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Abstract: The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust

DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the

type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to

induce genome instability, yet the links between DDR and glucose are still not well investigated.

In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous

breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a

microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal

human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of

the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly

upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results

in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR

genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results

propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage

induced in cells.

Keywords: DNA damage response (DDR); hyperglycemia (HG); DNA damage; metabolic diseases;

cancer; diabetes mellitus

1. Introduction

The DNA damage response (DDR) is a series of controlled, complex protein pathways
that cells have evolved to ensure genomic integrity. This pivotal signaling explains how cells
preserve their function following damage caused by base alteration, aberrant DNA protein
function, oxidation or exogenous genotoxic factors [1,2]. The DDR is robustly activated in
response to DNA damage, which allows sufficient time for specified DNA repair pathways to
physically remove damage [3]. The major DNA repair pathways—base excision repair (BER),
nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination
(HR) and non-homologous end joining (NHEJ)—are activated throughout different stages
of the cell cycle, allowing cells to repair the DNA damage [4,5]. This is in addition to
pathways that deal with specific lesions or tolerate them [5,6]. Programmed cell death
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or apoptosis is activated when the damage persists, which removes cells with extensive
genome instability [5].

Many physiological events depend on the DDR network’s coordination of DNA
breaks/repair [1]. Deviations in this fine-tuning are known to destabilize cellular metabolic
homeostasis, as exemplified in diverse cancers and many metabolic diseases such as
diabetes mellitus, where disruption or deregulation of DNA repair pathways results in
genome instability [7–9]. High glucose (HG) was reported to enhance the cell’s mutation
rate and slow the repair ability. This leads to increasing the cell’s susceptibility to oxidative
DNA damage [10–13] and disruption of DNA integrity [14–17]. Furthermore, the CHK1-
mediated DNA damage response is not activated properly in HG conditions [17]. In
addition, endogenously induced chemical modifications and adducts in the DNA were
reported to be increased due to high glucose metabolism in diabetic models. Metabolic
diseases also elevate the circulating glucose levels, resulting in the accumulation of DNA-
advanced glycation end products that increase the rate of G transversions. Eventually, these
products lead to instability of the genome and a high risk of cancer [18]. For instance, HG
levels interfere with the removal of the guanosine derivative produced by the breakdown
of glucose: N2-(1-carboxyethyl)-2’-deoxyguanosine (CEdG). HG also destabilizes Hypoxia-
inducible factor 1-alpha (HIF1α), which activates several genes involved in the DNA repair
process such as the NER genes [19]. This promotes genomic instability and increases cancer
susceptibility in people with Type 2 diabetes (T2D) [20–22]. An increase in γH2AX protein
expression corresponding to DNA breaks was also noticed in high glucose conditions [12,23].
These defects lead to an accumulation of mutations due to the interference of the error-
prone NHEJ repair mechanism [24], which is consistent with the negative effects of high
glucose and the correlation between diabetes and cancer.

The relationship between HG and DNA damage response/repair mechanisms is still
understudied. Therefore, in this research article, we used the triple negative breast cancer
(TNBC) cell line MDA-MB-231 and the non-malignant breast cancer cell line MCF10A as
a model to analyze the effects of HG on DNA damage and highlight the specific DDR
genes that are affected. This work was executed as presented in Figure 1. Weighted Gene
Co-expression Network Construction Analysis (WGCNA) was carried out to find the
clusters (modules) of highly correlated genes and relate the modules to glucose status of the
samples. Then, the Reactome tool was utilized to find the enriched pathways in the selected
modules [25]. Differential expression analysis (DEA) highlighted changes in transcription
levels in the presence and absence of 2-deoxyglucose (2DG), a widely used competitive
inhibitor of glucose uptake and metabolism acting at the level of hexokinase [26]. We then
shifted to the wet lab to study a representative group of genes and confirm the findings.

Figure 1. Schematic representation of the workflow for this project “Created with BiRender.com”.
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2. Materials and Methods

2.1. Data Retrieval

The gene expression profiles for mammary cell lines (GSE59228) were downloaded
from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/, ac-
cessed on 6 August 2021). The dataset was composed of 8 MCF10A and 8 MDA-MB-231
samples; 4 of each sample type were grown at the low confluence in standard growth
conditions and the other 4 were incubated for 24 h with 2-deoxy-glucose (2-DG, 50 mM) to
inhibit glucose metabolism.

2.2. Data Pre-Processing

The Affy package (version 1.72.0) was used to perform background correction and
quantile normalization of the raw .CEL files using the robust multiarray average algorithm
(RMA) [27]. After that, the Avereps function implemented in the limma package (version
3.50.3) was used to summarize the expression of the multiple probes for the same gene [28].
To decrease the number of genes for WGCNA, the varFilter function in the gene filter
package (version 1.76.0) was used to obtain genes exhibiting the most variation (top 50%)
in the expression levels across samples [29].

2.3. Weighted Gene Co-Expression Analysis (WGCNA)

The R package WGCNA (version 1.71) was used to perform the weighted correlation
network analysis [30]. Firstly, the gene co-expression similarity between genes m and
n was defined as Smn = |cor(m, n)|. Given that the scale-free topology was less than
0.8 due to the nature of heterogeneity of the data, the signed network was built using
power equals (18) to tackle the high variation between the different cell lines of MCF10A
and MDA-MB-231 [30]. Finally, the adjacency matrix was transformed into a topological
overlap matrix, and the dynamic tree cut method was also used to identify the modules
with hierarchical clustering of the genes using TOM as the distance measure with a deep
split value of 2 and minimum module size of 30. Additionally, the corresponding gene
information for each module was extracted for further analysis.

2.4. Establishment of Module Related Trait Relationships

After the identification of the modules, the module eigengene (ME) was summarized
using the first principal component of the module expression levels. Pearson’s correlation
analysis was used to identify the association between each individual module and the
different phenotypes of high- and low-glucose MDA-MB-231 and MCF10 cells. Each
phenotype has a strongly related module which can be considered as its signature [30].

2.5. Pathway Enrichment Analysis

The ReactomePA R package was used to identify the enriched pathway based on
the Reactome database. The EnrichPathway function utilized a hypergeometric model to
evaluate if the number of selected genes involved in a Reactome pathway is larger than
expected to evaluate the significance of the enrichment. The cutoff for the adjusted p-value
was <0.05 [31]. The Enrichplot (version1.14.2) R package was used to visualize the enriched
pathways in both the green and brown modules. The tree plot function was utilized to
perform hierarchal clustering in a more holistic approach [32].

2.6. Differential Gene Expression Analysis

Differential expression analysis was performed using the Limma package (version
3.50.3) [28]. The adjusted p-values (adj p-value) were implemented to avoid the occur-
rence of false-positive results. Genes with |log2 fold change (FC)| larger than 1 and adj
p-value < 0.05 were considered as DEGs.
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2.7. Cell Culture

The MDA-231 cell line was cultured in DMEM supplemented with 4.5 g/L Glucose
(High Glucose) or 1 g/L Glucose (Low Glucose), L-Glutamine, 1% Penicillin/Streptomycin
and 10% Fetal Bovine Serum (FBS). The high-glucose medium (25 mM glucose, HG) mimics
hyperglycemia in cancer cells, and the low-glucose medium (5.55 mM glucose, LG) is close
to the normal physiological conditions of 4–8 mM [33,34].

2.8. Alkaline Comet Assay

The alkaline comet assay procedure was executed as described in [35,36]. The Comet
Assay IV software (Perceptive Instruments, Suffolk, UK) was used to calculate the tail moment.

2.9. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

For the gene expression analyses using qPCR, RNA was extracted from MDA-MB-231
cells using TRIzol. mRNAs from the total extracted RNA were reverse transcribed into
the single stranded cDNA using the iScript™ cDNA synthesis kit (Bio-Rad, Hercules, CA,
USA) according to manufacturer’s instructions and stored at −80 ◦C. Quantitative real-
time polymerase chain reaction (qPCR) was performed using SYBR™ Select Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA) on the QuantStudio™ 12K Flex Real-Time
PCR System (Applied Biosystems™, Waltham, MA, USA). Glyceraldehydes-3-phosphate
dehydrogenase (GAPDH) was used as a housekeeping gene.

3. Results

To explore new possible links between glucose metabolism and changes in gene tran-
scription, we performed bioinformatics analysis using the publicly available GSE59228
microarray dataset. This dataset includes gene expression data for the MCF10A immortal-
ized mammary epithelial cells and the MDA-MB-231 metastatic breast cancer cells cultured
in high-glucose media (HG) (25 mM) +/− 2-deoxyglucose (2-DG, 50 mM); an inhibitor of
glucose uptake that mimics low glucose conditions [26].

3.1. Identification of Key Modules Using WGCNA in Cells Cultured in HG +/− 2-DG

The GSE59228 dataset used for the analysis included 16 samples, 8 MDA-MB-231 and
8 MCF10A. Four samples from each type were cultured in high glucose and the remaining
four were treated with 2-DG. Firstly, the average link method was used to cluster the
samples. The 16 samples were clustered into 2 large clusters. Then, each MDA-MB-23 and
MCF10A large cluster was divided into two small clusters according to their glucose level,
high glucose (HG) or HG + 2-DG (LG), as shown in Figure 2. According to the average
link method, samples from the same cluster exhibit related expressions across all genes.
Consequently, the two different cell lines clustered away from each other, and then each
cell line clustered into two sub-clusters according to their glucose conditions, which reveals
the effect of the difference in glucose levels on the gene expression levels in both cell types.

Using the same dataset, the WGCNA R package was used to cluster genes that are sim-
ilar in their expression pattern into distinctive modules with the average linkage method.
A total of 11 modules were identified (Figure 3a). Then, a module–trait relationship was
executed to find the relationship between gene expression profiles and their phenotypes.
Pearson’s correlation coefficient was used to identify the association between the module
eigengenes and the status of the cells such as the glucose level and the cell type. Further-
more, the p-value was calculated for the given correlation in Figure 3a.
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Figure 2. Hierarchical clustering of the samples analyzed. HG, high glucose; LG, 50 mM 2-DG added

to inhibit glucose uptake.

Figure 3. WGCNA analysis to identify the key modules associated with different glucose levels.

(a) The module–trait relationships were demonstrated using correlation values and p-values with a

range of colors; the degree of correlation between modules and glucose levels is shown. HG, high

glucose; LG, 50 mM 2-DG added to inhibit glucose uptake. (b) Median rank and Z-summary statistics

in the module preservation tests. Left plot shows the module position in the test dataset based on the

median rank. Right plot illustrates the analysis of the Z-summary between different modules.
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The brown and green modules had a significant correlation with the MDA-MD-231
and MCF10A cells in high glucose and their p-values were <0.05. The module stability test
was used on the same dataset to validate the stability of the identified modules [30,37]
(Figure 3b). Since the Z-summary of the brown and green modules was higher than 10
and the median rank was close to the minimum in the test dataset, the modules showed
considerable stability. Therefore, we selected these modules for further analysis. The full
lists of genes for these two modules are summarized in Tables S1 and S2.

3.2. DDR Pathways Are Enriched in the Significant Modules

To identify pathways that correlated to fluctuation in glucose levels, the ReactomePA
R package (version 3.1.1 March 2017) was used to identify the enriched pathways in the
brown (Figure 4) and green modules (Figure 5) [25]. Several DDR pathways were found
to be enriched in at least one of the two modules. For example, Homology Directed
Repair (HDR), DNA double-stranded break repair, DNA Repair, Cell cycle check points,
S-phase, chromosomal maintenance, DNA protein crosslink repair/protein-linked repair,
etc. (Figures 4 and 5). The full list of the enriched pathways for the brown and green
modules and their significance are summarized in Table S3 and Table S4, respectively.

Figure 4. Pathway enrichment analysis for the brown module. The ReactomePA package [38]

was used to identify the pathways enriched in the brown modules. The pathways represented are

statistically significant (adjusted p-value < 0.05) as indicated by the color of the nodes (right panel).

The number of genes retrieved in our analysis and identified in the pathways are represented using

the size of the circles as indicated in the right panel.
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Figure 5. Pathway enrichment analysis for the green module. The Reactome tool [38] was used to

identify the pathways enriched in the green modules. The pathways represented are statistically

significant (adjusted p-value < 0.05) as indicated by the color of the nodes (right panel). The number

of genes retrieved in our analysis and identified in the pathways is represented using the size of the

circles as indicated in the right panel.

3.3. Multiple DDR Genes Are Differentially Expressed in Cells Cultured in High Glucose vs.
Low Glucose

Differential expression analysis (DEA) was completed for the MDA-MB-231 cells and
MCF10A cells to identify the differentially expressed genes (DEGs) between the high- and
low-glucose status in both cell lines. A p-value < 0.05 and the log2 fold change (lfc) >|1|
were set as a threshold to identify the DEGs. Interestingly, we observed that multiple DDR
genes are down-regulated in LG-cultured cells in comparison to HG cells. Excitingly, the
same pattern of expression was observed for numerous genes in both the MDA-MB-231
and MFC10A, indicating that the increase in glucose affects both normal and malignant
cells. This is also in line with the WGCNA and the pathway enrichment analysis data. The
full list of DEGs for both cell lines is provided in Table S5.

3.4. High Glucose Increases the Expression of Multiple DDR Genes Which Is Reversed in
Low-Glucose Conditions

To validate the bioinformatics results, we shifted to the wet lab and experimentally
exposed MDA-MB-231 cells to LG after culturing in HG. To investigate the effects of high-
and low-glucose conditions on DNA damage, a comet assay was performed under alkaline
conditions (pH > 13) to detect DNA double-strand breaks, single-strand breaks, alkali-
labile sites, DNA-DNA/DNA-protein cross-linking, incomplete excision repair sites and
oxidative base alterations [39–42]. Cells were cultured in high glucose and the comet tail
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moment was recorded. A higher level of DNA damage was observed in HG cells compared
to LG as presented in the increased tail moment (Figure 6).

Figure 6. Alkaline comet assay representing significant DNA damage in HG- compared to LG-

cultured cells. MDA-MB-231 cells were cultured in high glucose (25 mM glucose, HG) or low glucose

(5 mM glucose, LG). Each bar represents the mean ± SEM of three repeats. Results were analyzed

using an unpaired Student’s t-test where each error bar represents SEM. ** = p < 0.01.

To study the effects of changing glucose levels on DDR, we chose representative genes
for several DDR pathways for confirmation using qPCR analysis. The genes selected
(BARD1, BRCA2, COPS8, DNA2, FANCD2, LIG1, MSH6, NSD2, PARP1, RAD1, RAD51,
TDP1) were identified as DEGs and were also part of either the brown or the green modules
to cover a broad range of mechanisms (Tables S1, S2 and S5). Moreover, the biological
repeats of these genes in the qPCR analysis were consistent and reproducible; therefore,
we present the expression levels of these particular genes in the microarray dataset in
Figure 7 for MDA-MB-231 and in Figure S1 for MCF-10A. Moreover, to identify major
similarities and differences in the transcriptional changes of these genes in the different
levels of glucose, we performed hierarchical clustering on normalized expression of DDR
genes for each sample. The heatmap shows a clear pattern where the LG and HG cells were
clustered together based on the DDR gene expression levels (Figure 8). Finally, the qPCR
data is represented in Figures 9 and S2. The Relative quantification (RQ) was calculated for
the genes. The data showed that RAD51 (p = 0.0003), BRCA2 (p = 0.0235), DNA2 (p = 0.0431),
FANCD2 (p = 0.0223), MSH6 (p = 0.0017), TDP1 (p = 0.0305), NSD2 (p = 0.0318), PARP1
(p = 0.0155) and BARD1 (p = 0.0128) had a significant decrease in expression upon shifting
cells to LG in comparison to HG (Figure 9a–i). On the contrary, changes in the RAD1,
LIG1 and COPS8 gene levels were not significantly between HG- and LG-cultured cells
in our wet lab experiments despite being differently expressed in the microarray analysis
(Figure S2). Overall, the bioinformatics analysis and wet lab experiments showed a great
level of concordance, supporting the deleterious effects of HG on genome integrity and
cellular functions.
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Figure 7. Normalized expression of the differentially expressed DDR genes in MDA-MB-231 analyzed

using the microarray dataset. The genes analyzed are represented in (a–i). Boxplots represent

normalized counts in LG (grey) and HG (red). HG, high glucose; LG, 50 mM 2-DG added to inhibit

glucose uptake.
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Figure 8. Heatmap of DNA repair genes identified in high- and low-glucose levels in MDA-MB-231

cells. Expression of the genes was normalized and log2 transformed. Both rows and columns are

clustered using correlation distance and average linkage. The color intensity reflects the expression

levels where positive values indicate upregulation and negative values indicate downregulation. HG,

high glucose; LG, 50 mM 2-DG added to inhibit glucose uptake.

Figure 9. qPCR analysis of DDR genes in HG- vs. LG-treated MDA-MB-231 cells. MDA-MB-231

cells cultured in LG conditions (5.55 mM glucose) resulted in a significant downregulation of genes

presented in (a–i) in comparison to HG (25 mM glucose)-cultured cells. GAPDH was used as a

housekeeping gene for the RQ calculations. Data from three or four independent biological replicates

of each treatment are presented. Each bar represents the mean ± SEM. Results were analyzed using a

paired Student’s t-test where *** = p < 0.001, ** = p < 0.01, * = p < 0.05.
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4. Discussion

Hyperglycemia promotes oxidative stress and DNA damage, which are significant
factors contributing to disease development and progression [43,44]. Since the discovery of
the Warburg effect over a century ago, the role of glucose in cancer formation and progres-
sion has drawn substantial attention. Hyperglycemia results in an increased prevalence
and mortality associated with many cancers, including breast and colorectal [45–49]. It
was reported that HG significantly increases mutations in phosphoribosyltransferase and
thymidine kinase loci in human lymphoblastoid cell lines and Lac1 in the mouse embryo,
thus affecting genomic stability [13,50,51]. In addition, it causes DNA lesions and strand
breaks and alters the DNA damage response in renal and prostate cancers [17,52]. Chemo-
and radiation-resistance were also noted in normal renal epithelial cells and renal cell
carcinoma after high glucose exposure and attributed to altered DNA damage response and
reduced repair, though DNA repair protein expression changes were not examined [17].
Additionally, alterations in the XRCC1 gene and protein expression were reported following
glucose concentration changes in breast cancer cell lines and hepatocytes [53,54]. XRCC1
is an essential protein in DNA repair and is known to be involved in the single-strand
break (SSB) and base excision repair (BER) pathways. Particularly, XRCC1 is recruited to
the repair of oxidative DNA breaks by BER pathways [55]. It was also found that high
glucose exposure drives XRCC1 expression through increased STAT3 activation, resulting
in resistance to DNA damaging agents [56]. A recent report also observed that the expres-
sion of γH2AX protein, which corresponds to DNA double-strand breaks, was increased
in high-glucose conditions [17]. Despite previous efforts establishing a link between hy-
perglycemia and DNA damage, the impact of high-glucose concentration on DNA repair
genes is understudied [17].

In this article, bioinformatics analysis of a microarray dataset of normal and malignant
breast cell lines, MCF10A and MDA-MB-231, respectively, was used to study the impact
of high glucose on DDR pathways. WGCNA followed by pathway enrichment analysis
revealed an over-representation of DNA damage response pathways upon changing glu-
cose levels. We also interestingly detected significant DNA damage as DNA double-strand
breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking,
incomplete excision repair sites and oxidative base alterations using the alkaline comet
assay [39–42] in cells cultured in HG, which explains the need for a strong DDR response
to control this damage. While the dysfunction of DNA repair proteins through their loss
or mutations has gathered significant research focus, factors driving the overexpression
of DNA repair proteins, such as hyperglycemia, are not well understood. Therefore, we
tried to select specific DDR genes to propose possible consequences on specific cellular
pathways in HG conditions.

In our experiments, the most significant upregulated genes included FANCD2, a
player in Fanconi anemia (FA) [57], and several genes playing a role in the HR-mediated
repair of double-strand breaks (DSBs) such as BARD1, BRCA2, RAD51 and DNA2 [58,59].
Other genes identified as DEGs included TDP1, which catalyzes the excision of stalled
topoisomerase I-DNA complex [60–64], the mismatch repair gene MSH6 [65,66] and the
Poly (ADP-ribose) polymerase-1 (PARP1) that mediates multiple repair pathways [67,68].
Most of the genes analyzed produced consistent results between the microarray analysis
and the qPCR analysis. However, some differences were observed, for example, in the
LIG1, RAD1 and COPS8 genes. The minor differences between the expression levels in the
bioinformatics analysis and wet lab results can be attributed to different factors. Firstly,
despite the usage of the same MDA-MB-231 cell line, some variations might exist between
different labs [69]. In addition, increasing the number of clones analyzed in the microarray
analysis would produce better results. Performing RNA-Sequencing could even produce
more solid results [70]. However, overall, both the bioinformatics analysis and the wet lab
data greatly support an elevation in DDR genes in the presence of high glucose.

Our results propose a model where growing cells in HG increases the levels of DNA
damage and consequently the expression of DDR genes to fix this damage. Yet, despite this
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elevation, the damage seems to accumulate in HG-cultured cells to an extent that is not
completely repaired by the overexpressed DDR genes/proteins. On the contrary, shifting
cells to LG conditions decreases the levels of DNA damage and, accordingly, the need for
DDR (Figure 10).

Figure 10. A concluding model showing the HG impact on DNA damage. In the presence of high

glucose, the DNA accumulates high damage which requires an increase in the recruitment of DNA

damage response genes. This is in contrast to LG conditions that showed a decrease in DNA damage

“Created with BioRender.com”.

As previously mentioned, hyperglycemia is suggested to have a profound impact on
cancer progression. We have also previously observed an upregulation in 36 DDR genes in
ductal and lobular breast carcinomas in comparison to normal breast cells [70]. Therefore,
we expected that the increase in the expression levels of DDR genes would be specific to the
breast cancer cell line (MDA-MB-231). However, to our surprise, MCF10A cells cultured
in high glucose resulted in an elevation in DDR gene expression. This indicates that the
negative effects of glucose upregulation affect normal cells as well.

Our results provide novel insights into possible consequences on DDR pathways in
patients who suffer from uncontrolled diabetes and an increase in blood glucose levels.
It also opens new questions regarding the extent of damage caused to normal cells vs.
cancer cells. This link may concern the development or progression of cancer as well
as whether diabetes’ relationship with cancer may be influenced by cellular reactions to
DNA damage. Our findings concur with others that demonstrate elevated levels of DNA
damage in diabetic patients’ white blood cells [71–74]. To put it another way, we can
speculate that the increase in blood sugar levels in patients with uncontrolled diabetes
may lead to a higher risk of developing cancer [75]. Metabolite-induced DNA damage,
DDR and persistent DNA damage signaling are common soil for several complications
of diabetes-like cancer. Recognition of this common soil may lead to novel therapies and
better treatment modalities for DM-cancer patients. Our findings suggest that measuring
the degree of endogenous DNA damage using the comet assay may predict the risk of
developing cancer in diabetic patients. Combining the transcriptome analysis of DDR with
proteome analysis to confirm that the gene upregulation is directly reflected on the protein
level would also produce more accurate conclusions on the status of repair in patients’ cells.

5. Conclusions

In this study, we showed that cells exposed to high-glucose conditions manifested
an increase in the transcription of multiple DDR genes and exhibit significant levels of
DNA damage. These effects were interestingly reversed to a great extent upon exposure
of cells to LG conditions (Figure 10). Although we should not hide from the fact that the
effect appears cancer-independent, the consequences could be more aggravated and more
relevant to cancer cells. Our data provide new insights into the effects of increased sugar
levels on DDR and genome stability. This intriguingly raises new questions that can link
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hyperglycemia and metabolic disorders such as diabetes mellitus to DNA damage and
cancer progression.

Supplementary Materials: The following supporting information can be downloaded at:

https://www.mdpi.com/article/10.3390/genes14010144/s1, Figure S1: Normalized gene expression

of the differentially expressed DNA repair genes in MCF10 cells. Boxplots represent normalized

expression values in LG (grey) and HG (red); Figure S2: DDR genes that showed no changes in

transcription levels using qPCR between HG and LG in MDA-MB-231 cells. The left panel represents

the qPCR data and the right panel represents the microarray data. Boxplots represent normalized

counts in LG (grey) and HG (red). The GAPDH gene was used as an internal control in all qPCR

experiments; Table S1: List of co-expressed genes in the green module; Table S2: List of co-expressed

genes in the brown module; Table S3: The full list of the enriched pathways for the brown module;

Table S4: The full list of the enriched pathways for the green module; Table S5: The full list of DEGs

for the MDA-MB231 and MCF10 lines cultured in HG vs. LG.
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