz)](PF_6)_2; [2](PF_6)_2$	3
S2. Computation	nal Details	3
S2.1. Comp	putational References	3
S3. Additional I	Experimental Figures	4
S4. Additional O	Computational Figures	6
S5. $[Ir(bipy)_2(b]]$	$ppz)]^{2+} (S_0) [2']$	8
S5.1. Gene	ral Information	8
S5.2. Carte	esian Co-ordinates (XYZ format)	8
S5.3. Front	ier Orbitals	9
S6. $[Ir(bipy)_2(b]]$	$(ppz)^{2+}(T_1)$ [2']	11
S6.1. Gene	ral Information	11
S6.2. Carte	esian Co-ordinates (XYZ format)	11
S7. $[Ir(bipy)_2(dy)]$	$[ppz)]^{3+} (S_0) [1]$	13
S7.1. Gene	ral Information	13
S7.2. Carte	esian Co-ordinates (XYZ format)	13
S7.3. TD-I	OFT calcuations	14
S7.4. Front	tier Orbitals	16
S8. $[Ir(bipy)_2(d]$	$({\rm ppz})^{3+} ({\rm T}_1) [1]$	17
S8.1. Gene	ral Information	17
S8.2. Carte	esian Co-ordinates (XYZ format)	17
S9. $[Ir(phen)_2(b$	$(ppz)^{2+} (S_0) [2]$	19
S9.1. Gene	ral Information	19
S9.2. Carte	esian Co-ordinates (XYZ format)	19
S9.3. TD-I	OFT Calculations	20
S9.4. Front	ier Orbitals	22
S10. $[Ir(phen)_2(b$	$(ppz)]^{2+} (T_1) [2]$	23
S10.1. Gene	ral Information	23
S10.2. Carte	esian Co-ordinates (XYZ format)	23
S11. $[Ru(bipy)_2(a)]$	$({\rm Appz})]^{2+}$ (S ₀)	25
S11.1. Gene	ral Information	25
S11.2. Carte	esian Co-ordinates (XYZ format)	25
S12. $[\operatorname{Ru}(\operatorname{bipy})_2(\operatorname{ot})]$	$({\rm appz})]^{2+} ({\rm T}_1)$	27
S12.1. Gene	ral Information	27
S12.2. Carte	esian Co-ordinates (XYZ format)	27

S1. EXPERIMENTAL DETAILS

To a sample of $[Ir(bpy)_2(OTf)_2](OTf)$ (0.58 g, 0.61 mmol) suspended in 2-propanol (60 mL) was added dipyrido[3,2-a:2,3-c]phenazine (0.18 g, 0.61 mmol). The mixture was heated to reflux for 72 hours. After allowing the solution to return to room temperature, it was evaporated to dryness to give a brown/green solid. Distilled water (30 mL) was added to the solid and dissolution of the majority was aided by heating and stirring. The orange solution was filtered before adding an excess of ammonium hexafluorophosphate to give instant precipitation of the product as a yellow solid, collected by vacuum filtration. (0.36 g, 0.30 mmol, 50%), δ H (400 MHz, CD₃CN) 9.98 (dd, 2H) 8.75 (td, 2H) 8.70 (m, 2H) 8.57 (dd, 2H) 8.49 (dd, 2H) 8.38 (m, 2H) 8.25 (dd, 2H) 8.16 (m, 2H) 7.84 (m, 2H) 7.77 (m, 2H) 7.71 (m, 2H) 7.56 (m, 2H), TOF MS ES+; m/z (%): 1077 (7) [M⁺ - (PF₆)] 931 (14) [M⁺ - (PF₆)₂] 466 (12) [M²⁺ - (PF₆)₂] 262 (51) [M³⁺ - (PF₆)₃].

S1.2. Synthesis of $[Ir(phen)_2(bppz)](PF_6)_2; [2](PF_6)_2$

To a sample of $[Ir(phen)_2(OTf)_2](OTf)$ (0.11 g, 0.12 mmol) suspended in 2-propanol (50 mL) was added benzo[a]pyrido-[2,3-c]phenazine, (0.034 g, 0.12 mmol). The mixture was heated to reflux for 72 hours. After allowing the solution return to room temperature, it was evaporated to dryness to give a brown/green solid. Distilled water (30 mL) was added to the solid and dissolution was aided by heating and stirring. The orange solution was filtered before adding an excess of ammonium hexafluorophosphate to give instant precipitation of the product as a pale brown solid, collected by vacuum filtration. The solid was redissolved in acetonitrile (3 mL) and passed through an alumina plug). 0.05 g, 0.044 mmol, 37%, δ H (400 MHz, CD₃CN) 9.98 (dd, 2H) 8.75 (td, 2H) 8.70 (m, 2H) 8.57 (dd, 2H) 8.49 (dd, 2H) 8.38 (m, 2H) 8.25 (dd, 2H) 8.16 (m, 2H) 7.84 (m, 2H) 7.77 (m, 2H) 7.71 (m, 2H) 7.56 (m, 2H); TOF MS ES+; m/z (%): 393 (100) [M²⁺]. Spectroscopic and DNA binding studies were performed on samples that were additionally purified through HPLC: a sample of the product was dissolved in acetonitrile and eluted through a column initially using 15% acetonitrile in water, which was increased over 20 minutes to 60% organic phase with a flow rate of 17 ml/min. The major peak, which began to elute off at 11.5 minutes as detected by UV/Vis spectroscopy was collected. Column used: reverse phase Walkers XBridgeTMPrep C18 5 μ m OBDTM 19x250 mm.

S2. COMPUTATIONAL DETAILS

Density functional theory (DFT) calculations were performed using Gaussian09, version D.01.^{S1} Gaussian was compiled with Gaussian-supplied versions of BLAS and ATLAS.^{S2} The B3LYP^{S3} functional was used throughout with the GD3 correction^{S4} to account for dispersion interactions, whereby it is noted that in this case this correction did not change the answers significantly compared to the bare B3LYP functional. The 6-311G^{**} basis set^{S5} was used on all C, N, and H. A Stuttgart-Dresden pseudopotential^{S6} was used on Ru throughout. This computational procedure was found to give good correlation with experiment in previous work.^{21,28,S7} The starting atomic coordinates of complex 1 are based on previous, similar systems.²¹ All the calculations performed on these systems were done using water as the solvent via a polarizable continuum model (PCM)^{S8} using the standard parameters as supplied by Gaussian. Visualization was done by Gaussum v2.5^{S9} for the TD-DFT spectra, Jmol^{S10} and Povray^{S11} for the geometries. Finally, supporting information was created using in-house developed software based on the OpenEye toolkit.^{S12}

The following procedure was followed. First, complexes 1, 2, and 2' were optimized in their singlet ground state. Harmonic frequencies were calculated upon convergence. No imaginary frequencies were found, confirming the structure as a minimum. From the optimized S_0 geometry a number of calculations were performed. First, a time-dependent DFT^{S13} calculation was performed with 100 states included to obtain the absorption spectrum. Its absorption spectrum and a breakdown of the states is given below. For 2' no TD-DFT calculation was performed.

From each S_0 geometry geometry optimizations for the T_1 states were performed. Again, frequencies were calculated in the harmonic approximation, which confirmed the structures as minima.

S2.1. Computational References

S1. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- S2. R. C. Whaley, A. Petitet. Software: Practice and Experience. 35, 10 (2005); R. C. Whaley, A. Petitet, J. J. Dongarra. Parallel Computing. 27, 3 (2001).
- S3. A. D. Becke. J. Chem. Phys. 98, 5648 (1993).
- S4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 132 (2010) 154104.
- S5. A. D. McLean, G. S. Chandler. J. Chem. Phys. 72, 5639 (1980); R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72, 650 (1980).
- S6. X. Y. Cao, M. Dolg. J. Chem. Phys. 115, 7348 (2001); A. Nicklass, M. Dolg, H. Stoll, H. Preuss. J. Chem. Phys. 102, 8942 (1995).
- S7. H. Ahmed, A. J. H. M. Meijer, J. A. Thomas, Chem. Asian J. 6, 2339 (2011); S. P. Foxon, C. Green, M. Walker, A. Wragg, H. Adams, J. A. Weinstein, S. C. Parker, A. J. H. M. Meijer, J. A. Thomas, Inorg. Chem. 51, 463 (2012); Jonathan Best, Igor V. Sazanovich, Harry Adams, Robert D. Bennett, E. S. Davies, Anthony J. H. M. Meijer, M. Towrie, S. A. Tikhomirov, O. V. Bouganov, Michael D. Ward and Julia A. Weinstein, Inorg Chem, 49, 10041 (2011).
- S8. B. Mennucci, J. Tomassi. J. Chem. Phys. 106, 5151 (1997); M. Cossi, V. Barone, B. Menucci, J. Tomassi. Chem. Phys. Lett. 286, 253 (1998).
- S9. N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comp. Chem., 29, 839 (2008).
- S10. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ [last accesssed: 23 Oct 2014].
- S11. Persistence of Vision Pty. Ltd. (2004). Persistence of Vision (TM) Raytracer. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia. http://www.povray.org/ [Last accessed: 23 Oct 2014].
- S12. OEChem, version 1.7.4, OpenEye Scientific Software, Inc., Santa Fe, NM, USA, www.eyesopen.com, 2010 [Last accessed: 23 Oct 2014]; J.A. Grant, J.A. Haigh, B.T. Pickup, A. Nicholls and R.A. Sayle, J. Chem. Inf. Model., 46, 1912 (2006).
- S13. R. E. Strattmann, G. E. Scuseria, M. J. Frisch, J. Phys. Chem., 108, 4439 (1998); R. Bauernschmidt, R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996); M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys., 108, 4439 (1998).

S3. ADDITIONAL EXPERIMENTAL FIGURES

FIG. S1. Measured absorption spectra for ${\bf 1}$ (panel A) and ${\bf 2}$ (panel B).

FIG. S2. Overlay between ${\bf 1}$ (colour) and its Ru-equivalent (grey).

FIG. S3. Overlay between ${\bf 1}$ (colour) and ${\bf 2'}$ (grey) for the singlet ground state.

FIG. S4. Overlay between 1 (colour) and 2' (grey) for the first triplet state.

FIG. S5. Computed absorption spectra for ${\bf 1}$ (green) and ${\bf 2}$ (red).

S5.1. General Information

SMILES

Formula:Charge:Multiplicity:Energy:Number of imaginary frequencies:

S5.2. Cartesian Co-ordinates (XYZ format)

-1989.90248774 a.u.

0

73

$\begin{array}{c} 5.34148216\\ 0.53817242\\ 0.42618629\\ -0.52134275\\ 1.61831057\\ 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	$\begin{array}{c} 0.89353341\\ 0.81163585\\ -1.80099404\\ -2.14022398\\ -2.27211738\\ -2.96778274\\ -1.86535764\\ -2.23049808\\ -0.96594447\end{array}$	$\begin{array}{c} -1.07294965\\ -1.04736996\\ 2.06811237\\ 2.47018814\\ 2.64359522\\ 3.47389555\\ 2.17361879\\ 2.62364721\\ 1.0004757\end{array}$
$\begin{array}{c} 0.53817242\\ 0.42618629\\ -0.52134275\\ 1.61831057\\ 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	$\begin{array}{c} 0.81163585\\ -1.80099404\\ -2.14022398\\ -2.27211738\\ -2.96778274\\ -1.86535764\\ -2.23049808\\ -0.96594447\end{array}$	-1.04736996 2.06811237 2.47018814 2.64359522 3.47389555 2.17361879 2.62364721
$\begin{array}{c} 0.42618629\\ -0.52134275\\ 1.61831057\\ 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	-1.80099404 -2.14022398 -2.27211738 -2.96778274 -1.86535764 -2.23049808 -0.96594447	$\begin{array}{c} 2.06811237\\ 2.47018814\\ 2.64359522\\ 3.47389555\\ 2.17361879\\ 2.62364721\\ 1.0004557\end{array}$
$\begin{array}{c} -0.52134275\\ 1.61831057\\ 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	-2.14022398 -2.27211738 -2.96778274 -1.86535764 -2.23049808 -0.96594447	$\begin{array}{c} 2.47018814\\ 2.64359522\\ 3.47389555\\ 2.17361879\\ 2.62364721\\ 1.00004555\end{array}$
$\begin{array}{c} 1.61831057\\ 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	-2.27211738 -2.96778274 -1.86535764 -2.23049808 -0.96594447	$\begin{array}{c} 2.64359522\\ 3.47389555\\ 2.17361879\\ 2.62364721\\ 1.00004555\end{array}$
$\begin{array}{c} 1.56642413\\ 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	-2.96778274 -1.86535764 -2.23049808 -0.96594447	3.47389555 2.17361879 2.62364721
$\begin{array}{c} 2.85956645\\ 3.77282667\\ 2.93542910 \end{array}$	-1.86535764 -2.23049808 -0.96594447	2.17361879 2.62364721
3.77282667 2.93542910	-2.23049808 -0.96594447	2.62364721
2.93542910	-0 96594447	1 0000 4555
	0.00001111	1.09994555
4.20666552	-0.48761761	0.55110019
6.50078630	-0.46284175	0.56078827
7.73907328	-0.89884377	1.10190368
7.71810722	-1.59518206	1.93139517
8.91750908	-0.43724385	0.57231015
8.91826248	0.47622573	-0.51670521
7.73965740	0.91736978	-1.06268215
7.71767902	1.61344481	-1.89240789
6.50252199	0.45947087	-0.53786272
4.21302319	0.44139761	-0.55292022
2.94762754	0.90705925	-1.12326860
2.86718416	1.80822527	-2.19122124
3.77856445	2.19034290	-2.63151979
1.62195921	2.19393969	-2.66340685
	$\begin{array}{c} 4.20666552\\ 6.50078630\\ 7.73907328\\ 7.71810722\\ 8.91750908\\ 8.91826248\\ 7.73965740\\ 7.71767902\\ 6.50252199\\ 4.21302319\\ 2.94762754\\ 2.86718416\\ 3.77856445\\ 1.62195921 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Η	1.52279103	2.88846707	-3.48621297
С	0.47441679	1.67774916	-2.06765366
Н	-0.51302111	1.95204306	-2.41062903
С	1.75502455	0.42396513	-0.56769562
Ċ	1.73266542	-0.50478649	0.53130352
Č	-2.12953305	-2.67052412	-0.69412893
Č	-0.47388527	-2.03727627	-2.22394109
č	-2.30564213	-3.87993360	-1.36075902
č	-2 88133740	-2 26838851	0 50550747
$\tilde{\mathbf{C}}$	-0.60998684	-3 22558141	-2.92425227
н	0.23580091	-128124523	-2 52510166
C	-1 54070711	-4 16123104	-2.48579025
$\tilde{\mathbf{C}}$	-3 85932612	-3 04946494	1 11496747
н	0.00002012	-3 /035358/	-3 70325032
н	-1.67098641	-5.40000004	-3.00968027
C	3 18180871	0 50144720	2 10080320
C	4 50502756	0.55144725	2.10900020
C	4 16175365	1 32840586	2.25025557
С Ц	-4.10175505	-1.32849380	2.15591119
п П	5 26622925	0.38028413	2.47009230
11 11	-0.200000000	-3.17000130	2.13110001
п	-4.03/33/00	-0.92170089	3.03///44/
IN N	-2.33071008 1.21775040	1 76299705	1.01190138
IN C	-1.21770949	-1.70200790	-1.15921952
C	-2.8/004032	2.32144630	-0.46221009
C	-3.3183/410	0.71000030	-2.11249000
C	-3.8/428/84	3.14668918	-0.99851805
C	-2.04000735	2.6/44/4/2	0.68377811
U	-4.319/4125	1.48869240	-2.67604637
Н	-3.06068516	-0.25941762	-2.51584983
C	-4.60129166	2.72562671	-2.10585356
C	-2.12642288	3.89643788	1.34668708
Н	-4.86198473	1.12521744	-3.53823066
Н	-5.37850571	3.35815954	-2.51510477
C	-0.34881639	1.98147893	2.14929843
C	-1.30225503	4.15349483	2.43479300
C	-0.39916918	3.17943597	2.84383321
Н	0.33457145	1.19297016	2.42796803
Н	-1.36597395	5.10213757	2.95194316
Н	0.26306051	3.33380890	3.68458319
Ν	-2.61694384	1.11596727	-1.04489934
Ν	-1.14827001	1.72975767	1.09680402
Н	9.86384010	0.82413983	-0.91509944
Η	9.86289883	-0.76927447	0.98463178
Ir	-1.07768214	-0.03211710	-0.01822689
С	0.46147749	-0.90597171	1.00356030
Η	-4.08962297	4.10374403	-0.54654449
Η	-2.82834864	4.64702034	1.01523793
Η	-4.11444998	-4.01770020	0.71012855
Η	-3.03105593	-4.59785128	-1.00704479

S5.3. Frontier Orbitals

FIG. S6. Frontier orbitals for ${\bf 2'}$

S6.1. General Information

SMILES	: c1ccc2c(c	$\begin{array}{l} 1) nc-3c(n2)-c4ccc[n+]5c4-c6c3cccc6[Ir]578([n+]9\\ ccccc9-c1[n+]7cccc1)[n+]1ccccc1-c1[n+]8cccc1 \end{array}$
Formula	:	$C_{39}H_{26}IrN_7^{2+,3}$
Charge	:	2
Multiplicity	:	3
Energy	:	-1989.81896299 a.u.
Number of imaginary frequencies	s :	0

S6.2. Cartesian Co-ordinates (XYZ format)

73

Ν	4.27703953	-1.00175250	1.02526224
Ν	4.27320671	1.02962649	-0.99100012
Ν	-0.55797696	0.90709293	-0.97452199
\mathbf{C}	-0.64695001	-1.97643661	1.89310682
Η	-1.58740544	-2.36348367	2.26792049
\mathbf{C}	0.56096107	-2.48744178	2.42349863
Η	0.51394773	-3.25547218	3.18786550
\mathbf{C}	1.79269326	-2.03361559	1.99500322
Η	2.71002197	-2.42890000	2.40842652
\mathbf{C}	1.86255872	-1.03229940	0.99876267
\mathbf{C}	3.10349751	-0.49929041	0.49808195
\mathbf{C}	5.41961813	-0.48486242	0.54036313
\mathbf{C}	6.65809393	-0.95155805	1.03519893
Н	6.64094639	-1.71988833	1.79882050
\mathbf{C}	7.89925098	-0.43486032	0.55196488
\mathbf{C}	7.90007067	0.53374052	-0.41188142
\mathbf{C}	6.65689325	1.02743435	-0.93311924
Η	6.65105104	1.79568172	-1.69697809
\mathbf{C}	5.42326450	0.53849727	-0.47655752
\mathbf{C}	3.11089253	0.50083441	-0.49266490
\mathbf{C}	1.86728382	1.00795853	-1.02075016
\mathbf{C}	1.78439713	2.00750208	-2.01044226
Η	2.69636989	2.43000293	-2.40988350
С	0.54450893	2.42758942	-2.44976330

Η	0.44663167	3.19291568	-3.20767117
\mathbf{C}	-0.61477196	1.85757339	-1.90969586
Η	-1.59847939	2.16377926	-2.23630619
С	0.65923458	0.47758430	-0.52170575
С	0.63943082	-0.53498799	0.47734943
Č	-3 19289637	-2 61575818	-0.94381553
Č	-1 54027987	-1 82955134	-2 40465713
C	-3 35/3870/	-3 76188636	-1 717/3333
C	3 05170560	2 33000103	0.28475040
C	1 66180306	2.05120224	3 20065266
ц	-1.00100390	1 04166710	2 63325667
C	2 58254440	-1.04100710	2.03525007
C	4 02260500	-3.93240323	-2.80035389
	-4.92200099	-3.17390024	1 00006000
п	-1.03933071	-5.04560405	-4.00090200
П	-2.70232038	-4.82000008	-3.40/391/3
C	-4.2/46/585	-0.80771130	2.03154898
C	-5.57724237	-2.81239247	1.98910487
C	-5.24817181	-1.61005175	2.60571289
Н	-3.98268795	0.13128728	2.47808051
Н	-6.33225060	-3.46249914	2.41163373
Η	-5.73064661	-1.28894186	3.51859570
Ν	-3.64173651	-1.15708160	0.89951414
Ν	-2.28999877	-1.66219699	-1.30232906
С	-3.97664189	2.33872318	-0.29226699
С	-4.40393353	0.87622428	-2.06026793
С	-4.97371387	3.20367503	-0.74023855
С	-3.14819956	2.58963943	0.90560174
С	-5.40443897	1.69812489	-2.55937004
Η	-4.14090872	-0.05413087	-2.54549694
\mathbf{C}	-5.69294262	2.87965226	-1.88464844
\mathbf{C}	-3.24297047	3.74756360	1.67395163
Η	-5.94065285	1.41034138	-3.45333719
Η	-6.46958876	3.54376268	-2.24163008
\mathbf{C}	-1.46275294	1.77433968	2.31365967
\mathbf{C}	-2.42573404	3.90946317	2.78537655
\mathbf{C}	-1.52132165	2.90578198	3.11151338
Η	-0.77832383	0.96600270	2.52488637
Η	-2.49574113	4.80818462	3.38441205
Η	-0.86427402	2.98710108	3.96645904
Ν	-3.70987844	1.18808126	-0.95708913
Ν	-2.25553322	1.61474299	1.23843443
Н	8.82814598	0.93997592	-0.79335397
Н	8.82632065	-0.81934321	0.95735508
Ir	-2.16967583	-0.03899571	-0.02963878
Ĉ	-0.62745970	-0.99232680	0.91651034
Ĥ	-5.19440079	4.11690617	-0.20737912
Н	-3.94586658	4.52235889	1.40637946
Н	-5.16604471	-4.10476780	0.32768130
Н	-4.07289553	-4.51641321	-1.43246269

S7. $[IR(BIPY)_2(DPPZ)]^{3+}$ (S₀) [1]

S7.1. General Information

Formula	:
Charge	:
Multiplicity	:
Energy	:
Number of imaginary frequencies	:

SMILES

S7.2. Cartesian Co-ordinates (XYZ format)

73

Ν	-0.54702288	-0.95576805	0.93256676
Ν	4.26011038	-1.01867318	0.96785778
Ν	4.25763226	1.01472795	-0.98244804
Ν	-0.54938692	0.95567036	-0.93097454
\mathbf{C}	-0.60933632	-1.92269146	1.85415995
Η	-1.59317887	-2.23528910	2.17211366
\mathbf{C}	0.54487616	-2.49425483	2.38989711
Η	0.44747674	-3.27216482	3.13432503
\mathbf{C}	1.78605556	-2.05734515	1.96532023
Η	2.69927335	-2.47805166	2.36375904
\mathbf{C}	1.86500704	-1.04554832	0.99621254
С	3.13191628	-0.51945889	0.49082607
\mathbf{C}	5.41757250	-0.52128613	0.48935136
\mathbf{C}	6.65563917	-1.02334166	0.97002709
Η	6.63564968	-1.80390644	1.72030854
\mathbf{C}	7.83098459	-0.51594049	0.48008159
\mathbf{C}	7.82972813	0.50949061	-0.50637567
\mathbf{C}	6.65314007	1.01771641	-0.99246728
Η	6.63124037	1.79831159	-1.74266398
\mathbf{C}	5.41630459	0.51650614	-0.50775915
\mathbf{C}	3.13065839	0.51633531	-0.50168961
\mathbf{C}	1.86248064	1.04343474	-1.00281227
С	1.78108501	2.05526972	-1.97167921
Η	2.69329429	2.47520328	-2.37323141

1

0

-2006.39685450 a.u.

\mathbf{C}	0.53883743	2.49316883	-2.39208913
Η	0.43955794	3.27113509	-3.13620996
\mathbf{C}	-0.61402261	1.92257297	-1.85242343
Η	-1.59868312	2.23599577	-2.16702032
\mathbf{C}	0.66672295	0.51973295	-0.50085741
\mathbf{C}	0.66798663	-0.52083457	0.49833873
\mathbf{C}	-3.17651653	-2.57595706	-0.93116975
\mathbf{C}	-1.48140991	-1.81354249	-2.35948420
\mathbf{C}	-3.32856655	-3.72550988	-1.69946682
\mathbf{C}	-3.96157980	-2.27991724	0.27839389
\mathbf{C}	-1.59262192	-2.94114733	-3.15754795
Η	-0.77267885	-1.03139234	-2.58669662
\mathbf{C}	-2.53081989	-3.91053843	-2.82239676
Η	-4.05928612	-4.47240353	-1.42658186
\mathbf{C}	-4.96455622	-3.10276890	0.77979034
Η	-0.95132083	-3.04457664	-4.02172422
Η	-2.64313817	-4.80227900	-3.42511964
\mathbf{C}	-4.29434824	-0.76157808	2.03370762
\mathbf{C}	-5.64036179	-2.73444462	1.93702412
Η	-5.21877003	-4.02234936	0.27415699
\mathbf{C}	-5.29976606	-1.54715633	2.57473469
Η	-3.99323606	0.16572422	2.49737644
Η	-6.42181778	-3.36978984	2.33276033
Η	-5.79775715	-1.22286117	3.47783828
Ν	-3.64163375	-1.11925781	0.91489750
Ν	-2.25544381	-1.63417804	-1.27595842
\mathbf{C}	-3.96012616	2.28328085	-0.26479816
\mathbf{C}	-4.30074787	0.76525825	-2.01886582
\mathbf{C}	-4.96401262	3.10717916	-0.76263994
\mathbf{C}	-3.17040682	2.57856750	0.94191295
\mathbf{C}	-5.30726910	1.55187464	-2.55632520
Η	-4.00225973	-0.16236326	-2.48358750
\mathbf{C}	-5.64434242	2.73953319	-1.91743708
Η	-5.21544600	4.02704287	-0.25613180
\mathbf{C}	-3.31835246	3.72842360	1.71055377
Η	-5.80881023	1.22808433	-3.45764375
Η	-6.42652082	3.37570214	-2.31041217
\mathbf{C}	-1.47100639	1.81445241	2.36420774
\mathbf{C}	-2.51635885	3.91270924	2.83057666
Η	-4.04915142	4.47614241	1.44015145
\mathbf{C}	-1.57807255	2.94229484	3.16250348
Η	-0.76234263	1.03153729	2.58898211
Η	-2.62544584	4.80469942	3.43352342
Η	-0.93354195	3.04512358	4.02434540
Ν	-3.64368200	1.12226188	-0.90239692
Ν	-2.24916005	1.63579798	1.28351796
Η	8.77555084	0.88912570	-0.87345457
Η	8.77773857	-0.89622051	0.84407800
\mathbf{Ir}	-2.15089083	0.00073140	0.00362719

S7.3. TD-DFT calcuations

TABLE S4: Major transitions (f > 0.04) for $[Ir(bipy)_2(dppz)]^{3+}$ in water. Additionally, the transition to S_1 is included.

No.	$\frac{\rm Energy}{\rm (cm^{-1})}$	Wavelength (nm)	Osc. strength	Major Contribs
1	24249	412.38	0.02	$HOMO \longrightarrow LUMO (92\%)$
3	25090	398.56	0.16	$HOMO \longrightarrow L+1 (93\%)$
6	26854	372.39	0.04	$H-1 \longrightarrow L+1 (90\%)$
10	28183	354.83	0.06	$HOMO \longrightarrow L+5$ (83%)

11	28970	345.18	0.09	H-3 \longrightarrow LUMO (58%), H-2 \longrightarrow LUMO (24%)
14	29654	337.22	0.04	$H-3 \longrightarrow L+2 (57\%), H-2 \longrightarrow L+2 (13\%)$
16	30160	331 57	0.04	$H-6 \longrightarrow L+2 (10\%), H-5 \longrightarrow L+2 (13\%), H-3 $
10	30100	331.37	0.04	$2 \longrightarrow L+2 (43\%)$
19	31224	320.26	0.31	$H-2\longrightarrow L+1$ (33%), $H-1\longrightarrow L+5$ (45%)
32	33279	300.49	0.07	H-7 \longrightarrow LUMO (16%), H-5 \longrightarrow L+3 (22%), H-4 \longrightarrow L+2 (13%)
36	33792	295.92	0.14	H-7 \longrightarrow L+2 (12%), H-5 \longrightarrow L+3 (15%), H-2 \longrightarrow L+5 (10%),
90	94940	901 19	0.05	H = (1000 - 1 + 2) (20%) + 7 + 2 (16%) + 5 + 4 (21%)
30	25205	291.13	0.05	$H_{6} \rightarrow L + 4 (25\%) H_{4} \rightarrow L + 4 (29\%)$
44	55205	284.00	0.04	$H \xrightarrow{11-0} H \xrightarrow{12} H $
49	35843	279.00	0.06	$6 \rightarrow L+4 (13\%)$
50	35883	278.68	0.11	$H-7 \longrightarrow L+3$ (26%), HOMO $\longrightarrow L+9$ (11%)
51	35998	277.79	0.05	H-9 \longrightarrow LUMO (28%), H-8 \longrightarrow L+1 (21%)
53	36144	276.67	0.06	$H-8\longrightarrow L+1$ (45%), $H-6\longrightarrow L+4$ (10%), $H-6\longrightarrow L+5$ (10%)
55	36703	272.46	0.09	H-10 \longrightarrow L+2 (47%)
56	36775	271.92	0.38	$H-9\longrightarrow L+1$ (21%), $H-7\longrightarrow L+1$ (10%), $H-1\longrightarrow L+6$ (26%)
59	37369	267.60	0.07	$HOMO \longrightarrow L+8$ (46%)
60	37460	266 95	0.04	$H-9\longrightarrow L+9 (13\%), H-7\longrightarrow L+9 (10\%), H-2\longrightarrow L+9 (12\%),$
00	01100	200.00	0.01	$HOMO \longrightarrow L+8 (24\%)$
61	37516	266.55	0.22	$H-9 \longrightarrow L+1 (44\%), H-6 \longrightarrow L+5 (13\%), H-1 \longrightarrow L+6 (11\%)$
62	37596	265.98	0.09	$H-10\longrightarrow L+3 (13\%), H-9\longrightarrow L+3 (20\%)$
64	37752	264.89	0.04	H-11 \longrightarrow LUMO (15%), HOMO \longrightarrow L+8 (11%)
65	37858	264.15	0.11	$H-10\longrightarrow L+1 (10\%), H-10\longrightarrow L+3 (11\%), H-8\longrightarrow L+4 (17\%)$
67	38058	262.76	0.12	H-11 \longrightarrow LUMO (16%), H-7 \longrightarrow L+5 (21%)
69	38262	261.35	0.18	$H-11\longrightarrow L+2 (18\%), H-10\longrightarrow L+3 (10\%), H-9\longrightarrow L+3 (14\%)$
70	38307	261.05	0.11	$H-9\longrightarrow L+3$ (24%), $H-9\longrightarrow L+4$ (36%)
71	38513	259.65	0.20	H-11 \longrightarrow LUMO (33%), H-11 \longrightarrow L+2 (17%)
72	38548	259.42	0.17	$H-8\longrightarrow L+5 (15\%), H-2\longrightarrow L+6 (28\%)$
78	39638	252.28	0.14	$H-8\longrightarrow L+5$ (46%), $H-2\longrightarrow L+6$ (19%)
91	41402	241.53	0.13	$H-3\longrightarrow L+7 (26\%), H-2\longrightarrow L+7 (30\%)$
92	41569	240.56	0.11	H-3 \longrightarrow L+7 (29%), H-2 \longrightarrow L+7 (38%)
97	42394	235.88	0.08	H-13 \rightarrow L+1 (17%), H-6 \rightarrow L+6 (20%), H-1 \rightarrow L+9 (14%), HOMO \rightarrow L+10 (19%)

FIG. S7. Frontier orbitals for ${\bf 1}$

S8.1. General Information

SMILES	: c1ccc2c(c1)nc	-3c(n2)-c4ccc[n+]5c4-c6c3ccc[n+]6[Ir]578([n+]9)
		ccccc9-c1[n+]7cccc1)[n+]1ccccc1-c1[n+]8cccc1
Formula	:	$ m C_{38}H_{26}IrN_8^{3+,3}$
Charge	:	3
Multiplicity	:	3
Energy	:	-2006.31619090 a.u.
Number of imaginary frequencies	:	0

73

Ν	-0.56175083	-0.95753837	0.93555063
Ν	4.27315950	-1.03149605	0.98607403
Ν	4.27069998	1.02766109	-1.00043845
Ν	-0.56410903	0.95774257	-0.93371785
\mathbf{C}	-0.61205477	-1.91956019	1.85546875
Η	-1.59136665	-2.23987484	2.18060088
\mathbf{C}	0.55453974	-2.48611355	2.38921666
Н	0.46132469	-3.26295233	3.13539433
\mathbf{C}	1.78847802	-2.04725599	1.96216989
Η	2.70431948	-2.46355939	2.35855198
\mathbf{C}	1.86580777	-1.03069901	0.98526025
\mathbf{C}	3.11045146	-0.50813746	0.48226818
\mathbf{C}	5.41487694	-0.52015883	0.49176219
\mathbf{C}	6.65593529	-1.00515795	0.96011883
Η	6.64542723	-1.78324628	1.71363699
\mathbf{C}	7.89947987	-0.49315357	0.46178913
\mathbf{C}	7.89830303	0.48601463	-0.48853534
\mathbf{C}	6.65353203	0.99916023	-0.98261076
Η	6.64116287	1.77725196	-1.73609698
\mathbf{C}	5.41363573	0.51530445	-0.51000804
\mathbf{C}	3.10924029	0.50536716	-0.49265695
\mathbf{C}	1.86335003	1.02895916	-0.99149430
С	1.78359032	2.04562593	-1.96809411
Η	2.69843888	2.46122456	-2.36749506

С	0.54858923	2.48551464	-2.39099002
Η	0.45351782	3.26246738	-3.13681507
\mathbf{C}	-0.61668301	1.91988838	-1.85338616
Η	-1.59679842	2.24099422	-2.17530465
С	0.65033728	0.51220977	-0.49407625
С	0.65157413	-0.51299638	0.49183911
С	-3.18310881	-2.57744002	-0.93168414
\mathbf{C}	-1.48868215	-1.81043696	-2.35851526
\mathbf{C}	-3.33183146	-3.72726727	-1.70034528
\mathbf{C}	-3.96842098	-2.28405094	0.27857825
\mathbf{C}	-1.59632289	-2.93838954	-3.15676141
Η	-0.78131020	-1.02640224	-2.58366179
\mathbf{C}	-2.53266025	-3.90999627	-2.82271647
Η	-4.06069613	-4.47622633	-1.42810309
С	-4.96887064	-3.10997987	0.78022987
Η	-0.95371729	-3.04047012	-4.02014828
Н	-2.64224052	-4.80190849	-3.42572236
\mathbf{C}	-4.30383587	-0.76773846	2.03489900
Č	-5.64472532	-2.74412775	1.93825233
Ĥ	-5.22101212	-4.03000927	0.27435154
С	-5.30682802	-1.55625379	2.57638884
н	-4.00461674	0.16027364	2.49855900
H	-6.42411804	-3.38183928	2.33430028
Н	-5.80505610	-1.23388660	3.48006988
Ν	-3.65116453	-1.12294221	0.91543460
Ν	-2.26456189	-1.63315380	-1.27608359
С	-3.96697378	2.28733349	-0.26525566
Ċ	-4.31072187	0.77082425	-2.01979852
\mathbf{C}	-4.96842480	3.11418724	-0.76336503
С	-3.17691422	2.58020687	0.94204515
Ċ	-5.31488466	1.56027544	-2.55774236
Η	-4.01430559	-0.15766650	-2.48429799
\mathbf{C}	-5.64905357	2.74872398	-1.91871190
Η	-5.21771097	4.03459835	-0.25677612
С	-3.32134271	3.73058367	1.71070921
Η	-5.81691933	1.23816121	-3.45940328
Η	-6.42926884	3.38714957	-2.31197977
\mathbf{C}	-1.47869384	1.81140244	2.36338401
\mathbf{C}	-2.51802516	3.91267443	2.83022308
Η	-4.05004883	4.48049021	1.44066167
\mathbf{C}	-1.58199549	2.93983531	3.16152358
Η	-0.77169865	1.02643800	2.58647609
Η	-2.62421846	4.80502510	3.43318534
Η	-0.93634135	3.04131603	4.02270317
Ν	-3.65339637	1.12568033	-0.90295064
Ν	-2.25843382	1.63482869	1.28361833
Η	8.82411098	0.88700801	-0.87973136
Η	8.82625198	-0.89501530	0.84979892
Ir	-2.16290832	0.00072964	0.00364547

S9.1. General Information

77

SMILES

Formula

Multiplicity

Charge

Energy

Ν	4.28056431	-0.96505547	1.01899111
Ν	4.27356815	1.00158536	-0.99482429
Ν	-0.52918160	0.89093655	-0.98346770
\mathbf{C}	-0.63203472	-1.94469309	1.92780304
Н	-1.57892931	-2.31971836	2.29829502
С	0.56157708	-2.45050907	2.46987653
Н	0.51175165	-3.20726705	3.24504638
С	1.80171263	-2.00238919	2.03563380
Н	2.71590924	-2.39570904	2.45930481
С	1.87500274	-1.02435613	1.03277493
С	3.14431334	-0.50103319	0.52179909
С	5.43838072	-0.46884131	0.53289580
С	6.67838192	-0.94037527	1.03905118
Η	6.66016150	-1.69693863	1.81408596
С	7.85502195	-0.43703315	0.54460275
С	7.85210848	0.55543107	-0.47290528
С	6.67167854	1.03272855	-0.98343456
Η	6.64690256	1.78873122	-1.75887442
С	5.43641520	0.53298765	-0.49365643
С	3.14693332	0.50754803	-0.51033109
\mathbf{C}	1.87973297	1.00758243	-1.04671216
\mathbf{C}	1.79510558	1.98280454	-2.04713893
Η	2.70454240	2.40138507	-2.45729899
С	0.54803503	2.39334989	-2.49290729

Η	0.44565240	3.14467478	-3.26379251
С	-0.59719688	1.82772434	-1.93902934
Η	-1.58603132	2.11864424	-2.26364517
С	0.68945473	0.47829473	-0.53006238
С	0.67099458	-0.52800453	0.49798852
С	-3.18479037	-2.58297706	-0.92561704
С	-1.54512644	-1.88326120	-2.41855311
Č	-3.42871642	-3.76471829	-1.65049434
Č	-3 91775250	-2 30474639	0 26372620
Č	-1 72932601	-3.03593183	-3 19424534
н	-0.81724012	-1 13264811	-2 69133759
$\hat{\mathbf{C}}$	-0.01724012	-3.97610664	-2.03133103 -2.81773073
C	4 80220065	3 20058257	0 79579499
ц	1 19640738	3 16819110	4 08217040
11 TT	-1.12040738	-3.10812110	-4.06217049
	-2.01900120	-4.01240100	-0.40004701
C	-4.28070400	-0.84320393	2.03203420
C	-5.57696247	-2.8/158132	1.91184044
C	-5.27126980	-1.69162905	2.55724812
H	-4.02544737	0.08381112	2.52283001
Н	-6.33409977	-3.53934503	2.30432463
Η	-5.77650166	-1.40227091	3.46851683
Ν	-3.62611794	-1.14147139	0.91557890
Ν	-2.25772619	-1.65930307	-1.31574225
С	-3.93561673	2.31581330	-0.28287593
С	-4.39392948	0.92330414	-2.08104777
С	-4.90459490	3.25704265	-0.68745369
С	-3.16134214	2.54721332	0.89810306
\mathbf{C}	-5.37913704	1.80406249	-2.55224204
Η	-4.16597319	0.00325919	-2.60358429
\mathbf{C}	-5.63471889	2.96876717	-1.86031437
С	-3.36327291	3.72133207	1.65234327
Η	-5.92253160	1.55517304	-3.45358062
Η	-6.38881588	3.66545105	-2.20584750
С	-1.49993145	1.79904544	2.35057163
С	-2.56892824	3.90287232	2.80363274
Ċ	-1.64096856	2.94320369	3.14565492
Ĥ	-0.78596509	1.02558994	2.59559560
Н	-2 69507217	4 79360580	3 40703440
Н	-1.01502883	3 05112863	4 02085686
N	-3 69209051	1 17288971	-0.98081249
N	-2 24061179	1.60152650	1 25944221
н	8 70631233	0.03483722	0.84403387
и П	8 80176026	0.35405722	0.03012744
11 In	0.00170920	-0.79020983	0.93012744
II C	-2.13801030	-0.03030090	-0.02722823
C	-0.39679202 E 004E7694	-0.97172000	0.93400431
C	-5.09457084	4.44054461	1.010001027
	-4.004/930/	4.00200201	1.21000100
п	-0.84201/17	0.100/08/2	-0.21925685
H	-4.50229692	0.000000	1.80773735
C	-5.12728119	-4.40763187	-0.02751790
C	-4.42689323	-4.67327547	-1.16447783
H	-5.87842321	-5.10073662	0.33046633
Η	-4.61207247	-5.58074951	-1.72576785

S9.3.	TD-DFT Calculation	s

TABLE S7: Major transitions (f > 0.04) for $[Ir(phen)_2(bppz)]^{3+}$ in water.

No. Energy (cm^{-1})

Wave length (nm)

Osc. Strength

Major contribs

1	24249	412.38	0.02	$HOMO \longrightarrow LUMO (92\%)$
3	25090	398.56	0.16	$HOMO \longrightarrow L+1 (93\%)$
6	26854	372.39	0.04	$H-1 \longrightarrow L+1 (90\%)$
10	28183	354.83	0.06	$HOMO \longrightarrow L+5 (83\%)$
11	28970	345.18	0.09	H-3 \longrightarrow LUMO (58%), H-2 \longrightarrow LUMO (24%)
14	29654	337.22	0.04	$H-3\longrightarrow L+2 (57\%), H-2\longrightarrow L+2 (13\%)$
10	20100	001 57	0.04	H-6 \longrightarrow L+2 (10%), H-5 \longrightarrow L+2 (13%), H-3 \longrightarrow L+2 (13%), H-
10	30100	331.37	0.04	$2 \longrightarrow L+2 (43\%)$
19	31224	320.26	0.31	$H-2\longrightarrow L+1$ (33%), $H-1\longrightarrow L+5$ (45%)
32	33279	300.49	0.07	H-7 \longrightarrow LUMO (16%), H-5 \longrightarrow L+3 (22%), H-4 \longrightarrow L+2 (13%)
36	33702	205 02	0.14	$\text{H-7}\longrightarrow\text{L+2} (12\%), \text{H-5}\longrightarrow\text{L+3} (15\%), \text{H-2}\longrightarrow\text{L+5} (10\%),$
50	55132	290.92	0.14	$HOMO \longrightarrow L+6 (20\%)$
38	34349	291.13	0.05	$H-9 \longrightarrow L+2 (20\%), H-7 \longrightarrow L+2 (16\%), H-5 \longrightarrow L+4 (21\%)$
44	35205	284.05	0.04	$H-6 \longrightarrow L+4 (25\%), H-4 \longrightarrow L+4 (38\%)$
49	35843	279.00	0.06	$H-9 \longrightarrow LUMO (31\%), H-8 \longrightarrow L+1 (10\%), H-7 \longrightarrow L+3 (13\%), H-$
				$6 \rightarrow L+4 (13\%)$
50	35883	278.68	0.11	$H-7 \longrightarrow L+3$ (26%), $HOMO \longrightarrow L+9$ (11%)
51	35998	277.79	0.05	$H-9 \longrightarrow LUMO (28\%), H-8 \longrightarrow L+1 (21\%)$
53	36144	276.67	0.06	$H-8 \longrightarrow L+1$ (45%), $H-6 \longrightarrow L+4$ (10%), $H-6 \longrightarrow L+5$ (10%)
55	36703	272.46	0.09	$H-10 \longrightarrow L+2 (47\%)$
56	36775	271.92	0.38	$H-9 \longrightarrow L+1$ (21%), $H-7 \longrightarrow L+1$ (10%), $H-1 \longrightarrow L+6$ (26%)
59	37369	267.60	0.07	$HOMO \longrightarrow L+8 (46\%)$
60	37460	266.95	0.04	$H-9 \longrightarrow L+9 (13\%), H-7 \longrightarrow L+9 (10\%), H-2 \longrightarrow L+9 (12\%),$
	0		0.00	$HOMO \rightarrow L+8 (24\%)$
61	37516	266.55	0.22	$H-9 \longrightarrow L+1 (44\%), H-0 \longrightarrow L+2 (13\%), H-1 \longrightarrow L+0 (11\%)$
62	37596	265.98	0.09	$H-10 \longrightarrow L+3 (13\%), H-9 \longrightarrow L+3 (20\%)$
64	37752	264.89	0.04	H-11 \rightarrow LUMO (15%), HOMO \rightarrow L+8 (11%)
65	37858	264.15	0.11	$H-10 \longrightarrow L+1 (10\%), H-10 \longrightarrow L+3 (11\%), H-8 \longrightarrow L+4 (17\%)$
67	38058	262.76	0.12	$H-11 \longrightarrow LUMO (16\%), H-7 \longrightarrow L+5 (21\%)$
69	38262	261.35	0.18	$H-11 \longrightarrow L+2 (18\%), H-10 \longrightarrow L+3 (10\%), H-9 \longrightarrow L+3 (14\%)$
70	38307	261.05	0.11	$H-9 \longrightarrow L+3 (24\%), H-9 \longrightarrow L+4 (36\%)$
71	38513	259.65	0.20	$H-11 \longrightarrow LUMO (33\%), H-11 \longrightarrow L+2 (17\%)$
72	38548	259.42	0.17	$H-8 \longrightarrow L+5 (15\%), H-2 \longrightarrow L+6 (28\%)$
78	39638	252.28	0.14	$H-8\longrightarrow L+5$ (46%), $H-2\longrightarrow L+6$ (19%)
91	41402	241.53	0.13	$H-3 \longrightarrow L+7 (26\%), H-2 \longrightarrow L+7 (30\%)$
92	41569	240.56	0.11	$H-3 \longrightarrow L+7 (29\%), H-2 \longrightarrow L+7 (38\%)$
97	42394	235.88	0.08	H-13 \rightarrow L+1 (17%), H-6 \rightarrow L+6 (20%), H-1 \rightarrow L+9 (14%), HOMO \rightarrow L+10 (19%)

FIG. S8. Frontier orbitals for **1**

SMILES	: c1ccc2c(c1)nc-3c(n2)-c4ccccccc1c9c2[n+]7cccc2cc	c[n+]5c4-c6c3cccc6[Ir]578([n+]9) c1)[n+]1cccc2c1c1[n+]8cccc1cc2	
Formula	:	$C_{43}H_{26}IrN_7^{2+,3}$	
Charge	:	2	
Multiplicity	:	3	
Energy	:	-2142.29978975 a	a.u.
Number of imaginary frequencies	:	0	

-	-
1	1

Ν	4.26813126	-0.95952785	1.03164685
Ν	4.26294041	0.99478763	-0.99434376
Ν	-0.53962457	0.87833565	-0.99169207
\mathbf{C}	-0.64508098	-1.94120252	1.93599939
Η	-1.59221363	-2.31485152	2.30675697
\mathbf{C}	0.54835588	-2.44089246	2.48448730
Н	0.49798629	-3.19173193	3.26522946
\mathbf{C}	1.78829515	-1.99388695	2.04942918
Н	2.70223689	-2.38244033	2.47799420
\mathbf{C}	1.86291099	-1.02213442	1.03972447
\mathbf{C}	3.13246489	-0.50006038	0.52877975
\mathbf{C}	5.42619133	-0.46471107	0.54523498
\mathbf{C}	6.66574383	-0.93137807	1.05712056
Η	6.64683199	-1.68327236	1.83664107
\mathbf{C}	7.84264040	-0.42925152	0.56229877
\mathbf{C}	7.84059763	0.55716330	-0.46121562
\mathbf{C}	6.66080666	1.02969003	-0.97742611
Η	6.63675880	1.78094864	-1.75745797
\mathbf{C}	5.42509842	0.53103924	-0.48756948
\mathbf{C}	3.13583946	0.50195152	-0.50949740
\mathbf{C}	1.86930835	0.99670112	-1.05188107
\mathbf{C}	1.78529620	1.96540701	-2.05884981
Η	2.69494128	2.38248587	-2.47004771
С	0.53861809	2.37149763	-2.50933266

Η	0.43660015	3.11773396	-3.28516603
С	-0.60715723	1.80876660	-1.95333707
Η	-1.59547353	2.09759140	-2.28120732
\mathbf{C}	0.67866760	0.46913850	-0.53464621
С	0.66011113	-0.53167701	0.49840564
С	-3.17861462	-2.58524036	-0.94314927
С	-1.55089605	-1.85744810	-2.45856929
Ċ	-3.42559576	-3.78029394	-1.68786025
Č	-3.91707277	-2.31132936	0.27894330
č	-172759795	-2 99332261	-3 23826480
н	-0.84281749	-1.08/01263	-2 70027101
C	2 65137201	3 06000663	2.10521151
C	4 80735556	3 23/1/18/13	0 75030140
С U	1 12020076	2 10707045	4 12258600
11	-1.12920970	-3.10707043	-4.13230000
П	-2.19041100	-4.04000141	-3.47943330
C	-4.2/048449	-0.84431279	2.00005702
C	-5.56744576	-2.87756014	1.97170210
C	-5.24408960	-1.68818247	2.59918737
Н	-3.99680805	0.08699162	2.52729583
Н	-6.31746912	-3.54105496	2.38270640
Η	-5.73512506	-1.39459693	3.51752377
Ν	-3.62424874	-1.16881096	0.90349883
Ν	-2.28611946	-1.66700673	-1.31444824
С	-3.93075347	2.31477332	-0.28666052
С	-4.39551497	0.92247081	-2.08423495
С	-4.89427233	3.26071215	-0.69275296
\mathbf{C}	-3.15577435	2.54206204	0.89397389
\mathbf{C}	-5.37535477	1.80837846	-2.55656886
Η	-4.17233801	0.00056211	-2.60538197
С	-5.62503052	2.97512960	-1.86587930
С	-3.35138464	3.71759248	1.64751816
Η	-5.91931534	1.56162822	-3.45812392
Н	-6.37509108	3.67548656	-2.21272445
C	-1.49902570	1.78502369	2.34647393
Č	-2.55633974	3.89493680	2,79897475
č	-1.63392377	2 93011785	3 14128590
н	-0 78955138	1.00793302	2 59266877
н	-2 677/9166	1.00100002	3 /02200217
н	1.00748500	3 03455544	4 01653337
N	3 60340277	1 17000630	4.01000007
N	-3.09340277	1.17000039	1 25501021
	-2.24031110	1.09124000	1.20021201
п	0.70014194	0.95506591	-0.85520477
п	8.78900918	-0.78470373	0.95205059
Ir	-2.15040517	-0.05361265	-0.03407547
C	-0.60913193	-0.97661048	0.93385112
C	-5.07821846	4.44531631	0.09299174
C	-4.33750963	4.66409826	1.21315062
H	-5.82140732	5.16569090	-0.22605419
Η	-4.48037195	5.56204319	1.80152690
С	-5.12632751	-4.39222050	0.02822808
С	-4.38076162	-4.66786671	-1.21096933
Η	-5.86251879	-5.10957289	0.36537966
Η	-4.58617640	-5.58265686	-1.75086677

S11.1. General Information

Formula Charge Multiplicity Energy Number of imaginary frequencies :

SMILES

S11.2. Cartesian Co-ordinates (XYZ format)

7	9
1	0

:

:

:

Ν	0.31218511	-0.87970018	0.99888390
Ν	5.12858343	-0.93535203	1.05239844
Ν	5.12862110	0.93497568	-1.05257308
Ν	0.31222019	0.87972188	-0.99887687
С	0.26408970	-1.77254391	1.99450958
Η	-0.72014654	-2.06580472	2.33245397
С	1.41634917	-2.29873657	2.57956195
Η	1.31999326	-3.01662397	3.38293076
С	2.65867758	-1.89390969	2.12537885
Η	3.57284498	-2.27845550	2.55659080
С	2.73098207	-0.96236849	1.07984746
С	3.99954987	-0.47748193	0.53654683
С	6.28777647	-0.47693372	0.53734660
С	7.52550077	-0.93835670	1.05829871
Η	7.50431824	-1.65674078	1.86853254
С	8.70267391	-0.47185308	0.53214663
С	8.70269299	0.47119999	-0.53243941
С	7.52553797	0.93779451	-1.05855274
Η	7.50438452	1.65617919	-1.86878669
С	6.28779554	0.47647119	-0.53755629
С	3.99956918	0.47718924	-0.53668731
С	2.73102093	0.96218717	-1.07993436
С	2.65875411	1.89373636	-2.12546110
Η	3.57293701	2.27820468	-2.55670929

 $\mathbf{2}$

1

0

-1997.11055479 a.u.

С	1.41644204	2.29866719	-2.57959652
Η	1.32011521	3.01656270	-3.38296127
\mathbf{C}	0.26416111	1.77257025	-1.99450004
Η	-0.72006363	2.06591439	-2.33240581
\mathbf{C}	1.53034735	0.48087662	-0.54021770
\mathbf{C}	1.53032792	-0.48095751	0.54017711
\mathbf{C}	-2.33797002	-2.63440466	-0.79542214
\mathbf{C}	-0.67670494	-1.94910157	-2.28352070
\mathbf{C}	-2.50315499	-3.82513094	-1.50239575
\mathbf{C}	-3.10938215	-2.28095460	0.40979615
\mathbf{C}	-0.79713279	-3.11393976	-3.02585292
Η	0.03057373	-1.18018591	-2.55985188
\mathbf{C}	-1.72769189	-4.06906319	-2.62829399
Η	-3.22819781	-4.55782986	-1.17874324
\mathbf{C}	-4.10302019	-3.08926988	0.96095175
Н	-0.17027402	-3.26018429	-3.89518046
Н	-1.84894705	-4.99015045	-3.18382859
\mathbf{C}	-3.44072270	-0.68702960	2.08166766
\mathbf{C}	-4.77344036	-2.67247415	2.10341978
Н	-4.35376215	-4.03531694	0.50365126
\mathbf{C}	-4.43585396	-1.44922590	2.67436337
Н	-3.14647985	0.26778331	2.49356914
Н	-5.54600620	-3.29343462	2.53838468
Н	-4.93040609	-1.08262622	3.56379676
Ν	-2.78643513	-1.08642054	0.97691804
Ν	-1.42691326	-1.70545077	-1.19464672
\mathbf{C}	-3.10919929	2.28127313	-0.40964931
\mathbf{C}	-3.44075084	0.68737549	-2.08150506
\mathbf{C}	-4.10278940	3.08967519	-0.96076351
\mathbf{C}	-2.33770537	2.63465667	0.79553622
\mathbf{C}	-4.43584061	1.44965863	-2.67415905
Η	-3.14660954	-0.26746371	-2.49341774
\mathbf{C}	-4.77329445	2.67293739	-2.10320282
Η	-4.35342932	4.03574467	-0.50345331
\mathbf{C}	-2.50275517	3.82539868	1.50251472
Η	-4.93046236	1.08310151	-3.56357121
Η	-5.54582453	3.29396510	-2.53813553
\mathbf{C}	-0.67643970	1.94920814	2.28356743
\mathbf{C}	-1.72722363	4.06926394	2.62838054
Η	-3.22774601	4.55816174	1.17889118
\mathbf{C}	-0.79673332	3.11405826	3.02590251
Η	0.03078174	1.18022978	2.55987072
Η	-1.84837377	4.99036264	3.18391871
Η	-0.16982573	3.26024818	3.89520431
Ν	-2.78638124	1.08671010	-0.97678357
Ν	-1.42671442	1.70562243	1.19472444
Η	9.64864349	0.82132429	-0.92779189
Η	9.64861107	-0.82205105	0.92746741
Ru	-1.30272555	0.00008019	0.00003645

S12.1. General Information

	c1ccc2c(c1)nc3=c4ccc[n+]5c4=c6c(=c3n2)ccc[n+]6[Ru]578([n+]9)	
	ccccc9- $c1[n+]7cccc1)[n+]1ccccc1$ - $c1[n+]8cccc1$	
	$C_{38}H_{26}N_8Ru^{2+,3}$	
	2	
	3	
	-1997.03462782 a.u	ı.
equencies	0	

SMILES

Formula : Charge : Multiplicity : Energy : Number of imaginary frequencies :

S12.2. Cartesian Co-ordinates (XYZ format)

73

Ν	0.26641476	-0.91059524	0.98203224
Ν	5.11710405	-0.98398298	1.01135361
Ν	5.11715889	0.98362398	-1.01147664
Ν	0.26645935	0.91069049	-0.98196334
С	0.22217210	-1.86241436	1.92341483
Η	-0.76108217	-2.17348862	2.25125432
С	1.37006021	-2.41552305	2.47503018
Η	1.27955794	-3.17084384	3.24287653
С	2.62609410	-1.97634292	2.02838612
Η	3.53678823	-2.38834786	2.44324493
С	2.71555281	-1.00702846	1.04143000
С	3.98547649	-0.50423455	0.51933873
С	6.28391504	-0.49966842	0.51257944
С	7.51824474	-0.98283887	1.00802875
Η	7.49693489	-1.73895860	1.78399050
С	8.70495605	-0.49403915	0.50623024
С	8.70498371	0.49314880	-0.50667119
С	7.51830053	0.98212236	-1.00836658
Η	7.49703407	1.73824608	-1.78432548
С	6.28394270	0.49912590	-0.51281673
С	3.98550344	0.50405675	-0.51934820
С	2.71560502	1.00693667	-1.04142141
С	2.62619472	1.97624373	-2.02838945
Η	3.53691006	2.38817477	-2.44327497

C	1.37018311	2.41552401	-2.47499776
н	1.27971959	3.17084336	-3.24285007
C	0 22226565	1 86251044	-192334771
н	-0.76097208	2 17365289	-2.25117159
$\hat{\mathbf{C}}$	1 50032163	0.47742784	-0 50729400
C	1.50052105	-0.47742215	0.50723400
C	2 30045062	2 67000845	0.76718074
C	0.56172061	1 00001852	2 18287134
C	2 30024603	-1.99091852	1 44202857
C	2.39924093	-3.88418937	-1.44302837
C	-3.13102923	2.29744004	0.36913193
U U	-0.02043720	-3.1/900/42	-2.09291070
п	0.14060702	-1.213/98/0	-2.45570008
	-1.00403340	-4.13984108	-2.31003413
Н	-3.12290955	-4.62501907	-1.13637662
C	-4.14439201	-3.09566545	0.91462302
H	0.05766939	-3.34090161	-3.71957159
Н	-1.62326956	-5.08026457	-3.04737616
C	-3.55994987	-0.64653611	1.99195802
C	-4.87000608	-2.64541698	2.01075339
Н	-4.36765289	-4.05670738	0.47534764
С	-4.57399750	-1.40190363	2.56004333
Η	-3.29399872	0.32523069	2.38343883
Η	-5.65802765	-3.25925279	2.42738771
Η	-5.11514330	-1.01428747	3.41210532
Ν	-2.85289526	-1.08471859	0.93744582
Ν	-1.38571382	-1.74023461	-1.15136290
\mathbf{C}	-3.13150001	2.29775429	-0.38901269
\mathbf{C}	-3.55997133	0.64684767	-1.99178445
\mathbf{C}	-4.14423466	3.09602571	-0.91446048
\mathbf{C}	-2.30026484	2.67118526	0.76728535
\mathbf{C}	-4.57399321	1.40226781	-2.55984592
Η	-3.29408813	-0.32494092	-2.38325930
\mathbf{C}	-4.86991119	2.64580512	-2.01056099
Η	-4.36742544	4.05708647	-0.47519124
\mathbf{C}	-2.39894414	3.88448620	1.44311440
Η	-5.11519051	1.01467288	-3.41188478
Η	-5.65791130	3.25968170	-2.42717624
\mathbf{C}	-0.56152630	1.99110651	2.18292451
\mathbf{C}	-1.55367362	4.14010096	2.51610422
Н	-3.12256455	4.62536144	1.13647413
\mathbf{C}	-0.62012839	3.18001175	2.89294958
Н	0.14600120	1.21394694	2.43373966
Н	-1.62282348	5.08054066	3.04740882
Н	0.05802232	3.34107733	3.71957517
Ν	-2.85285830	1.08500314	-0.93730068
Ν	-1.38556802	1.74045694	1.15145278
Н	9.64830208	0.86547232	-0.88868588
Н	9.64825249	-0.86650121	0.88816267
Ru	-1.31857967	0.00010169	0.00005253