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Abstract
Rigorous, elementary upper and lower bounds upon the Lyapunov exponents
of a parametrised family of linked twist maps are given, and obtained explicitly
for a specific range of parameter values. The method used to obtain the bounds
utilises the existence of invariant cones for specific products of the underlying
family of shear maps, and the return time partition of the overlap region of the
two annuli. Improvements upon the accuracy of this method are then obtained
by considering preceding sequences of matrices on the orbits.
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1. Introduction

A fundamental concept in dynamical systems is stability, typically measured by the rate of
growth of a quantity with time. Let f :M→M be a diffeomorphism of a compact manifold
M, x ∈M, v ∈ TxM. Then the rate of expansion or contraction of infinitesimal perturbations in
tangent space is given by

λ(x,v) = lim
n→∞

1
n
log∥Dx f

nv0∥ (1)

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1361-6544/23/+17$33.00 © 2023 IOP Publishing Ltd & London Mathematical Society Printed in the UK 1699

https://doi.org/10.1088/1361-6544/acb397
https://orcid.org/0000-0002-6693-3810
https://orcid.org/0000-0001-7299-9931
mailto:r.sturman@leeds.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/acb397&domain=pdf&date_stamp=2023-2-6
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 36 (2023) 1699 P Wright et al

whenever the limit exists, and where Dx f n is the Jacobian of f n at x, given by the product

Dx f
n = Dfn−1(x) fDf n−2(x) f . . .Df(x) f Dx f.

It is well known that if f admits an invariant measure µ, the limit in equation (1) does indeed
exist for µ-almost all x by the Oseledec multiplicative ergodic theorem [1]. Furthermore, if
µ is ergodic, then λ(x,v) takes on only a finite number of possible values, called Lyapunov
exponents.

However, it is only in relatively rare instances that a Lyapunov exponent might be explicitly
and analytically computed. When we assume µ to be ergodic, it appears that the Birkhoff
ergodic theorem may be of use.

Theorem 1 (Birkhoff ergodic theorem [2]). Let f :M→M be a µ-preserving ergodic dynam-
ical system, and let ϕ ∈ L1 be an observable function, ϕ :M→ R. Then

lim
n→∞

1
n

n−1∑
i=0

ϕ( f i(x)) =
ˆ
M
ϕdµ.

Thus if f is one-dimensional, theorem 1 can be applied directly, to write

λ(x,v) = lim
n→∞

1
n
log∥Dx f

nv∥= lim
n→∞

1
n

n−1∑
i=0

log |Df ix f |=
ˆ
M
log |Df |dµ(x).

In higher dimensions, a fundamental obstacle is that matrix norms are not multiplicative, and
so Lyapunov exponents cannot be expressed using the Birkhoff ergodic theorem. Results such
as the sub-additive or multiplicative ergodic theorems establish the existence of Lyapunov
exponents, but give no practical method for efficiently calculating them. Only in particularly
simple cases can Lyapunov exponents be calculated explicitly.

A typical example is given by the Arnold CatMap [3], which can be considered the compos-
ition of horizontal and vertical shears. Let F̃, G̃, H̃ : T2 → T2 be such that F̃(x,y) = (x+ y,y),
G̃(x,y) = (x,y+ x), H̃(x,y) = G̃ ◦ F̃= (x+ y,x+ 2y). Lebesgue measure is an ergodic invari-

ant measure for H̃, and since the Jacobian DH̃ is the matrix

(
1 1
1 2

)
for all x ∈ T2, the two

Lyapunov exponents are λ and λ−1, where λ= log((3+
√
5)/2) is trivially computed to be

the logarithm of the larger eigenvalue of DH̃. In general, a uniformly hyperbolic map has the
property that expansion at every iterate is governed by the Lyapunov exponent, expressed as

∥Dx f
nv0∥⩾ ceλn∥v0∥ (2)

for all n⩾ 0 and some c> 0, for each v0 in the expanding subspace of TM (with a corresponding
expression for v0 in the contracting subspace).

A much wider class of maps is created when the very strict requirement of equation (2)
is relaxed to allow growth rates to vary along trajectories. Non-uniformly hyperbolic systems
can be characterised as systems with non-zero Lyapunov exponents, according to Pesin theory
[4]. A canonical example is a linked twist map (LTM) [5–8], and we give here a simple version
defined on the torus T2. Fix p ∈ (0,1) and define annuli P and Q by

P= {(x,y) ∈ T2 : y⩽ p},
Q= {(x,y) ∈ T2 : x⩽ p}.
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Consider the maps F : T2 → T2 and G : T2 → T2 given by

F

(
x
y

)
=


F1

(
x
y

)
=

(
1 1

p

0 1

)(
x
y

)
if(x,y) ∈ P,

F2

(
x
y

)
=

(
1 0
0 1

)(
x
y

)
otherwise.

(3)

G

(
x
y

)
=


G1

(
x
y

)
=

(
1 0
1
p 1

)(
x
y

)
if(x,y) ∈ Q,

G2

(
x
y

)
=

(
1 0
0 1

)(
x
y

)
otherwise.

(4)

We define the map H= G ◦F : P∪Q→ P∪Q as the linked twist map given by the compos-
ition of the restrictions of F and G to P∪Q, and we define the region S= P∩Q= {(x,y) ∈
T2 : x,y⩽ p}. It is straightforward to see that the source of the hyperbolicity is the fact that
when an iterate of H= G1F1 (corresponding to an orbit of H landing in S and remaining in
S after F), the orbit feels a composition of horizontal and vertical shears, as in the Cat Map.
It is also easy to understand the non-uniformity, since an orbit may fall arbitrarily close to a
boundary of P\S or Q\S, and thus experience arbitrarily long (non-hyperbolic) sequences for
which Hn = F n

1 or Hn = G n
1 .

As well as forming an interesting class of non-uniformly hyperbolic system in their own
right, linked twist maps are also relevant to a variety of applications. Perhaps most prominently
is the topic of fluid mixing by chaotic advection. In this context the basic paradigm of repeated
stretching in transverse directions inherent in chaotic stirring is represented by the Arnold Cat
Map [9], and in particular the toral nature of the Cat Map is realised as an egg-beater flow [10].
As a model of fluid mixing a linked twist map improves on the Cat Map by allowing the intro-
duction of boundaries at which specific boundary behaviour might be modelled [11–13]. This
mechanism applies to a wide variety of physical realisations of chaotic mixing device, includ-
ing channel-type mixers [14] in which periodicity is achieved spatially by repeated alternation
of different cross-sectional flow patterns, pulsed source-sink devices [15] and electro-osmotic
stirrers [16] in which temporal periodicity is created again by the alternation of different flows.
Other applications of linked twist maps include celestial dynamics [17] where they provide a
model for chaotic motion in double well potentials in conservative systems, predator-prey sys-
tems [18] with periodic harvesting, and the study of quantum ergodicity [19].

Several authors have noted the phenomenological connection between linked twist maps
and stadium billiards (consisting of two half-circles of radius r joined by a pair of straight
segments) [20], although it is typically difficult tomake an explicit description of such a billiard
in the form of equations (3) and (4) [21]. The ergodicity of the stadium billiard was shown by
Bunimovich [22], a result which requires Lyapunov exponents to be non-zero, but needs no
more accurate estimates. Further results tend to be of an asymptotic nature (for example, that
the entropy is of order logr as r→ 0 [23]), or present computational algorithms [24], or provide
accurate analytic approximations [25] to the Lyapunov exponent.

Linked twist maps are ergodic [6] and preserve Lebesgue measure µL, and so for
µL-a.e. (x, y) there are a pair of Lyapunov exponents, λ and λ−1. Other values of λ cor-
respond to zero measure sets, such as fixed points and periodic orbits of H. For example,

the point (p/2,p/2) is a period-3 point of H, with DH3 =

(
1 2/p

2/p 1+ 4/p2

)
, for which

the Lyapunov exponent is given by 1
3 log(1+ 2/p2 +

√
4/p2 + 4/p4). The orbit for which

DH= DG1DF1 =

(
1 1/p

1/p 1+ 1/p2

)
at every iterate corresponds to a uniformly hyperbolic
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horseshoe of zero measure. This sequence maximises the entropy h= h(µL) over all possible
periodic sequences [26], and hence λ by the Pesin Entropy Formula [4], and so gives an imme-
diate upper bound λ⩽ λh = log(1+ 1/2p2 +

√
1/p2 + 1/4p2). When p= 1, the linked twist

map clearly equates to the Arnold Cat Map H̃.
Computing λ is far more difficult, even for simple maps like F̃ and G̃, when they are com-

posed in any other way than periodically. For example, suppose map Ĥ : T2 → T2 is defined
by choosing either F̃ or G̃ at random (say, each with probability 1/2) at each iterate. Because
F̃ and G̃ do not commute, computing

λ= lim
n→∞

1
n
E log∥DxĤ

nv0∥

is a famously challenging problem. The limit converges, by the Furstenberg–Kesten theorem
[27], but [28] placed this problem in pride of place of subadditive ergodic theory.While numer-
ical schemes to approximate λ exist [29], rigorous upper and lower bounds on Lyapunov expo-
nents for Ĥ were established by one of the present authors in [30]. The idea is that any orbit
of Ĥ is a sequence of randomly chosen maps, such as GFFGGGFF . . .GGFFGGFGF, and the
corresponding Jacobian can be bracketed as

DxĤ
n =

k−1∏
i=0

DG̃biDF̃ai =
k−1∏
i=0

M̃ai,bi ,

and where the matrices M̃ai,bi possess an invariant cone over which one may maximise and
minimise norms. Then, knowing the distributions of the ais and bis, and hence the average
length of a block, is sufficient to construct an explicit expression for upper and lower bounds.

An orbit of the linked twist map can be bracketed in the same way, but while the corres-
ponding Mai,bi still preserve an equivalent invariant cone, in this case we have, a priori, no
knowledge of the distribution of the ais and bis, which depend deterministically on the initial
condition. We will also need to know the relationship between the number n of iterates in the
orbit of H, and the number k of the corresponding number of theMai,bi . The aim of the present
paper is to establish these requirements.

The paper is organised as follows. In section 2 we state our main results, which are rig-
orous upper and lower bounds for the Lyapunov exponents of the linked twist map H. The
required invariant cone is described in section 3, in which we also maximise and minimise
growth rates for vectors inside this cone. In section 4 we construct the return time partition
necessary to obtain the distributions of a and b, which completes the proof. We adapt our tech-
niques in section 5, using a more intricate geometrical construction, to improve both upper and
lower bounds, and finally in section 6 we discuss the accuracy of the bounds, introduce other
quantities for which this method can produce bounds, comment on the rate of convergence of
Lyapunov exponents for linked twist maps, and discuss the extension of these ideas to more
general nonlinear linked twist maps.

2. Statement of results

Since Hn is equivalent to a sequence of maps F1 and G1, we can write

DHn =
k∏
i=1

DGbiDFai =
k∏
i=1

Mai,bi (5)
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where

Ma,b =

(
1 a

p
b
p 1+ ab

p2

)
. (6)

For example, if (x, y) is such that

H6(x,y) = G1F1G1F2G1F1G1F1G1F2G1F1(x,y) = G1F1G
2
1F1G1F1G

2
1F1(x,y), (7)

then DH6 =M1,1M1,2M1,1M1,2. Now, assuming ∥v0∥= 1, we have

∥DHnv0∥=
k∏
i=1

∥Mai,bivi−1∥
∥vi−1∥

, (8)

where vi =Mai,bivi−1. To obtain an upper (lower) bound on ∥DHnv0∥, and consequently λ, we
require an upper (lower) bound for ∥Ma,bv∥/∥v∥ for each possible combination of a and b, and
in section 3 we will establish such an upper bound ϕ(a,b) and a lower bound ψ(a,b). We will
also need to know the distribution of these sequences—the frequency with which they occur
along an orbit—in order to calculate their overall contribution to the Lyapunov exponent. Note
that the ergodicity of LTMs [6, 8] ensures that these frequencies are equal for µL a.e. orbit. We
will discuss this distribution in detail in section 4, but for now let R(a,b) be the proportion of
pairs (ai,bi) in equation (5) that equal (a, b). Finally, let nS be the average number of iterates
n of H in k bracketed terms Mai,bi . Then we have

λ⩽ 1
nS

∞∑
a,b=1

R(a,b) logϕ(a,b) = ΦH, (9)

and

λ⩾ 1
nS

∞∑
a,b=1

R(a,b) logψ(a,b) = ΨH. (10)

For example, if the pattern in equation (7) were to continue, with M1,1 and M1,2 alternat-
ing indefinitely, then the proportions are R(1,1) = R(1,2) = 1

2 and the average number is
nS = 1

2 (1+ 2) = 3
2 , so the upper bound (equation (9)) reads λ⩽ 1

3 (logϕ(1,1)+ logϕ(1,2)).
In order for these bounds to converge, the frequency with which the Ma,b’s occur must

decrease faster than the logarithm of the bounds ϕ(a,b) and ψ(a,b) increase; in other words,
longer sequences must be sparser within an orbit than shorter ones. We will find that this is
indeed the case for the family of maps H. Furthermore, we will see that only a select few of
the sequences Ma,b are possible, and the frequency with which they occur within an orbit can
be written inductively for ‘large’ a or b.

We will also take advantage of the fact that equation (1) converges to the same value inde-
pendently of the choice of vector norm. The bounds we produce, however, do depend on the
choice of norm, so we consider three convenient norm, the ℓ1, ℓ2 and ℓ∞ norms, and we may
select the one which produces the tightest bounds. The results are summarised in the following
theorem.

Theorem 2. Let H be the linked twist map defined above, and let p∗ be the real root of p3 +
p− 1= 0 (that is, p∗ ≈ 0.682). Define for κ ∈ {1,2,∞}

ΨH,κ =
1
nS

∞∑
a,b=1

R(a,b) logψκ(a,b) (11)
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ΦH,κ =
1
nS

∞∑
a,b=1

R(a,b) logϕκ(a,b) (12)

where the functions ψκ(a,b) and ϕκ(a,b) are given in lemma 1, each R(a,b) is a rational
function in p given by lemmas 2 and 3, and nS = (2− p)/p. Then for p∗ ⩽ p⩽ 1 the largest
Lyapunov exponent λ of H satisfies

ΨH,κ ⩽ |λ|⩽ ΦH,κ. (13)

In [30] upper and lower bounds on Lyapunov exponents in the random case were improved
by considering two iterates of the map at a time, which allowed a tighter cone to be used. In
section 5 we provide the corresponding construction for this deterministic case, giving

Theorem 3. Let H be the linked twist map defined above, and let p̃ be the real root of p5 +
3p3 − 3p2 + p− 1= 0 (that is, p̃≈ 0.8562). Define for κ ∈ {1,2,∞}

Ψ̃H,κ =
1
nS

∞∑
a1,b1,a2,b2=1

R̃(a2,b2,a1,b1) log ψ̃κ(a2,b2,a1,b1) (14)

Φ̃H,κ =
1
nS

∞∑
a1,b1,a2,b2=1

R̃(a2,b2,a1,b1) log ϕ̃κ(a2,b2,a1,b1) (15)

where the functions ψ̃κ(a2,b2,a1,b1) and ϕ̃κ(a2,b2,a1,b1) are given in lemma 4, each
R̃(a2,b2,a1,b1) is a rational function in p given by lemma 5, and nS = (2− p)/p. Then for
p̃⩽ p⩽ 1 the largest Lyapunov exponent λ of H satisfies

Ψ̃H,κ ⩽ λ⩽ Φ̃H,κ. (16)

3. Invariant cones

In this section we discuss how to calculate the bounds ϕκ(a,b) and ψκ(a,b), which requires
finding bounds upon equation (8). To do this we make use of the existence of invariant cones
[31–33] for the matrices Ma,b. Note that Ma,b as given in equation (6) is diagonalizable with
positive eigenvalues for any a,b⩾ 1, and the eigenvectors of Ma,b are given by

v± =

(
2

b
p ±
√

4b
a + b2

p2

)
.

A cone is invariant for Ma,b if and only if it contains v+, and its interior does not contain
v− [34]. A simple calculation shows that the cone C(p) given by

C(p) =
{
(x,y) ∈ TxT2 : 0⩽ x

y
⩽ p
}

(17)

satisfies these conditions for any a,b⩾ 1, and so C is an invariant cone for every Ma,b. Note
that C is not an invariant cone for H, as its Jacobian matrix DH is not always hyperbolic.

In order to bound ∥HNv∥, we find upper and lower bounds for the quantity ∥Ma,bv∥/∥v∥,
for v ∈ C and each possible a,b, using the ℓ∞, ℓ1 and ℓ2 norms.

Lemma 1. The growth factors ∥Ma,bv∥κ/∥v∥κ for κ ∈ {1,2,∞} are bounded as

ψκ(a,b)⩽
∥Ma,bv∥κ
∥v∥κ

⩽ ϕκ(a,b) for all v ∈ C,
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where the bounds are given by

ψ1(a,b) = 1+
ab+ pa+ p2b
p2(1+ p)

ϕ1(a,b) = 1+
a
p
+
ab
p2

ψ2(a,b) =min


√√√√(p+ a

p

)2
+
(
1+ b+ ab

p2

)2
1+ p2

,

√(
a
p

)2

+

(
1+

ab
p2

)2


ϕ2(a,b) =

√
λuMT

a,bMa,b

ψ∞(a,b) = 1+
ab
p2

ϕ∞(a,b) = 1+ b+
ab
p2
.

Here, λuMT
a,bMa,b

denotes the unstable eigenvalue of MT
a,bMa,b.

Proof. Wefirst compute the vectors vκmax,v
κ
min ∈ TxT2 that maximise andminimise the quantity

∥Ma,bv∥κ/∥v∥κ over the entire tangent space. By the definition of the spectral norm, we have
that v2max and v

2
min are the unstable and stable eigenvectors of MT

a,bMa,b, respectively. Simple
calculations show that

v1max =

{
(0,1) if a

p ⩾
b

b+p ,

(1,0) otherwise,
v1min =

(
ab
p2

+ 1,−b
p

)
,

v∞max = (1,1), v∞min =

(
−ab
p2

− a
p
− 1,

b
p
+ 1

)
.

Of all these vectors, v2max is the only one inside the cone C, which yields the upper
bound ϕ2(a,b). In all other cases, we use that the norms vary monotonically between their
minimum and maximum and thus the extrema are attained on the boundaries of C. Some fur-
ther simple computations complete the proof.

4. The return time distribution

A common technique in the study of hyperbolic dynamical systems is to inspect a return map
to a hyperbolic set. That is, consider the map HS : S→ S, defined by HS = Hk, where k is
such that, for x ∈ S, Hk(x) ∈ S and H j(x) /∈ S for j= 1, . . . ,k− 1. Such a return map induces
a natural partition of S into regions of different return times k. This partition is central to
the application of Young Tower techniques for computing mixing rates, and HS was used in
[11] to demonstrate that LTMs have polynomial decay of correlations. Here we observe that
HS partitions S into countably many open sets on which HS is characterised by DHS =Ma,b,
where a+ b− 1= k. Typically in decay of correlation arguments only the partition sets for
large k, and the rate at which they decrease in size, are of interest. Here we construct in detail
the entire return time set, and use the notation

Ra,b = {x|DxHS =Ma,b},
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Figure 1. The intersectionH−1(S)∩ S= R1,1 is shown in dark grey. The pale grey quad-
rilaterals are the parts of H−1(S) which lie outside S, and which will return on a later
iterate of H. Here we choose p= 0.8.

that is, Ra,b contains those points x for whom HS = Gb
1F

a
1. We characterise the size of the sets

Ra,b using the conditional measure µS, and write

µS(Ra,b) = µL(Ra,b)/p
2,

where µL is Lebesgue measure. Note that µS is an ergodic invariant measure for HS [8].
In practice, to find the return time distribution, we calculate the pre-images of the set S

under H, and record the sets of points for which these pre-images intersect S. For example, the
set R1,1 is the set H−1(S)∩ S. Figure 1 shows the geometrical construction of this procedure,
with all the coordinates of the intersections needed to calculate the area of this set. Figure 2
continues this procedure, to produce the regions which return to S under a second application
of H−1.

Lemma 2. Let p3 + p− 1⩾ 0. Then

µS(R1,1) =
2p3

1+ p2
,

µS(R1,2) = µS(R2,1) =
−3p4 + 2p3 + 2p− 1

2p(1+ p2)
,

µS(R2,2) =
(1− p)2

1+ p2
.

Proof. These are all simple calculations based on the constructions shown in figures 1 and 2.
We note that we give the condition p3 + p− 1⩾ 0 (or p⩾ 0.682 . . .) since if this condi-

tion is not met, then the change in gradient which occurs at the points ( p
3+p−1
p ,1− p) and

(−p3+p2−2p+1
p ,2p− 1) (marked with circles in figure 2) will instead be contained within the

unreturned regions, and will continue into later iterates, making the return time distribution
more complicated, but not notionally more difficult.
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Figure 2. The darker grey regions are the points which return to S after one (R1,1) and
two (R1,2 and R2,1) iterates of H. The lighter grey regions indicate the points yet to
return, which are iterated backwards to obtain the later distribution elements. Of these,
the quadrilateral will return on the next iterate to the central white quadrilateral (R2,2),
while the triangular regions form the sets Rn,1 and R1,n for n⩾ 3. The circles mark points
mentioned in the proof of lemma 2.

Figure 3. The complete return time partition, shown here for p= 0.8.

The set of unreturned points for n⩾ 2 consists of R2,2, plus four triangles, shown in light grey
in figure 2. Apart from R2,2, the itineraries for such unreturned points are of the form F nG and
FGn, for n⩾ 3. There are countably many such regions Rn,1 and R1,n but these are also simply
calculated, and are shown in figure 3.
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Lemma 3. Let n⩾ 3 and as before p3 + p− 1⩾ 0. Then

µS(Rn,1) = µS(R1,n) =
2(1− p)2

np(n− 1)(n− 2)
.

Proof. The set Rn,1 consists of two triangles, one near (1,0) and one near (0,1). The first of
these can be expressed as the difference between triangles Tn and Tn−1, where the corners
of Tn have coordinates (1,0), (p,p(1− p)/n), (p,p(1− p)/(n− 1)). The area of Tn is p(1−
p)2/2n(n− 1) and so µS(Rn,1) is twice p(1− p)2/n(n− 1)(n− 2). The set R1,n is similar.

To complete the proof of theorem 2 we recognise that the required frequency with which
Ma,b appears along an orbit of H is exactly the relative size of the subset of S for which the
return mapHS is equal toGb

1F
a
1. That is, R(a,b) = µS(Ra,b). This is an immediate consequence

of theorem 1 with ϕ= χRa,b . Finally, we require nS. This can be computed directly from the
expectation

nS = ⟨a+ b− 1⟩=
∑
a,b

(a+ b− 1)R(a,b)

= R(1,1)+ 2(R(1,2)+R(2,1))+ 3R(2,2)+
∞∑
n=3

n(R(1,n)+R(n,1))

=
−4p4 + 7p3 − 6p2 + 7p− 2

p(1+ p2)
+

4(1− p)2

p

∞∑
n=3

1
(n− 1)(n− 2)

=
−4p4 + 7p3 − 6p2 + 7p− 2

p(1+ p2)
+

4(1− p)2

p

∞∑
m=1

1
m(m+ 1)

=
−4p4 + 7p3 − 6p2 + 7p− 2

p(1+ p2)
+

4(1− p)2

p

=
2
p
− 1.

Alternatively, we can apply Kac’s lemma [35], which states that for an ergodic, measure-
preserving transformation, the expected first return time to a set S is 1/µ(S), where µ is the nor-
malized measure on the domain. Since µL(S) = p2 and µL(P∩Q) = 1− (1− p)2 = p(2− p)
we have nS = p(2− p)/p2 = 2/p− 1, confirming the validity of the return time distribution in
this section.

5. Improving the bounds

Here we discuss the circumstances under which we can consider narrower cones than C, in
order to improve upon the bounds ΨH,κ and ΦH,κ in theorem 2. In [30], the case of bounding
random products of matrices, the corresponding modifications were relatively simple, as the
frequencywithwhich thematrixMa2,b2 preceded thematrixMa1,b1 in any orbit was independent
of the choice of a1 and b1. In the present deterministic case, however, this independence does
not hold.

Instead, we consider which matricesMa2,b2 can precede eachMa1,b1 . The benefit of doing so
is to replace the cone C with its narrower imageMa2,b2(C), improving the bounds of lemma 1.

Lemma 4. We have

ψ̃κ(a2,b2,a1,b1)⩽
∥Ma1,b1v∥κ

∥v∥κ
⩽ ϕ̃κ(a2,b2,a1,b1)
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for κ ∈ {1,2,∞} and v ∈Ma2,b2(C), with

ψ̃∞ = 1+
a1b1
p2

+
a2b1

p2 + a2b2

ϕ̃∞ = 1+
a1b1
p2

+
b1p2 + a2b1

p2(1+ b2)+ a2b2

ψ̃1 = 1+
a1p3 +(a2b1 + a1b1)p2 + a2a1b2p+ a1a2b1b2

p2(a2b2 + a2p+ p2)

ϕ̃1 = 1+
b1p4 +(a1b2 + a1)p3 +(b2a1b1 + a2b1 + a1b1)p2 + a1a2b2p+ a1a2b1b2

p2(p3 +(b2 + 1)p2 + a2p+ a2b2)

ψ̃2 =min{ξ1, ξ2}

ϕ̃2 =


√
λuMT

a1,b1
Ma1,b1

if v2max ∈Ma2,b2(C)

max{ξ1, ξ2} otherwise,

where

ξ1 =

√(
a1(a2b2+p2)

p3 + a2
p

)2
+
(
a2b1
p2 +

(
a1b1
p2 + 1

)(
a2b2
p2 + 1

))2
√

a22
p2 +

(
a2b2
p2 + 1

)2

ξ2 =

√(
b1(a2+p2)

p2 +
(
a1b1
p2 + 1

)(
a2b2
p2 + b2 + 1

))2
+
(
a1(a2b2+p2(b2+1))

p3 + a2
p + p

)2
√(

a2
p + p

)2
+
(
a2b2
p2 + b2 + 1

)2 .

Proof. Similarly to lemma 1, ∥Ma1,b1v∥κ/∥v∥κ changes monotonically in Ma2,b2(C) in the l1
and l∞ cases. In the l2 case, the maximising vector v2max may or may not be contained in the
cone Ma2,b2(C). The calculations are again elementary.

To complete the improved bounds, we require the proportion of a typical orbit which sees
Ma2,b2 followed byMa1,b1 . To obtain this we calculate the measure of the set of points in Ra2,b2
which map under the return map HS into Ra1,b1 , that is, µS({x|H2

S = Fa21 G
b2
1 F

a1
1 G

b1
1 }). Since H

is µ-invariant we have

µS(Ra2,b2 ∩H−1
S (Ra1,b1)) = µS(HS(Ra2,b2)∩Ra1,b1)

andwe use the notationHS(Ra2,b2)∩Ra1,b1 = R̃a2,b2,a1,b1 . Sowe consider the partition in figure 3
and its forward image, which by the symmetry of the map is simply the original partition
rotated through 90◦. The partition and its image is shown in figure 4. The size of each region
of this ‘improved partition’ can be calculated using simple geometry. The task is made simpler
by the fact that the countably infinite regions of the original partition do not intersect with their
own images, that is, for n⩾ 3,

HS(R1,n ∪Rn,1)∩ (R1,n ∪Rn,1) = ∅

(noted as lemma 3.2 of [11]) and moreover the symmetry induces the relationship

µS(R̃a2,b2,a1,b1) = µS(R̃b1,a1,b2,a2)

for all a1,b1,a2,b2. The areas µS(R̃a2,b2,a1,b1) are given in:
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Figure 4. The partition depicting {x|H2
S = Fa21 G

b2
1 F

a1
1 G

b1
1 } for a1,a2,b1,b2 ∈

{1,2,3 . . .}.

Lemma 5.

µS(R̃1,1,1,1) =
p
(
12p8 + 28p6 − 12p5 + 14p4 − 16p3 + 6p2 − 4p+ 2

)
2p8 + 9p6 + 12p4 + 6p2 + 1

µS(R̃1,1,1,2) = µS(R̃2,1,1,1)

=−
(
10p10 + 4p9 + 9p8 − 10p7 + p6 − 24p5 + 14p4 − 12p3 + 9p2 − 2p+ 1

)
4p9 + 18p7 + 24p5 + 12p3 + 2p

µS(R̃1,1,2,1) = µS(R̃1,2,1,1) =−8p6 − 4p5 − 6p3 + p2 + 1
4p5 + 6p3 + 2p

µS(R̃1,1,2,2) = µS(R̃2,2,1,1) =

(
−p3 + 4p2 − 5p+ 2

)
2(p2 + 1)

µS(R̃1,2,1,2) = µS(R̃2,1,2,1) =
2p
(
p2 − 2p+ 1

)
2p2 + 1

µS(R̃1,2,2,1) =

(
−p5 + 4p4 − 9p3 + 14p2 − 12p+ 4

)
p4 + 5p2 + 4

µS(R̃1,2,2,2) = µS(R̃2,2,2,1) =
p
(
p4 − 4p3 + 9p2 − 10p+ 4

)
2(p4 + 5p2 + 4)

µS(R̃2,1,1,2) =
4p2
(
p2 − 2p+ 1

)
p4 + 3p2 + 1

µS(R̃2,2,2,2) =
p2
(
p2 − 2p+ 1

)
p4 + 5p2 + 4

µS(R̃n,1,1,1) = µS(R̃1,n,1,1) = µS(R̃1,1,n,1) = µS(R̃1,1,1,n) =
2(1− p)2

np(n− 1)(n− 2)
.
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In each case, by theorem 1, we have R̃(a2,b2,a1,b1) = µS(R̃a2,b2,a1,b1).

Proof. The computation of these areas are all the result of simple geometry, illustrated in
figure 4.

Replacing the functions ϕκ, ψκ and R of theorem 2 with ϕ̃κ, ψ̃κ and R̃ completes the proof
of theorem 3.

6. Discussion

6.1. Accuracy of the bounds

The bounds on λ given by theorems 2 and 3 can be computed easily and rapidly. Here we
compare the numerical values of these bounds with values produced by a standard numerical
algorithm [29] using Gram–Schmidt orthonormalisation to quantify the exponential growth
of tangent vectors implicit in a positive Lyapunov exponent. The bounds ΦH,κ and ΨH,κ each
involve an infinite sum, but truncating these at some large but finite limit give accurate evalu-
ations. In particular, since every term in each sum is positive, any truncation ofΨH,κ is a strict
lower bound, while each term decreases roughly as n−3 logn.

Figure 5 shows the bounds ΦH,κ and ΨH,κ for each of the L1 (red), L2 (blue), L∞ (green)
norms. The numerically calculated value for λ, from 105 iterates of the standard orthonorm-
alisation scheme, is shown as a solid black line. Upper bounds are shown as solid lines, and
lower as dashed lines. Figure 5(a) shows that the tightest upper bound comes from the L2 norm,
while the tightest lower bound comes from the L1 norm. The bound given by the topological
entropy calculation of [26] is shown in magenta. Note that the upper bound ΦH,2 coincides
with λ at p= 1. This is because the vector v2max ∈ C given in the proof of lemma 1 is equal
to the expanding eigenvector of H when p= 1. The upper bounds for L1 and L∞ also coin-
cide at p= 1, where the expressions in lemma 1 are equivalent. Figure 5(b) selects the best
bounds, and shows that ΦH,2 is considerably tighter than ΨH,1, but still appears greater than
the numerically calculated value for all p< 1.

Figure 6 shows the bounds Φ̃H,κ and Ψ̃H,κ. Here we plot ΦH,κ −ΨH,κ and Φ̃H,κ − Ψ̃H,κ (in
figure 6(a)) to show the improvement in using the return partition and its image. Figure 6(b)
shows the bounds using the L2 norm, the tightest bounds, and illustrates that the envelope
Φ̃H,2 − Ψ̃H,2 is often narrower than the uncertainty in the numerically calculated value of λ,
even after 105 iterates.

6.2. Related quantities

The method described here could also be used to bound related quantities. For example, of
interest in many applications is the generalized Lyapunov exponent ℓ(q), which gives the
growth rate of the qth moment of a matrix product norm [36]. The generalized Lyapunov
exponent is used in large deviation theory, and is typically defined for products of random
matrices. In this deterministic setting we have

ℓ(q) = lim
n→∞

1
n
log⟨∥Dx f

nv0∥q⟩ (18)

where the average is taken over the invariant measure µ. This is related to the standard
Lyapunov exponent by λ= ℓ ′(0). This quantity is notoriously difficult to compute numer-
ically [37], because fluctuations along a finite orbit are magnified for large q. However, the
expressions in theorems 2 and 3 can be easily adapted to give quick and accurate upper and
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Figure 5. Bounds of λ given by theorem 2. The black line shows the numerically com-
puted value of λ. Upper bounds are shown as solid lines, lower bounds as dashed lines.
As labelled, and in later figures, red lines originate from the l1 norm, blue lines from the
l2 norm, and green lines from the l∞ norm. The magenta line indicates the upper bound
from maximising λh.

Figure 6. Bounds of λ given by theorem 3. The black line shows the numerically com-
puted value of λ.

lower bounds for ℓ(q), since the contributions from averaging over the invariant measure are
given explicitly by R(a,b). These bounds are shown, for the l2 norm, in figure 7. Note that
ℓ(q) is monotonic, since the existence of the invariant cone means that a vector is expanded
by DH at every iterate of the map. Generalized Lyapunov exponents are closely related to the
joint spectral radius, a quantity which can also be rigorously bounded, for each lp norm, by
this method.

6.3. Convergence of Lyapunov exponents

We comment on the difficulty of computing Lyapunov exponents numerically for linked twist
maps. The standard algorithm [29] is not difficult to code, and as the system is low-dimensional
and discrete time, is quick to run. However, as shown in figure 6(b), a large number of iterates
is required to improve on the rigorous bounds presented. Indeed the numerical calculation
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Figure 7. Rigorous upper and lower bounds on the generalized Lyapunov exponent ℓ(q)
for the linked twist map H, defined by equation (18), using the l2 norm. The circle
indicates ℓ(1), which corresponds to the topological entropy λh = log(1+ 1/2p2 +√

1/p2 + 1/4p2).

shows poor convergence to the expected values of λ, which should change smoothly with p.
Typically, Lyapunov exponents converge according to the central limit theorem. Linked twist
maps, however, have slow correlation decay (shown in [11] to be polynomial, with rate 1/n).
This results in a central limit theorem with a non-standard scaling factor of

√
n logn, and so

slower convergence than usual [38].

6.4. More general linked twist maps

We have given rigorous results for a simple parameterised linked twist map, and here we
discuss more general linked twist maps. In particular, consider replacing the map given by
equations (3) and (4) with

F(x,y) =

{
(x+ f(y),y), if (x,y) ∈ P
(x,y), otherwise

and

G(x,y) =

{
(x,y+ g(x)), if (x,y) ∈ Q
(x,y), otherwise

onT2, withH= G ◦F as before. Let the functions f and g be such that f(0) = g(0) = 0, f(p) = j
and g(p) = k for some integers j and k. If j> 0 (resp. j< 0) let α= inf{df/dy : 0⩽ y⩽ p}
(resp. α= sup{df/dy : 0⩽ y⩽ p}), and similarly if k> 0 (resp. k< 0) let β = inf{dg/dx : 0⩽
x⩽ p} (resp. β = sup{dg/dx : 0⩽ y⩽ p}). The hyperbolicity of such a map is given by the
(classical):

Theorem 4 [7, 8]. Lyapunov exponents λ for H exist µL-almost everywhere and are non-zero
in the cases (i) jk> 0 and αβ > 0 and (ii) jk< 0 and |αβ|> 4.

To use the method of the present paper to determine tight, rigorous bounds for λ for such
f and g essentially requires three steps. First, we need the existence of an invariant cone, as
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Figure 8. Return time partitions for a linked twist map with a nonlinear twist function
with p= 0.8. Although the increasing parameter ϵ takes the map further from the linear
case, the return time partition retains the same fundamental structure. Note that at ϵ= 0.2
the functions f and g are no longer monotonic increasing and the conditions of theorem
4 no longer hold.

in section 3. Such an invariant cone indeed exists, and is central to the proof of theorem 4
where it is used to establish nonvanishing of Lyapunov exponents. We also require minimum
and maximum growth factors to replace those of lemma 1. Here there are expressions for min-
imum growth factors involving α and β (and corresponding expressions for maximum growth
factors), but these will likely produce bounds with considerable loss of sharpness as we take
the global minimum expansion at all locations. Finally, we require the areas of elements in
the return time partition. This is the biggest barrier to a rigorous result. If f and g are piece-
wise linear, all partition elements are polygons and there is nothing other than lengthy algebra
preventing the generalisation of lemmas 2 and 3. However, if f and g are not piecewise lin-
ear, partition elements are curvilinear, and not necessarily convex. Rigorous determination of
bounds on areas is likely to be a considerable problem, even numerically.

To illustrate this, we choose the cubic families f(y) = 64ϵy3/3p3 − 32ϵy2/p2 +(1+
32ϵ/3)y/p and g(x) = 64ϵx3/3p3 − 32ϵx2/p2 +(1+ 32ϵ/3)x/p, which correspond to our ori-
ginal linked twist map at ϵ= 0 and satisfy the conditions of theorem 4 for sufficiently small
ϵ. The return time partitions for four different values of ϵ, and p= 0.8, are shown in the
figure 8. As ϵ increases, the partition elements shown in figure 3 become defined by increas-
ingly curved boundaries. However, the overall arrangement of the partition is retained—in
particular, there are no new partition elements created—and so with some confidence we con-
jecture that for small nonlinear perturbations of the original system Lyapunov exponents also
change smoothly.
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