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ABSTRACT

Elliptical instability is an instability of elliptical streamlines, which can be excited by large-scale tidal flows in rotating fluid bodies and excites
inertial waves if the dimensionless tidal amplitude (e) is sufficiently large. It operates in convection zones, but its interactions with turbulent
convection have not been studied in this context. We perform an extensive suite of Cartesian hydrodynamical simulations in wide boxes to
explore the interactions of elliptical instability and Rayleigh–B�enard convection. We find that geostrophic vortices generated by the elliptical
instability dominate the flow, with energies far exceeding those of the inertial waves. Furthermore, we find that the elliptical instability can
operate with convection, but it is suppressed for sufficiently strong convection, primarily by convectively driven large-scale vortices. We
examine the flow in Fourier space, allowing us to determine the energetically dominant frequencies and wavenumbers. We find that power
primarily concentrates in geostrophic vortices, in convectively unstable wavenumbers, and along the inertial wave dispersion relation, even
in non-elliptically deformed convective flows. Examining linear growth rates on a convective background, we find that convective large-scale
vortices suppress the elliptical instability in the same way as the geostrophic vortices created by the elliptical instability itself. Finally, convec-
tive motions act as an effective viscosity on large-scale tidal flows, providing a sustained energy transfer (scaling as e2). Furthermore, we find
that the energy transfer resulting from bursts of elliptical instability, when it operates, is consistent with the e3 scaling found in prior work.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135932

I. INTRODUCTION

The elliptical instability arises when elliptically deformed stream-
lines excite pairs of inertial waves through parametric resonances.1–3

As long as retarding processes such as viscous damping can be over-
come, an arbitrary small elliptical deformation can yield instability.
The resulting inertial waves couple with the deformation,1 leading to
the exponential growth of their amplitudes. This mechanism is in
essence a triadic resonance interaction in which waves extract energy
from the elliptical flow.

Its nonlinear evolution has been studied extensively. As the lin-
ear instability saturates, the inertial waves appear to collapse to rotat-
ing turbulence, which typically dissipates over time, leading to the
flow becoming unstable again.4–10 This collapse to turbulence either
occurs via weak inertial wave “turbulence,”4,6,9,10 or rotating turbu-
lence involving large-scale geostrophic vortices or zonal flows.5,7–11

The inertial wave turbulence (involving a sea of weakly interacting
inertial waves) may occur when the forcing amplitude is weak,10,12 or
when geostrophic modes are suppressed, either by artificial frictional

damping9 or via an external process such as the imposition of a
magnetic field.6

In recent years, elliptical instability also finds application as a
tidal dissipation mechanism in stars and planets,5,8,13–18 extracting
energy from a tidal flow. Tidal flows in stars or planets are usually split
up into a large-scale equilibrium or non-wave-like tide, and a dynami-
cal or wave-like tide.19,20 The equilibrium tide is the quasi-hydrostatic
fluid bulge rotating around the body,19 while the dynamical tide con-
sists of waves generated by resonant tidal forcing. The equilibrium tide
is thought to be dissipated through its interaction with turbulence,
usually of a convective nature,21,22 or by its own fluid instabil-
ities,5,8,13–15,17,23 among which is the elliptical instability. This however
requires careful consideration of the dynamics of the elliptical instabil-
ity, particularly the properties of the turbulence which is expected, as
well as its interaction with other processes in the system, such as mag-
netic fields or (stable or unstable) stratification.24

The equilibrium tide deforms a body (body 1) into an ellipsoidal
shape that follows an orbiting companion (body 2), and its deforma-
tion is represented by the ellipticity or tidal amplitude parameter,
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e ¼ m2

m1

� �
R1

a

� �3

; (1)

with m1 and m2 being the masses of bodies 1 and 2 (e.g., a planet and
its host star), R1 is the radius of body 1, and a is the orbital separation
(semi-major axis). In an asynchronously rotating planet or star, the
equilibrium tide in the frame rotating with the tidal bulge is an ellipti-
cal flow inside the planet. The rotation rate of this flow is the difference
between the spin of the planet X and the orbital rotation rate n and is
denoted by c � X� n. In this work, we model a small patch of an
equilibrium tidal flow, which is treated as a background flow ~U0 in the
bulge frame (rotating at the rate n about the axis of rotation of the
planet) following,5 such that:

~U0 ¼ c
0 �ð1þ eÞ 0

1� e 0 0
0 0 0

0
@

1
Ax; (2)

where x represents the position vector from the center of the planet. In
the frame rotating with the planet at the rate X, it can be written alter-
natively as the flow

U0 ¼ Ax ¼ �ce

sin ð2ctÞ cos ð2ctÞ 0

cos ð2ctÞ �sin ð2ctÞ 0

0 0 0

0
B@

1
CAx; (3)

where x now represents the position vector from the center of the
planet in the frame rotating with the planet. This description repre-
sents the exact equilibrium tide of a uniformly rotating incompressible
fluid body perturbed by an orbiting companion8,25 but approximates
the main features of the equilibrium tide in more realistic models.20,26

We choose to work in the frame rotating with the planet at the rate X
in this study. Larger deformations e result in faster growth of the waves
which means that they can overcome stronger viscous damping by
either the viscosity of the fluid or by a turbulent viscosity.

The elliptical instability has been studied previously in simula-
tions using a local Cartesian box model both with6 and without5 weak
magnetic fields. The earlier study found that elliptical instability leads
to bursty behavior, involving the interaction of instability-generated
inertial waves with geostrophic columnar vortical flows produced by
their nonlinear interactions. Irregular cyclic “predator–prey behavior”
was obtained in which the elliptical instability first excited inertial
waves, these interacted nonlinearly to produce vortices that inhibited
further growth of waves until these vortices were damped sufficiently
by viscosity, thereby enabling further growth of the waves. Similar
behavior features in global hydrodynamical simulations of the elliptical
instability,8 where zonal flows take the place of columnar vortices in
the predator–prey dynamics. Upon taking magnetic fields into account
in the local model, the behavior changed from bursts to a sustained
energy input into the flow, as magnetic fields served to break up or
prevent formation of strong vortices.6 Similar sustained behavior is
observed if the vortices are damped by an artificial frictional force
mimicking Ekman friction on no-slip boundaries.9

These prior studies analyzed the elliptical instability in the
convective regions of planetary (or stellar) interiors but did not incor-
porate convection explicitly (except perhaps by motivating a choice
of viscosity if this is due to turbulence). However, convection can
potentially interact with the elliptical instability in a number of ways.

First, we might imagine that smaller-scale turbulent convective eddies
could act like an effective viscosity in damping larger-scale inertial
waves, thereby inhibiting or reducing the growth of the elliptical insta-
bility. Second, convection under the influence of rotation is known to
generate mean flows (zonal flows or vortices), and these flows could
also interact with those generated by the elliptical instability. In this
study we wish to address the following questions: Can the elliptical
instability operate in a turbulent convective background? How do con-
vectively driven flows interact with the elliptical instability and modify
(tidal) energy transfer rates?

The interaction of the elliptical instability with convection has
been studied within linear theory,2,27 experimentally in cylindrical
containers,28 and using idealized laminar global simulations in a triax-
ial ellipsoid.15 These studies illustrate that the elliptical instability can
modify heat transport, though they did not focus on the dissipation of
tidal flows, which is our primary focus here. The dimensionless heat
transport is usually represented by the Nusselt number (Nu), which is
a measure of the ratio of the total heat flux to the conductive flux (i.e.,
with no transport by fluid motions), as a function of the Rayleigh
number (Ra), the dimensionless ratio of buoyancy driving to viscous
and thermal damping, which measures the strength of convective driv-
ing. The Nusselt number was observed to be increased by the elliptical
instability for Rayleigh numbers close to and below the value required
for onset of convection. It was also observed to be larger than one even
with stable stratification (Ra< 0), indicating that the elliptical instabil-
ity can contribute to heat transport in this regime also.

In this paper, we build upon the local boxmodel—which represents
a small patch of a planet or star (see Fig. 1)—in the study by Barker and
Lithwick,5,6 Le Reun et al.9 to study the interaction of the elliptical insta-
bility with convection with a focus on the resulting tidal dissipation.

FIG. 1. Location of the local box in the convection zone of a hot Jupiter, indicating
the rotation axis, and the temperature gradient represented by the red (hot) and
blue (cold) sides of the box.
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Our local model allows for higher resolution studies, which, in turn,
allows us to reach more turbulent regimes than, e.g., C�ebron, Maubert,
and Le Bars15 and Lavorel and Le Bars.28 One of our aims is to study
the behavior of the elliptical instability and to see if introducing convec-
tion could also lead to sustained energy injection in a similar fashion to
a magnetic field (or frictional damping). As a secondary goal, we are
interested in studying the modifications to heat transport by the ellipti-
cal instability, both in the weakly driven regime of convection and in
stably stratified layers like those that may exist in giant planet interiors.

In Sec. II, we will discuss the linear properties of the elliptical
instability and describe the model used, and in Sec. III, we describe the
results obtained from our parameter survey in a qualitative manner.
We investigate the sustained energy injection and analyze frequency
and wavenumber spectra for the flow in Sec. IV. Then, we briefly dis-
cuss the scaling of the energy transfer from the background flow with
e in Sec. V. We discuss and conclude in Sec. VI.

II. MODEL SETUP
A. The elliptical instability

The linear properties of the elliptical instability have been
reviewed by Kerswell.2 This instability operates when two inertial
waves have frequencies that approximately add up to the tidal fre-
quency 2c (see Sec. I). In the short wavelength limit, this occurs for
two waves with frequencies x ¼ 6c, which must each satisfy the dis-
persion relation for inertial waves, x ¼ 62Xkz=k, where kz=k
¼ cos h. The elliptical instability grows at a rate proportional to ec.

Since we are investigating a small patch of a planet, we assume
the tidal flow can be modeled locally as an unbounded strained vortex
in the bulge frame.2 This approach yields a growth rate which depends
on the angle the inertial waves make with respect to the rotation axis
and the strain direction in the horizontal plane. For illustration, when
the tidal bulge is stationary (n¼ 0), c ¼ X, and thus kz=k ¼ 61=2 for
the most unstable modes.2 Furthermore, the fastest growing waves
have a phase aligned with the strain direction, by an angle of 6p=4
with respect to the elliptical deformation in the equatorial plane (i.e.,
plane containing the vortical flow).

The effects of viscosity, detuning, convection, and rotation of the
elliptical bulge are also reviewed by Kerswell.2 Viscosity reduces the
growth rate according to: r� �jkj2, where r is the inviscid growth
rate, � is the viscosity, and k is the wavevector of the fastest growing
mode. Detuning is a reduction of the growth rate as a result of the
wave not satisfying the resonance conditions exactly, which also
reduces the maximum growth rate. The rotation around the compan-
ion, and thus, the rotation of the elliptical bulge, modifies the growth
rate depending on the rotation speed (n). The growth rate is decreased
for most values of5 n, and it cannot operate in the interval
n ¼ ½�3=2c;�1=2c�. In this interval, no inertial waves exist that sat-
isfy the dispersion relation defined by

x ¼ 62X cos h: (4)

In the interval n ¼ ½�1=2c; 0�, the growth rate is increased,
though everywhere else it is decreased, over the case with n¼ 0. The
linear growth rate of an inviscid fluid at small e without convection is
given by2,29

r ¼ 9
16

ce
ð3cþ 2nÞ2

9ðcþ nÞ2
: (5)

If an (un)stable stratification (aligned with the rotation axis) is present
the dispersion relation is modified, as well as the above equation. The
stratification introduced into the equation is represented by the
Brunt–V€ais€al€a (or buoyancy) frequency N. The modified dispersion
relation is

x2 ¼ 4X2 cos2ðhÞ þ N2 sin2ðhÞ: (6)

The modified version of Eq. (5) for small e is then2

r ¼ 9
16

ce
4ð3cþ 2nÞ2ðc2 � N2Þ
9c2ð4ðcþ nÞ2 � N2Þ

: (7)

Both the effects of unstable stratification (negative N2) and stable strat-
ification (positive N2) can be computed using this equation. We
observe that stable stratification typically inhibits elliptical instability,
but that convection typically enhances growth.

For clarity of presentation c ¼ X is chosen, resulting in n¼ 0, i.e.,
strictly representing the unphysical case where there is no rotation of
the bulge. The body in question is not rotating around its companion
which causes the tidal effects. However, it turns out that for simulations,
the only linear effects of choosing a different value of X, and therefore a
non-zero value of n, would be to modify the growth rate of the elliptical
instability5 as well as the wavenumber of the most unstable mode.6

B. Governing equations and setup of the simulations

We model the convective instability using rotating
Rayleigh–B�enard convection (RRBC) and the Boussinesq approxima-
tion. RRBC is chosen as it is the simplest model of rotating convec-
tion30 which allows us to study its interaction with elliptical instability
(an even simpler model is “homogeneous convection” with periodic
boundaries in the vertical, but this has unphysical nonlinear behavior).
The Boussinesq approximation is justified when studying small-scale
convective (and wavelike) flows, which satisfies the required conditions
that flows are much slower than the sound speed, u� cs, and the ver-
tical size of the domain d is much smaller than a pressure or density
scale height, d � Hp.

31 However, this neglects variations of the proper-
ties of a planet, i.e., density and temperature, and of course, any large-
scale circulations cannot be modeled using this approximation.

The rotation axis is aligned with the z-direction, as is the temper-
ature gradient, as indicated in Fig. 1. The box in the current setup thus
represents a polar region, because the local rotation and gravity vectors
are either aligned or anti-aligned (depending on the sign of X). The
conduction state temperature profile T(z) between the hot plate at the
bottom and the cold plate at the top, about which we will perturb, is

agðT � T0Þ ¼
zN2

d
; (8)

where g is the local gravitational acceleration (assumed constant) and a
is the (constant) thermal expansion coefficient. Without loss of general-
ity T0 is set to zero, so the temperature at the bottom (hot plate, typi-
cally) is Tðz ¼ 0Þ ¼ 0, while the temperature at the top is Tðz ¼ dÞ
¼ N2=ðagÞ, such that the temperature drop is DT ¼ �N2=ag.

We non-dimensionalize by scaling lengths with the vertical
domain size d (distance between the plates), scaling time using the cor-
responding thermal timescale d2=j, thus scaling velocities with j=d,
pressures with q0j

2=d2, and finally scaling temperature with T
¼ DTh (i.e., by the temperature difference between the plates).
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The governing equations for the dimensionless velocity and tempera-
ture perturbations u and h to the background flow U0 and conduction
state temperature T(z) in the Boussinesq approximation, in a frame
rotating at the rate X about z, are then

Du
Dt
þ u � rU0 þ

Pr
Ek

ẑ � u ¼ �rpþ PrRahẑ þ Prr2u; (9)

r � u ¼ 0; (10)

Dh
Dt
� uz ¼ r2h; (11)

where

D
Dt
� @

@t
þ U0 � r þ u � r; (12)

with u ¼ ðux; uy; uzÞ and p being the perturbation to the pressure.
The non-dimensional parameters describing the convection are the
Rayleigh number,

Ra ¼ agð�N2Þd4
�j

; (13)

where � and j are the constant kinematic viscosity and thermal diffu-
sivity, the Ekman number (ratio of viscous to Coriolis terms)

Ek ¼ �

2Xd2
; (14)

and the Prandtl number Pr ¼ �=j. Note that we can relate the dimen-
sional squared buoyancy frequency N2 ¼ �Ra Prj2=ðagd4Þ, so that
when Pr ¼ 1, the dimensionless value (in thermal time units) is
N2 ¼ �Ra. The tidal background flow also introduces the dimension-
less ellipticity e and the frequency c in our chosen units.

Our simulations are executed in a small Cartesian box of dimen-
sionless size ½Lx; Ly; 1� with Lx ¼ Ly ¼ L. The boundary conditions in
the horizontal directions are periodic, while in the vertical direction,
they are impermeable, uzðz ¼ 0Þ ¼ uzðz ¼ 1Þ ¼ 0, and stress-free,
@zuxðz ¼ 0Þ ¼ @zuxðz ¼ 1Þ ¼ @zuyðz ¼ 0Þ ¼ @zuyðz ¼ 1Þ ¼ 0. Stress-
free boundary conditions are chosen both for numerical convenience
and because they are probably more physically relevant than no-slip
boundary conditions for modeling convection in the deep interior of a
planet, far from boundaries. The convection in our box, thus, repre-
sents a single convection cell in the vertical. Boundary conditions in
the vertical for the temperature perturbation are assumed to be per-
fectly conducting, hðz ¼ 0Þ ¼ hðz ¼ 1Þ ¼ 0.

In the derivation of the elliptical instability, the choice is often
made to work with so-called shearing waves.1,2 Shearing waves have
time-dependent wavevectors, which allows us to account for the
stretching and rotation of waves due to a background flow, such as the
equilibrium tide in our simulation. A single shearing wave (sometimes
also referred to as a Kelvin wave,2 although strictly different to a
coastal Kelvin wave) is represented as

u ¼ Re
h
ðûxðtÞ cos ðkzzÞ; ûyðtÞ cos ðkzzÞ;

ûzðtÞ sin ðkzzÞÞ expik?ðtÞ�x
i
;

p ¼ Re p̂ðtÞ cos ðkzzÞ expik?ðtÞ�x
h i

; (15)

where _k? ¼ �ATk? and k? ¼ ðkx; ky; 0Þ, and we use a basis of these
waves in our simulations following Barker and Lithwick,5 except that

we use a sine–cosine decomposition in z similar to Duguid, Barker,
and Jones.32

The simulations are executed using the Snoopy code.33 The
Snoopy code implements a Fourier pseudo-spectral method using
FFTW3 in a Cartesian box. We use a sine–cosine decomposition in z,
as in Eq. (15), and shearing waves (i.e., Fourier modes) in x and y. A
third-order Runge-Kutta scheme is used for the time-stepping,
together with a Courant–Friedrichs–Lewy (CFL) safety factor to
ensure the timesteps are small enough to accurately capture non-linear
effects, usually set to 1.5 (which is smaller than the stability limit offfiffiffi
3
p

). The anti-aliasing in the code uses the standard 2/3 rule.34 A vari-
ety of different Rayleigh numbers were analyzed using the simulations.
In addition, some simulations were performed with Rayleigh numbers
in the stably stratified regime, i.e., with Ra < 0. The values of the
Rayleigh number are typically reported as Ra=Rac for clarity, where
Rac is the onset Rayleigh number (determined numerically), and the
range of this ratio studied at Ek ¼ 5� 10�5:5 is from 2 to 20 and from
–10 to 0.8, in the convectively unstable and stable regimes, respec-
tively. We vary e from 0.01 to 0.20.

In simulations of RRBC in a local box model, large-scale vortex
(LSV) structures emerge in the flow when rotation dominates.35–37

This LSV emerges with our chosen boundary conditions (more details
below) and grows to the size of the box in the horizontal. One of the
effects of the LSV is to reduce heat transport, as the vertical motions
are suppressed by such a vortex.35 An additional reason to study con-
vective LSVs is that the elliptical instability can be suppressed by the
presence of strong vortices.5 The convective LSV might suppress the
elliptical instability as well, potentially preventing it from operating
efficiently. Since our flow is likely to be rotationally dominated due to
our choice of Ekman number and computationally feasible Rayleigh
numbers, a horizontal box size was chosen that would capture this
LSV. The question remains, however, what effect changing the aspect
ratio of the box would have on the effects presented in this report, as
the aspect ratio L/d (the ratio of horizontal length of the box to its ver-
tical length) influences the ratio of the vertical to total kinetic energy.35

C. Energetic analysis of simulations

To analyze the energy of the flow, we derive a kinetic energy
equation by taking the scalar product with u of Eq. (9) and then aver-
aging over the box. We define our averaging operation on a quantity X
as hXi ¼ 1

L2d

Ð
VX dV . We obtain

d
dt

K ¼ I þ hPrRahuzi � D�; (16)

where we have defined the mean kinetic energy,

K � 1
2
hjuj2i; (17)

the mean viscous dissipation rate,

D� � �Prhu � r2ui; (18)

and the energy injection rate (more generally, energy transfer rate)
from the tidal to convective flows (or vice versa),

I � �huAui: (19)
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To obtain an equation for the thermal (potential) energy, we multiply
Eq. (11) by –RaPrh and average over the box to obtain

d
dt

P ¼ �hPrRahuzi � Dj; (20)

where we have defined the mean thermal energy as

P � �PrRa 1
2
hh2i; (21)

and the thermal dissipation rate as

Dj � PrRahhr2hi: (22)

The total energy is E ¼ K þ P, which, thus, obeys

d
dt

E ¼ I � D� � Dj: (23)

In a statistically steady state, it is expected that the (time-averaged
value of the) energy injected balances the total dissipation, i.e., I � D
� D� þ Dj (on average). This sum of the two dissipation rates then
represents the tidal energy dissipation rate resulting from the tidal
energy injected. Therefore, to interpret the tidal energy dissipation
rate, we examine the tidal energy injection rate I.

Arguments to describe scaling laws for the dissipation due to the
elliptical instability were first described by picturing the instability sat-
uration as involving a single most unstable mode whose amplitude sat-
urates when its growth rate (r) balances its nonlinear cascade rate.5

Thus, if the most important mode of the elliptical instability satisfies
r 	 ku, where k is its wavenumber magnitude and u is its velocity
amplitude, then we find u 	 ec=k. The total dissipation rate D, there-
fore, scales as D 	 u2r 	 e3c3=k2. Thus, in such a statistically steady
state, the dissipation and energy injection rate are expected to scale as

D ¼ I / e3; (24)

and this is consistent with some local and global simulations5,8 as well
as the scaling found for related instabilities like the precessional insta-
bility.38,39 We are interested in exploring whether convection could
lead to a different result and potentially reduce this steep e scaling.

Since we know both the elliptical instability5 and convection35 in
isolation can produce geostrophic flows such as vortices, we introduce
further diagnostics to analyze these flows and the roles they play. To
do this, we decompose the total energy injection from the background
flow into

I ¼ I2D þ I3D; (25)

where we have defined I2D ¼ �hu2DAu2Di and I3D ¼ �hu3DAu3Di.
I2D and u2D are defined to include all (geostrophic) modes where the
wavevector has only non-vanishing x and y components, with kz ¼ 0,
and I3D and u3D includes all the modes with kz 6¼ 0. Thus, we have
decomposed the total energy injection rate into energy injection into the
barotropic (kz ¼ 0) and baroclinic (kz 6¼ 0) flow. A pure inertial wave
with kz ¼ 0 would have zero frequency, while in convectively unstable
simulations, which is the main focus of this work, no gravity waves exist
which could have x 6¼ 0 even when kz ¼ 0, and therefore, one can
crudely think of this decomposition as one into geostrophic vortex
modes (I2D) and waves (I3D). We have found that the time-averaged
energy input into the vortical motions I2D is approximately zero,5

but that the input into the waves I3D is on average non-zero (which it
must be when the elliptical instability operates) and clearly demon-
strates any bursty behavior observed. Based on this observation, only
results derived from I3D will be plotted in this paper. The total kinetic
energy K is also split up into a 2D and 3D component in a similar man-
ner by defining K2D and K3D, so as to allow us to determine which
components contribute the most and dominate the flow.

To further analyze the energy transfer rates I and I3D, we also
convert these to an effective viscosity �eff and �eff ;3D, respectively. The
effective viscosity represents the energy dissipation that would result
from a constant kinematic viscosity with the value � ¼ �eff , and this
quantity allows us to interpret the value of I. In particular, this is a use-
ful comparison to quantify the rate at which turbulent convection
could damp our tidal flow, if this interaction behaves like a turbulent
viscosity. To define the effective viscosity, we equate the work done by
the tidal flow on the convective flow with the viscous dissipation rate
of the tidal flow, assuming that this is due to a constant kinematic vis-
cosity �eff, following Duguid, Barker, and Jones,

32 Goodman and Oh,40

Ogilvie and Lesur,41 Vidal and Barker.42 We note that

I ¼ � 1
V

ð
V
u � ðu � rÞU0dV : (26)

We define the strain rate tensor for the tidal flow as
e0ij � 1

2 ð@iU0;j þ @jU0;iÞ, such that the rate at which energy is dissi-
pated is given by

2�eff
V

ð
V
e0ije

0
ijdV ¼ 4�eff c

2e2: (27)

The effective viscosity is then defined by

�eff ¼ I=ð4c2e2Þ: (28)

The injection terms represent energy being transferred from the back-
ground flow to the perturbations or vice versa. This, by definition,
impacts the energy in these flows. The evolution of the tidal flow U0,
however, is not explicitly accounted for in our model, which we treat
as a fixed (but time-dependent) background flow. The idea is that it
has much larger energy than the perturbations, so it is treated as an
infinite reservoir in our simulations. These results therefore give us
only a snapshot at a certain point in time of the evolution of the sys-
tem, which is reasonable because tidal evolutionary processes usually
occur slowly relative to convective or rotational timescales.

Finally, we compute the vertical heat transport in our simula-
tions, represented by the Nusselt number, which we define as

Nu ¼ 1þ RaPrhhuzi: (29)

This gives the ratio of the total heat flux to the conductive flux and
would take the value one in the absence of flows (i.e., heat transported
purely by conduction).

D. Linear growth rates and numerical validation

The predicted growth rate of the elliptical instability is given in Eq.
(7), however, this was derived for an unbounded flow in z. Since we have
adopted the RRBC setup with impermeable walls in z, we must deter-
mine how this affects the growth rate of instability, although we expect it
remains unchanged (and we have also demonstrated this analytically,
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though we omit this derivation). Hence, we performed multiple test
simulations analyzing the linear growth rates of both the elliptical and
convective instabilities. We initialized them with random noise and the
non-linearities were switched off, thus leading to a continuous expo-
nential growth, allowing for easy extraction of the growth rate. Fits
were performed to the mean kinetic energy on a log-scale to determine
r, by noting that if velocity components grow as exp ðrtÞ, then
K / exp ð2rtÞ.

The results, along with the theoretical growth rate predictions for
both instabilities, are plotted in Fig. 2. The top panel shows the growth
rate of the elliptical instability as a function of e (when n¼ 0), where
we have adopted a time unit c�1, equivalent to using c ¼ 1, for the
purposes of this figure. It can be concluded that the modeling of the
inviscid growth rate is approximately correct. We also accounted for
viscous damping by including the viscous decay rate so that the total
growth rate is r� �k2 (where k is the wavevector magnitude of the
mode), which is in excellent agreement with our simulations. We
obtain values that are very slightly smaller than the theoretical predic-
tion though, even when taking into account viscosity, which is likely
due to the detuning effect discussed previously (i.e., that the mode
does not precisely satisfy kz=k ¼ 1=2). In numerical simulations, this
detuning arises because of the finite number of grid points, which, in
addition to a chosen aspect ratio, prohibits the waves from precisely
satisfying the aforementioned condition. However, because this condi-
tion does not stipulate the size of the wavenumbers, instead stipulating
their ratio, and as such direction, the fastest growing mode that domi-
nates the volume-averaged energy will be as large-scale as possible
while still adequately satisfying the resonance condition in order to
reduce the viscosity correction. This means that it should be unaffected
by resolution, instead being controlled by the aspect ratio of the box.
The effect on the growth rate of this detuning, which here corresponds
to the difference between the markers and the viscosity corrected
growth rate, at this aspect ratio and c ¼ X ¼ 1, corresponding to the
top panel of Fig. 2 and the other simulations in this work, is deter-
mined numerically to be�0:002.

The growth rate of the elliptical instability as a function of X,
keeping c ¼ 1 is shown in the middle panel of Fig. 2 and also follows
the theoretical prediction well but is again slightly lower for the same
reasons. The growth rate of the convective instability for Ek ¼ 5
�10�5:5 is shown in the bottom panel of Fig. 2, now using thermal
time units, and this is also in very good agreement with the linear con-
vective growth rate for the fastest growing mode (which scales as
Ek�1=3 as obtained from solving the relevant cubic dispersion relation
numerically) as expected. We can, therefore, be confident that both
instabilities have been captured correctly.

III. NUMERICAL RESULTS
A. Qualitative analysis of illustrative simulations

We begin our discussion of simulation results by presenting the
z-averaged vertical vorticity hxziz of the flow in Fig. 3, taken from a
snapshot at t¼ 0.08 in a simulation in which only the elliptical insta-
bility and its associated nonlinear dynamics are present with e ¼ 0:1;
Ra ¼ 0 (left) and a simulation in which both the elliptical instability
and the convective instability, as well as both their associated nonlinear
dynamics, are present with e ¼ 0:1; Ra ¼ 6Rac (right). This time is
after the initial saturation of instability, in which an LSV has formed
in the flow in both cases. These LSVs are an important feature

FIG. 2. Growth rates of elliptical instability and convection studied in isolation. Top,
middle: growth rate of elliptical instability (r with time units of c�1) showing simula-
tions compared with the theoretical prediction based on Eq. (5), as a function of
e (n¼ 0, c ¼ X ¼ 1) in the top panel, and Eq. (5) as a function of X (keeping c
¼ 1) in the middle panel. Simulations are in excellent agreement with a slight
reduction due to viscosity and detuning. Bottom: growth rate of rotating convection
compared with the theoretical prediction of RRBC for the fastest growing mode
(r in thermal time units) with Ek ¼ 5� 10�5:5.
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produced by nonlinear evolution of both elliptical instability and con-
vection. Note that with our chosen aspect ratio and Ekman number,
the convective LSV emerges when Ra� 3Rac. Thus, they emerge at
similar values of the Rayleigh number as the convective LSV in
Guervilly, Hughes, and Jones,35 which can be readily seen upon taking
into account the factor of �8:7 included in the definition of Rac, as a
result of which the parameter ~Ra ¼ RaEk4=3 � 20 from their work35

translates to Ra� 20Ek�4=3 � 2:5Rac. The vortices are centered in
these images for clarity. The nonlinear evolution of the elliptical insta-
bility in the left panel creates a cyclonic vortex and a smaller and
weaker anticyclonic vortex (at the corners, noting the periodic bound-
aries). In the right panel, the convection dominates the flow, and as a
result, the convective LSV dominates and results in a single cyclonic
vortex, with a primarily anticyclonic background. The vorticity in the
center of this vortex is larger than the vorticity in the center of the one
in the left panel. In the right panel, small-scale convective eddies are
present throughout the box, making the flow appear much noisier
compared to the elliptical instability in isolation.

Barker and Lithwick5 found that these vortices are produced by the
nonlinear saturation of the elliptical instability and play a key role in the
predator–prey behavior of the inertial waves and vortices that they
observed. They simulated cubic boxes (Lx ¼ d ¼ 1) and tall thin boxes
ðLx=d < 1Þ, but the dynamics in wider boxes ðLx=d > 1Þ, such as those
that are typically used to study convection, were not examined there.

The top panel of Fig. 4 shows the volume-averaged kinetic energy
as a function of time in a simulation of the elliptical instability in a
wide box with e ¼ 0:1; Ra ¼ 0. The vortex observed previously in a 1
� 1 � 1 box by Barker and Lithwick5 dominates the flow to an even
greater extent in the 4� 4� 1 box, as we can see by the dominance of
the energy in the 2D component of the flow (K2D) at all times after the
initial saturation. The 2D, or geostrophic, modes have energies (K2D)
much larger than the inertial waves (quantified by the energy in the
3D modes, K3D), but the inertial waves undergo transient bursts tem-
porarily increasing their energy, though K2D remains dominant unlike
in the 1 � 1 � 1 case in Barker and Lithwick.5 Each burst in the 3D
energy later results in an increase in the 2D energy, indicating energy
transfers from inertial waves to vortices. The vortex slowly decays vis-
cously, however, the bursts of inertial wave energy are sufficient to

compensate this lost energy, enhancing it further until a quasi-steady
state is reached after t 	 0:1. The corresponding energy injection
(I3D) in the bottom panel of Fig. 5 in black shows that the 3D energy
increase is a result of a direct energy injection into those modes. The
2D injection (I2D, not shown) is oscillatory in sign and has a small
value consistent with 0. Meanwhile, the bottom panel of Fig. 4 shows
the clear dominance of the LSV in a purely convective simulation with
e ¼ 0, Ra ¼ 4Rac, as the 2D energy of the LSV, and by extension the
LSV itself, continuously grows for all times plotted. The LSV will con-
tinue to grow until it reaches either the horizontal box-scale or its
growth is balanced by viscous dissipation. A steady level of 3D energy
is present in this simulation after the initial saturation, representing
the energy in the convective eddies.

The interaction of convection and the elliptical instability varies
according to the parameters chosen. First, we present a simulation
with weak convection but strong ellipticity in Fig. 5, with Ra ¼ 4Rac
and e ¼ 0:1. The convection in this simulation leads to an LSV, which
results in continuous growth of the 2D modes. This, however, does
not inhibit the elliptical instability, and a multitude of bursts is
observed. The elliptical instability in fact enhances the energy in the
2D modes by at least one order of magnitude compared to the purely
convective simulation in the bottom panel of Fig. 4, as the bursts input
more energy into the LSV. There is a continuous decrease in the 2D
energy, from t¼ 0.1 to t¼ 0.17. In this period of time neither the
bursts, weakened by the strong vortex, nor the convective eddies pro-
vide enough energy to compensate the viscous dissipation. The corre-
sponding energy injection in the bottom panel of Fig. 5 in green
roughly matches the energy injection of the purely elliptical simula-
tion, although it is initially maintained at a higher value. From t¼ 0.11
onwards, when the LSV has reached its strongest value, the behavior
gradually changes from bursts to an almost continuous energy injec-
tion. From t¼ 0.21, once the LSV has been sufficiently weakened,
bursty behavior is again observed.

B. Varying strength of convective driving and ellipticity

In Fig. 6, we present results for a range of values of Ra=Rac and e
with Ek ¼ 5� 10�5:5. The figures on the left show the time evolution

FIG. 3. The vertical vorticity averaged over z (hxziz) of the flow at t¼ 0.08. The cyclonic vortex is centered for clarity in both images. Left: elliptical instability with
Ra ¼ 0; e ¼ 0:1; Ek ¼ 5� 10�5:5. Right: elliptical instability and convection with Ra ¼ 6Rac; e ¼ 0:1; Ek ¼ 5� 10�5:5.
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of the kinetic energy components, and those on the right the energy
injection term I3D. Figures 6(a) and 6(b) show simulations with Ra
¼ 6Rac and e ¼ 0:2. Barker and Lithwick5 observed a change in
behavior at e � 0:15, seeing a sharp increase in the frequency and
strength of the elliptical instability bursts. The 3D component of the
kinetic energy is maintained at a higher level in this case, but is still
lower than the energy in the 2D component. The energy injection fea-
tures many bursts in a short time frame, with multiple bursts injecting
energy at the same rate as the initial burst in linear growth phase. The
increased burst frequency also leads to a sustained energy injection
throughout the simulation. There appears to be a secondary transition
around t¼ 0.045 where the energy injection increases steeply and
maintains a significant non-zero energy injection, much larger than

the initial burst. We observe a correspondingly higher minimum level
of the 3D component of the energy during this simulation.

The kinetic energy in Fig. 6(c) shows that increasing the Rayleigh
number, i.e., making the convection stronger compared to the elliptical
instability, results in fewer visible bursts into the 3D component in the
first half of the simulation compared with the top panel of Fig. 5, and
the total kinetic energy is further dominated by the 2D component. The
increased convection strength, and therefore (for our parameters) stron-
ger LSV compared with Fig. 5, drowns out most of the bursts from the
elliptical instability. The reduced presence of the elliptical instability is
also clearly visible from the I3D term in Fig. 6(d), showing considerably
fewer bursts in the first half of the simulation, decreasing the tidal dissi-
pation. On the other hand, a “floor value” corresponding to a non-zero

FIG. 5. Kinetic energy (top) of the elliptical instability and convection with
Ra ¼ 4Rac; e ¼ 0:1; Ek ¼ 5� 10�5:5. The 2D (blue) and 3D (green) compo-
nents are plotted in addition to the total kinetic energy. The energy injection
(bottom) of both simulations with Ra ¼ 0; e ¼ 0:1 (black) and Ra ¼ 4Rac; e ¼ 0:1
(green), both with Ek ¼ 5� 10�5:5.

FIG. 4. Kinetic energy of simulations of the elliptical instability in isolation (top) with
Ra ¼ 0; e ¼ 0:1 and convection in isolation (bottom) with Ra ¼ 4Rac , e ¼ 0. The
2D (blue) and 3D (green) components of the energy represent the energy in the
vortical motions, and the waves and convective eddies, respectively. The total
kinetic energy is plotted as the black line.
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FIG. 6. Kinetic energy (left) and the energy injection contribution I3D (right) for a range of simulations. Convection results in a sustained energy input into the flow from the tidal
flow, allowing for sustained tidal dissipation. If the convection is sufficiently strong compared to the elliptical instability, it can suppress the bursts leaving only this sustained
energy injection. (a) K of the simulation with Ra¼ 1.99Rac, e ¼ 0.2. (b) I3D of the simulation with Ra¼ 1.99Rac, e ¼ 0.2. (c) K of the simulation with Ra¼ 6Rac, e ¼ 0.1. (d)
I3D of the simulation with Ra¼ 6Rac, e ¼ 0.1. (e) K of the simulation with Ra¼ 6Rac, e ¼ 0.05. (f) I3D of the simulation with Ra¼ 6Rac, e ¼ 0.05. (g) K of the simulation with
Ra¼ 20Rac, e ¼ 0.1. (h) I3D of the simulation with Ra¼ 20Rac, e ¼ 0.1.
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continuous energy injection arises, which is most clearly visible in
between bursts. This sustained energy injection arises from the interac-
tion between the convection and the equilibrium tidal flow.

Figure 6(e) and especially Fig. 6(f) confirm this sustained injec-
tion occurs as the convection is strengthened relative to the elliptical
instability. The ellipticity has been reduced to e ¼ 0:05, thus weaken-
ing the elliptical instability (whose growth rate is proportional to eÞ.
As a result, the bursts from the elliptical instability have vanished, with
only a short initial burst remaining, after which a continuous injection
arises. These simulations suggest there is a point at which the convec-
tion, with both its LSVs and its resulting effective viscosity acting to
damp the inertial modes, overpowers the elliptical instability such that
the bursts are completely suppressed.

Increasing the Rayleigh number to Ra ¼ 20Rac and maintaining
e ¼ 0:1 instead of decreasing e in Figs. 6(g) and 6(h) leads to similar
behavior, with no bursty behavior for the elliptical instability and
instead a sustained energy injection. Thus, increasing Ra inhibits
bursts even if they were present at lower values of the Rayleigh num-
ber. Additionally, the sustained injection term has increased by a factor
of about 20 compared to Fig. 6(f). The sustained energy injection then
increases with Ra and e. Thus, introducing convection has two effects:
(1) the bursts of elliptical instability are suppressed to a greater extent
as the strength of convection increases relative to the strength of the
elliptical instability, and (2) a sustained energy injection arises from
the interaction between convection and the background flow.

C. Heat transport modification by elliptical instability

A further effect of the elliptical instability is to modify heat trans-
port. The inertial waves excited by the elliptical instability are capable
of transporting heat in the system.15,28 The elliptical instability can
occur and affect heat transport in both stably stratified and convec-
tively unstable fluids [see Eq. (7)]. We observe that the heat transport
is tied to the bursts of elliptical instability, and is similarly bursty in its
operation. The Nusselt number represents the heat transport in the
simulation and is shown as a function of time for e ¼ 0:1; Ra ¼ 4Rac
in the top panel of Fig. 7. This shows the two-sided effects of the

elliptical instability in this simulation. The bursts increase heat trans-
port, temporarily increasing the Nusselt number. Then, the enhanced
cyclonic vortex as a result of the elliptical instability slightly decreases
the heat transport, similar to the reduction observed in the presence of
convective LSVs by Refs. 35 and 36, which they proposed occurs
because cyclonic vortices act to effectively increase the rotation, thus
further constraining the vertical motions, and as a consequence the
heat transport, according to the Taylor–Proudman theorem.43

In stably stratified fluids (Ra < 0), or in convectively stable but
unstably stratified fluids (Ra < Rac), in the absence of the elliptical
instability, there are no sustained vortices or vertical motions. The
heat transport in this regime would then be purely conductive (at long
times, after decay of transients) with Nu ¼ 1. The vertical motions
introduced by the elliptical instability in either regime may though
transport heat during the bursts, even for convectively stable fluids.

The effects of the elliptical instability on heat transport have been
quantified using time averages of the Nusselt number in the bottom
panel of Fig. 7, for simulations performed with e ¼ 0 and e ¼ 0:1. Due
to the absence of bursts of the elliptical instability, there is no observ-
able enhancement to the heat transport when the convection is strong.
In fact, since the ellipticity of the equilibrium flow slightly enhances
the 2D energy of the vortex it is likely to result in a slightly diminished
total heat transport, possibly supported by the reduced Nusselt num-
ber in the inset at Ra ¼ 15Rac and Ra ¼ 20Rac. At low positive
Rayleigh numbers, the elliptical instability plays a major role in
enhancing or hindering the heat transport as a function of time. For
very weak convection, in which there is no convectively generated
LSV, the elliptical instability enhances the net heat transport strongly,
while at higher convection strengths it cancels or slightly decreases the
heat transport. Finally, the elliptical instability does indeed produce
heat transport in stably stratified regimes, although the additional heat
transport is highly variable in time, only occurring during a burst in
energy injection of the elliptical instability, and decreases as the stratifi-
cation increases (i.e., �Ra increases). This is represented by the
Nusselt number tending toward one on average as the fluid becomes
more stably stratified, where we note that all cases plotted are linearly
unstable.

FIG. 6. (Continued.).
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D. Growth rate of 2D convective vortices

In Fig. 8, we examine the growth rate of the 2D energy K2D pro-
duced by convection during the initial burst as a function of the
Rayleigh number [i.e., we determine r2D defined by K2D / exp ðr2DtÞ
in the initial phases of the simulation]. We examine here simulations
with e¼ 0 and ones with higher e, but all in the sustained energy injec-
tion regime. We find that non-zero ellipticities have little effect on this
growth rate, modifying it slightly but not significantly. The growth rate
r2D is observed to increase as the Rayleigh number increases.

Deviations in this growth behavior are observed at higher Rayleigh
numbers (>10Rac). A potential explanation could lie in the slow
increase in the growth rate of the 2D component as the 3D component
of the kinetic energy grows. Because the growth of the 3D component
is rapid at these values of the Rayleigh number, the non-linear break-
down happens before the 2D component reaches its maximum growth
rate. Comparing the scaled 2D growth rate with the convective velocity
in each simulation (plotted as the blue diamonds), and by extension
the convective Rossby number of our simulations [Roconv ¼

ffiffiffiffiffiffiffiffiffi
hu2zi

p
=

ð2Xd)], we find good agreement. This implies that the growth of the
2D modes scales with the Rossby number in the initial regime, i.e.,
r2D / Roconv . Note that this is not consistent with the predicted scal-
ing due to weak nonlinear interactions between pairs of inertial waves
(in the absence of convection) of, e.g., Kerswell,44 which would predict
r2D / Ro2. It however agrees with the prediction for generation of an
LSV from interactions between inertial waves and geostrophic modes
at sufficiently large Rossby number,45 though a theory for convective
LSVs has not yet been presented.

IV. ANALYSIS OF THE SUSTAINED ENERGY INJECTION
A. Origin and parameter regime for sustained tidal
energy injection

We have performed a range of simulations in which e and Ra are
varied for Ek ¼ 5� 10�5:5 to determine when sustained energy injec-
tion (vs burstiness) is obtained. First, a “phase diagram” was created
based on these simulations, plotted in Fig. 9, which indicates in which
simulations we observe bursts of the elliptical instability, in which we
observe sustained energy injection. Simulations containing any bursts
of the elliptical instability, even just at the earliest times have been
labeled bursty (orange markers), while simulations containing no such
bursts have been labeled sustained (blue markers). Bursty simulations
may still feature a sustained energy injection, however in the interest

FIG. 8. Convective Rossby number (blue) obtained from the vertical convective
velocity, compared with the scaled growth rate of the vortex (orange). The growth
rate is scaled by dividing it by a factor of 1

42; the scaled growth rate and convective
Rossby number agree up to Ra ¼ 10Rac .

FIG. 7. Top: Nusselt number as a function of time at Ra ¼ 4Rac with (red) and
without (black) the elliptical instability with e ¼ 0:1; Ek ¼ 5� 10�5:5. Bottom:
Time average of the Nusselt number with (orange) and without (blue) the elliptical
instability. The elliptical instability results in heat transport when it operates, even in
the stably stratified regime (Ra < 0). Nu ¼ 1 means there is no heat transport by
fluid motions (black dashed line).
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of determining where the bursts of the elliptical instability still exist we
have classified them as bursty here. Some of the simulations are very
difficult to tell by eye whether they are bursty or sustained, and have
therefore been labeled as uncertain (yellow markers). The transition
between the two “phases” is likely situated close to these markers.
Finally, one point has been labeled “neither,” namely, the point corre-
sponding to the simulation with Ra ¼ 2Rac; e ¼ 0:02. This simula-
tion features no bursts as the elliptical instability is too weak to operate
at this level of convection. However, it also does not display any sus-
tained energy injection. Of further note is that at this supercriticality
(Ra=Rac), the LSV is absent, which was also observed by Guervilly,
Hughes, and Jones35 to be independent of Ekman number.

To explain the absence of bursts of elliptical instability, we inves-
tigate the 3D modes in the flow in both real space and Fourier
space. In real space, we use a method akin to the one used in
Favier, Guervilly, and Knobloch46 to determine the 3D flow. The 3D
velocity components are obtained by taking the difference between the
total velocity and the z-averaged horizontal (or 2D) velocity
components

ux;3D ¼ ux � huxiz;
uy;3D ¼ uy � huyiz;

uz;3D ¼ uz:
(30)

Here, huxiz; huyiz are the depth averaged x and y components of the
velocity, respectively, i.e., the horizontal velocity components. From
this, the magnitude of the 3D velocity is calculated. Favier, Guervilly,
and Knobloch46 showed that the convective LSV suppresses 3D
motions, resulting in an area with lower 3D velocities inside the vortex.
Since we observe similar LSVs, such a suppression of 3D modes might
contribute to the suppression of the elliptical instability.

First, we examine a case of the elliptical instability in isolation
using this method in Fig. 10(a), with parameters e ¼ 0:1; Ra ¼ 0. We
show results for the total velocity magnitude u3D at t¼ 0.05 at the
mid-plane (z ¼ d=2) during a burst of instability, after vortices have
formed following initial saturation. In Fig. 10(a), we see that the power
during a burst is concentrated inside the vortex, particularly in its
center.

On the right panel, in Fig. 10(b), we show a similar result from a
simulation with the elliptical instability and convection, using the param-
eters e ¼ 0:1; Ra ¼ 6Rac during a burst of the elliptical instability at
t¼ 0.1. We again observe that the burst is concentrated in the center of
the vortex. Examining the same simulation in the absence of a burst of
the elliptical instability as well as a simulation with Ra ¼ 6Rac; e ¼ 0:05
(not pictured) reveals that there is no such concentration of power in
the center. Instead the same picture of suppression of convective 3D
motions is obtained as found by Favier, Guervilly, and Knobloch.46

Bursts of the elliptical instability are thus primarily concentrated
in the center of LSVs according to these results. The LSV is, therefore,
expected to have a strong effect on the growth of the elliptical instabil-
ity, as the free inertial waves existing within these vortices will differ
from those of the original flow, thus acting as a constraint to detune
the elliptical instability.

FIG. 10. Total velocity magnitude u3D, in a
burst of instability after the LSV has
formed, showing its localization within the
vortices. Left: elliptical instability in isola-
tion with e ¼ 0:1. Right: elliptical instability
and convection. The vortices are centered
for clarity. (a) t¼ 0.05, Ra¼ 0, e ¼ 0.1.
(b) t¼ 0.1, Ra¼ 6, e ¼ 0.1.

FIG. 9. A phase diagram showing the observed behavior in our simulations.
Simulations where sustained behavior but no bursts of elliptical instability are
observed are marked in blue, those with clear bursts of the elliptical instability (and
possible additional sustained behavior) are marked in orange. The uncertain
markers represent simulations close to where the regime transition is likely situated.
The case Ra ¼ 2Rac; e ¼ 0:02 is marked in purple, as it shows neither sustained
injection nor bursts of elliptical instability.
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B. Frequency-wavenumber spectrum analysis

We now present further analysis of our simulations using the
approach devised by Le Reun et al.9 by computing the frequency-
wavenumber spectrum of the flow to identify the inertial waves and the
convection. This Fourier space analysis shown in Fig. 11 uses two prop-
erties of the elliptical instability to identify it in the spectrum: (1) it has a
preferred direction (wavevector orientation) and (2) the dispersion rela-
tion of the inertial waves relate each direction to a particular frequency.

The direction of the flow, i.e., angle the wavevector makes with
the rotation axis h, is obtained from the ratio kz=k ¼ cos ðhÞ. Each
velocity component, i.e., ux; uy; uz , associated with a specific wavevec-
tor can be put into a bin corresponding to its angle and wavenumber
(wavevector magnitude) at every time step in a simulation. We use 60
bins for the angle h, with h ¼ ½0; p=2�; likewise we have chosen bins of
size p=2 for the k-bins and enough of these to cover all values allowed
by the spatial resolution of the simulation. To obtain a spectrum as a
function of the frequency and angle we sum over the k-bins, resulting
in the total velocity component in each wavevector angle bin, at each
time step. Equal timesteps of size 10�6 are used, such that the fastest
inertial waves, with periods p� 10�4:5 can be properly captured. The
Fourier transform in time of all three velocity components gives the
frequency spectrum of each velocity component. We then multiply the
transformed velocities with their complex conjugates and add all three
components to obtain the energy in each x and h bin. We consider
the interval of wavenumber bins k ¼ ½2; 50� to avoid the contribution
of small-scale motions, which contain little energy. The geostrophic
modes with h ¼ p=2 strongly dominate the energy, so for clarity,

we set the rightmost column at h ¼ p=2 to zero on these plots since
we wish to analyze the waves.

We plot the dispersion relation of inertial waves (in the absence of
vortices and stratification) as a solid black line on all h�x energy
spectra. Thus, the dispersion relation given in Eq. (4) is plotted. This
choice is suitable for the Rayleigh numbers plotted, because convection
tends to reduce the magnitude of the buoyancy frequency in the bulk
of the box, leading to an effective buoyancy frequency N2

eff > N2 (keep-

ing in mind that N2 is negative). At the plotted Rayleigh numbers of
Ra ¼ 4Rac; Ra ¼ 6Rac, and Ra ¼ 8Rac the respective effective buoy-
ancy frequencies are: N2

eff � �1:5Rac; N2
eff � �2:5Rac; N2

eff � �3Rac.
Therefore, implying N2

eff =X
2 	 Oð10�2Þ at the Rayleigh numbers used

in these simulations; thus, the second term in Eq. (6) is close to zero,
only affecting the dispersion relation around h � p=2. The initial
bursts of the elliptical instability are expected to be located at their pre-
ferred angle of h ¼ arccosð1=2Þ ¼ p=3 (when n¼ 0). Combined with
their dispersion relation, the fastest growing mode of the elliptical insta-
bility is, thus, expected to be located at h ¼ p=3; x ¼ X on these fig-
ures. We can, thus, very easily identify the elliptical instability in such a
Fourier spectrum. An example where we can clearly identify the ellipti-
cal instability is given in Fig. 11(a), computed from the linear growth
phase of the simulation with Ra ¼ 0; e ¼ 0:05. All modes with non-
negligible energy during the linear growth phase are shown to be cen-
tered on this point, as well as at h ¼ p=3; x ¼ 3X, where the latter
result from “nonlinear” interactions between the background tidal flow
with frequency 2X (and wavenumber zero) and the dominant modes
at x ¼ X; h ¼ p=3.

FIG. 11. Various h� x energy spectra
obtained by Fourier transforming the
t � h spectrum, where x is given in units
of X. The interval of wavenumber bins
used is: k 2 ½2; 50�. The black solid line
shows the dispersion relation for free iner-
tial waves. For visibility the rightmost col-
umn containing the geostrophic modes
which would otherwise dominate is set to
zero. (a) Linear growth phase of the simu-
lation with Ra¼ 0, e ¼ 0.05. (b) Inertial
wave breakdown of the simulation with
Ra¼ 0, e ¼ 0.05. (c) t¼ 0.11–0.13 of the
simulation with Ra¼ 6Rac, e ¼ 0. (d)
t¼ 0.11–0.13 of the simulation with
Ra¼ 6Rac, e ¼ 0.05.
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Beyond the initial linear growth phase, inertial wave breakdown
is observed, resulting in power concentrated around the initial fastest
growing mode, but with a distribution primarily following the inertial
wave dispersion relation. There is also energy in the geostrophic
modes (h 	 p=2, not shown) as well as the “mirrored dispersion
relation” from secondary non-resonant interactions of the waves with
the tidal flow.9 Figure 11(b) shows the same simulation as Fig. 11(a)
but after the linear growth phase. Most of the power is concentrated
around the initial fastest growing modes, however the energy is also
spread throughout the figure, away from the dispersion relation, i.e.,
the resulting energy is no longer solely contained within the set of iner-
tial waves.

Figure 11(c) shows the spectra for a simulation of rotating con-
vection without the elliptical instability, with Ra ¼ 6Rac, e ¼ 0 from
t¼ 0.11 to t¼ 0.13. Convection is shown to introduce modes at high
values of h. This can be understood from linear growth rate predic-
tions, where we can show that convective instability of the conduction
state requires h � ½1:4;p=2� for n¼ 1 modes at this Rayleigh number.
The dominant modes are indeed concentrated in convective modes at
h � ½1:4;p=2� in this figure. The power away from these modes
broadly follows the dispersion relation. This is particularly interesting
because convective modes at onset are steady, so they should have
x 	 0 and be concentrated at the bottom of this figure. We might,
therefore, speculate that the turbulence generated by convection is swept
up by rotation into inertial waves, explaining the frequency of these
modes. Inertial waves in rotating convection are expected to arise from
oscillatory convective modes if Pr < 1 (technically for Pr< 0.677)30 and
have previously been observed in simulations47 at Pr < 1. Supporting
our argument for inertial waves arising due to rotating convection at
Pr 
 1 is the detection of inertial waves at Pr > 1 in spherical shell sim-
ulations of convection.48

Spectra featuring both the elliptical instability and convection
would be expected to look like a combination of these features,
although it is likely to be difficult to distinguish the turbulent phases of
the elliptical instability from the convective motions. However, the
location of the elliptical instability bursts should shed some light on
whether the sustained energy injection contains a weak (overshad-
owed) burst or whether the elliptical instability is absent entirely. The
simulation with Ra ¼ 6Rac; e ¼ 0:05 analyzed from t¼ 0.11 to
t¼ 0.13 is shown in Fig. 11(d). This shows the expected convective
modes, but no enhanced power at the expected location of the elliptical
instability. Thus we conclude that the operation of the elliptical insta-
bility has been inhibited by convection at these parameters.

The convective motions are expected to be small-scale motions,
based on the visible fluctuations in Fig. 10(b), three and on the linear
theoretical analysis of convection, which at these parameters predicts
unstable modes in the range of wavenumber bins k ¼ ½30; 50�.
Meanwhile, the energetically dominant inertial waves are likely to be
large-scale. This is a direct consequence of the elliptical instability
being directional and, thus, choosing the mode with the smallest vis-
cous effects (the largest possible modes, which also have the longest
nonlinear cascade times). Therefore, we have reproduced the plots in
Fig. 11 with the limited wavenumber range of k ¼ ½2; 12� in Fig. 22 in
Appendix C.

Using the Fourier spectrum, we can determine the wavenumbers
that contain the most energy in the simulation as a function of h at a
given x. To this end, we do not sum over all wavenumbers k, but

instead construct a h� k spectrum in Fig. 12. We are interested in the
wavenumber magnitudes that are active on the dispersion relation.
Therefore, we have done a Fourier transform on the wavenumbers,
resulting in a x� k� h matrix. Slices were then taken of the disper-
sion relation by taking the energy in all k-values at a combination of x
and h that lies on the dispersion relation. The left panel of Fig. 12
shows the same simulation as Fig. 11(a), i.e., pure elliptical instability
during its linear growth. The power here is concentrated along various
black solid curves defined by the relation between h, the vertical wave-
number, kz ¼ nzp, and total wavenumber, k: h ¼ arccosðkz=kÞ. Each
curve has a different integer vertical wavenumber nz, with nz ¼ 1 the
lowest curve, nz ¼ 2 the one above, etc. The curves with nz
¼ 1; 2; 3; 4; 5; 6 are plotted. In this simulation the energy of the ellipti-
cal instability burst is concentrated in modes with nz¼ 2, k ¼ 4p. The
mode corresponding to this with horizontal wavenumber integers nx
¼ ny is the (5, 5, 2) mode. This method of analysis is powerful as it
clearly shows which inertial modes are growing in the simulation. In
the right panel of Fig. 12, this method is applied to the same simulation
as in Fig. 11(d) of both convection and the elliptical instability in the
sustained regime. This panel shows that there is less power on the (5, 5,
2) mode. Instead, we see power concentrated on the nz ¼ 1 curve,
and concentrated toward higher wavenumbers and higher angles, as we
would expect of convective motions. Indeed, we again observe no clear
sign of the elliptical instability during this simulation.

Finally, we are interested in analyzing further the energy injection
term I3D. The 3D component is any component, that is, not in the
rightmost column of these h� x spectra (since that column has
h ¼ p, implying that nz ¼ 0). Therefore, to study I3D we just set the
rightmost column to zero, which was already done for visibility in the
above plots. I3D is calculated from the Reynolds stress components
uxuy; u2x and u2y . After calculation, this quantity is Fourier trans-
formed, and its real part is then plotted here. The colorbar minimum
has been increased compared to previous figures to reduce the impact
of convective noise on the figure. On the left of Fig. 13, we show just
the elliptical instability, for the same simulation as Fig. 11(a). We see
that the energy injection is into the resonant inertial waves during this
initial burst. It seems two frequency bins, in particular, contain the
majority of the energy injection, one on the dispersion relation and
one on the mirrored dispersion relation. To compare, I3D of the same
simulation as Fig. 11(d) is plotted on the right panel of Fig. 13. Energy
injection is present predominantly on the right-hand side of the figure
and is no longer concentrated along the dispersion relation, suggesting
the energy injection is primarily into convective motions, instead of
the inertial waves of the elliptical instability. This would be consistent
with treating the energy transfer between tidal and convective flows as
being due to a turbulent effective viscosity from the convective
motions.

C. Linear growth of elliptical instability on a convective
background with an LSV

Based on the real space analysis in Sec. IVA, we concluded that
the convective flow and its resulting LSV modifies subsequent growth
of the elliptical instability, similar to the modification of the LSV
resulting from the elliptical instability. Furthermore, based on the
Fourier space results in Sec. IVB, we found that the elliptical instability
is largely inhibited by the convective flow (and its LSV) for lower val-
ues of e.
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To further examine the effects of convection on the elliptical
instability, we analyze the growth rate of bursts of the elliptical instabil-
ity on a convective background. First, we measured the growth rates in
simulations without convection (Ra ¼ 0) as a reference. We split the
results of each simulation into the initial burst and any further bursts.
The initial burst should then be close to the linear prediction, while
any subsequent bursts are affected by non-linear effects, such as the
LSV. The growth rate of the bursts of the elliptical instability is
obtained from (half) the growth rate of K3D, and our results normal-
ized by re are shown in Fig. 14. The growth rates of the initial burst
without convection (blue diamonds) lie close to the linear theoretical
prediction, ð9=16Þec, plotted as the solid black line. Further bursts of
these simulations (orange diamonds), however, substantially deviate
from this prediction. A large reduction of the growth rate is found,
likely due primarily to the LSV created by the initial burst. Note that
these growth rates reduce further as the simulation continues and the
energy in the LSV grows.

To compare these with similar results in the presence of convec-
tion, we ran new simulations which have been initialized with the flow
and temperature fields from a purely convective simulation long after
saturation of initial instability. We started several simulations with var-
ious ellipticities e > 0:05 from our simulation with Ra ¼ 4Rac (e¼ 0),
and several with e > 0:1 from our simulation with Ra ¼ 8Rac (e ¼ 0).
These results are shown in Fig. 14 using yellow circles for the initial
burst and purple circles for further bursts at Ra ¼ 4Rac and green and

cyan squares at Ra ¼ 8Rac, respectively. Focusing first on Ra ¼ 4Rac,
we see that the suppression of the initial burst of the elliptical instabil-
ity occurs for e � 0:07. Our previous results and phase diagram
(Fig. 9) indicated bursts of instability for e � 0:05. These results also
show that the growth rate is strongly affected by the convection, as the
markers are substantially below the theoretical growth rate. The fur-
ther bursts show a wide spread of growth rates. The highest measured
growth rates overlap with those of the simulations of the pure elliptical
instability. This implies that the convective LSV inhibits the elliptical
instability in the same way as the LSV generated by the elliptical insta-
bility itself, but can inhibit it more strongly.

Our results for the case of more turbulent convection with Ra ¼
8Rac show higher growth rates than at Ra ¼ 4Rac, particularly at
e > 0:14. This is possibly indicative of a reduced suppression of the
elliptical instability or an enhancement of the growth rate as the con-
vection becomes stronger. A possible explanation for the enhanced
growth rate could lie in Eq. (7). Increasing the Rayleigh number
increases �N2 for the conduction state. However, at Ra ¼ 8Rac the
growth rate is only increased by a factor of �1:13 compared to
Ra ¼ 0, and even at Ra ¼ 20Rac, the increase is only a factor of �1:3
compared to Ra ¼ 0. Furthermore, this factor is likely to be less
important than this would predict, as convection acts to reduce �N2,
and the efficiency of rotating convection increases with43 Ra.

We compare these results with some theoretical arguments in the
figure. We use the energy injection I3D of each simulation as a function

FIG. 12. Energy in each wavenumber as a
function of h on the dispersion relation, i.e.,
all wavenumbers have a frequency x which
satisfies x ¼ 2X cos h. The solid black
curves are given by k ¼ nzp= cos ðhÞ, for
nz ¼ 1; 2; 3; 4; 5; 6. The finite vertical reso-
lution implies power must be along one of
these curves. Left: during the linear growth
phase for Ra ¼ 0; e ¼ 0:05. Right: t
¼ 0:11� 0:13 for Ra ¼ 6Rac, e ¼ 0.05.

FIG. 13. The h� x I3D spectrum obtained by calculating I3D and taking the real part of the Fourier transform of the t � h spectrum; x is given in units of X. The interval of
wavenumber bins is k ¼ ½2; 50�. The black solid line is the dispersion relation. For visibility the rightmost column containing the geostrophic modes which dominate the flow is
set to zero. Left: linear growth phase of Ra ¼ 0, e ¼ 0.05. Right: t ¼ 0:11� 0:13 of Ra ¼ 6Rac , e ¼ 0.05.
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of the Rayleigh number to obtain an effective viscosity �eff that corre-
sponds with this sustained rate of injection (strictly acting on the tidal
flow rather than the waves). We add this effective viscosity to the fluid
viscosity � to obtain the “total viscosity,” which is used to compute a
viscous damping rate �ð� þ �eff Þk2. Predictions for the growth rate
after introduction of an effective viscous damping rate corresponding
with Ra ¼ 4Rac and Ra ¼ 8Rac are plotted in purple and cyan lines,
respectively, assuming the dominant wavenumbers and resonance
conditions are unchanged. Incorporating the microscopic viscosity
and/or effective viscosity decay rates are both inconsistent with the
numerically-obtained growth rates. Indeed, results from simulations
with just the elliptical instability imply that the suppression by an LSV
is much stronger than would be predicted by such an effective viscos-
ity. Furthermore, the slope of the growth rate as a function of e for
simulations initialized on a convective background deviates from the
9/16 prediction in a similar manner with and without the convective
background. To modify this 9/16 value there must be some change in
the resonance conditions and the dominant wavenumbers, due to
either detuning as previously remarked upon in this work, or the
phases of the inertial waves, to explain the burst behavior.

We investigate the dominant wavenumber in each simulation, to
examine if weakening of the elliptical instability occurs because the

LSV changes this dominant wavenumber, using the approach
described in Sec. IVB. The h� k spectrum for inertial modes follow-
ing the dispersion relation is shown with e ¼ 0:15 for two Ra values in
Fig. 15. This shows that there is indeed a modification of the dominant
wavenumber of the initial burst when initializing on a convective back-
ground. The h� k spectrum in the left panel shows the first elliptical
instability burst in the simulation with Ra ¼ 4Rac; e ¼ 0:15. The
energetically dominant wavenumber is no longer the (5, 5, 2) mode
satisfying the ideal resonance condition without convection, and
instead the power is concentrated at nz ¼ 1 with h close to but
larger than the ideal value h ¼ p=3. In the right panel of Fig. 15 we
show the same for the first elliptical instability burst, but with
Ra ¼ 8Rac; e ¼ 0:15. At both values of the Rayleigh number the sub-
sequent inertial wave breakdown results in power in larger wavenum-
bers, including the (5, 5, 2) mode, which is viscously dissipated but
otherwise maintained until the next burst. The availability of the (5, 5,
2) mode in the subsequent bursts results in higher growth rates com-
pared to the initial burst, but still far below the ideal linear prediction.
However, we observe power at the expected kz=k ¼ 1=2 and x ¼ c,
therefore apparently arguing against the hypothesis that detuning the
dominant resonance is responsible for most of the reduction in growth
rate. This leaves the perturbed phase argument originally proposed by

FIG. 14. Growth rate of the initial burst and further bursts of the elliptical instability measured in simulations without convection Ra ¼ 0 (blue and orange), and simulations
restarted from a turbulent purely convective state (with an LSV) at Ra ¼ 4Rac (yellow and purple) and Ra ¼ 8Rac (green and cyan). The theoretical prediction for the inviscid
linear growth rate without convection is plotted as a blue line, while predictions assuming an effective viscosity (with damping rate ��eff k2) from convection at Ra ¼ 4Rac and
Ra ¼ 8Rac are plotted as a purple and cyan line, respectively. This figure implies that the reduction in the growth rate originates from something other than a simple effective
viscosity, as the prefactor of the growth rate is changed, indicated by the growth rates tending to a value lower than 9/16 as e is increased.

FIG. 15. Same as Fig. 12 for simulations
initialized from a convective simulation.
Left: initial burst of Ra ¼ 4Rac , e ¼ 0.15,
initiated from Ra ¼ 4Rac , e ¼ 0. Right:
initial burst of Ra ¼ 8Rac , e ¼ 0.15, initi-
ated from Ra ¼ 8Rac , e ¼ 0.
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Barker and Lithwick5 to potentially explain the observed change of the
growth rate prefactor.

V. SCALING LAWS OF THE ENERGY INJECTION

The energy injection rate (I3D) due to the elliptical instability on
its own scales consistently with e3 when the flow is sufficiently turbu-
lent.5,6 However, the sustained energy injection in our simulations is
not the result of the elliptical instability in isolation. We plot the
energy injection I3D as a function of e at various values of Ra at fixed
Ek ¼ 5� 10�5:5 in the top panel of Fig. 16, which we divide into two
regimes by a vertical dashed line located at e ¼ 0:08, in accordance
with our discussion of the simulations initialized on a convective
background.

To the left of this line the simulations show sustained energy
injection without obvious bursts for Ra� 2Rac whereas to the right of
the line the simulations show clear bursts. We fit both sides separately
using the Ra ¼ 6Rac data. The black line is the fit to the sustained
energy injection using points on the left side, which scales like e2. This
is predicted if the convection acts like an effective viscosity in Eq. (28).

The bursts of elliptical instability on the right side of the figure
contribute on top of this sustained energy injection. We fit using both
the (naive) theoretically predicted e3 scaling and one like e6 as previ-
ously observed.5 Both are consistent with the data on the right-hand
side and are inconsistent with data on the left. Furthermore, the fits
are consistent with data from simulations at all values of the Rayleigh
number, indicating that this scaling may be independent of Ra. In this
regime, the elliptical instability is much more efficient than the effec-
tive viscosity of convection and would only be surpassed by the latter
when e � 0:01 if we extrapolate the former with an e3 scaling.

VI. DISCUSSION AND CONCLUSION
A. Comparison with previous work

As mentioned previously in Sec. II B, in the linear study of ellipti-
cal instability in an unbounded strained vortex, convection enhances
the growth rate of elliptical instability.2 In our nonlinear simulations,
however, we observe the opposite, as the suppression of elliptical

instability increases with the increasing Rayleigh number. Linear anal-
ysis of elliptical instability in a heated cylindrical annulus on the other
hand finds that the growth rate can decrease with the increasing
Rayleigh number.27 Expanding on this linear analysis are the experi-
ments of the elliptical instability with convection.28 These experiments
also measured the growth rate of the elliptical instability with convec-
tion and obtained the same result. In addition, they found that smaller
Ekman number leads to a faster growth rate of the instability. This
result is also supported by previous numerical simulations in ellip-
soids.15 Although none of these experiments or simulations have the
same geometry as our simulations or clearly feature an LSV, a suppres-
sion of elliptical instability due to convection is also observed. We con-
clude that this result is likely to be universal that elliptical instability is
weakened by convection. We find similar heat transport as a result of
the elliptical instability as C�ebron, Maubert, and Le Bars15 Lavorel and
Le Bars,28 in the stably stratified regime, as well as the enhanced heat
transport in simulations with the Rayleigh number below or just above
the critical Rayleigh number. However, we do not observe a constant
Nusselt number but rather observe a weakening of this effect as
the stratification increases. We also find decreased heat transport at
Ra� Rac compared to the purely convective simulations, likely due
to the stronger vortices formed.

B. Future work

In our current setup, the local box is appropriate to model the
poles of a planet with the gravity and rotation axis both pointing in the
z-direction. The location of the box, and thus, accounting for mis-
aligned gravity and rotation could have important effects on the inter-
actions of these instabilities. Rotating convection has been studied
with misaligned gravity and rotation by Currie et al.43 They found that
convective plumes (for rapid rotation) align with the rotation axis, and
that strong zonal flows tend to predominantly form rather than LSVs
at non-polar latitudes. These zonal shear flows have an important
effect on heat transport, but could also modify the excitation and satu-
ration of inertial waves due to the elliptical instability that should be
explored in further work. Global simulations that are sufficiently tur-
bulent and rapidly rotating to capture regimes similar to those we
have explored would also be worthwhile, somewhat along the lines of
the previous laminar simulations presented in, e.g., C�ebron, Maubert,
and Le Bars.15 Following Barker,8 one could also study the interaction
of the bursty non-linear dynamics of elliptical instability with convec-
tion. One advantage of global simulations (in full ellipsoids) is that the
linearly-excited inertial waves are no longer constrained by the (artifi-
cial) aspect ratio of the box.

It would also be of interest to further explore the parameter
regime in our simulations, particularly by varying the Prandtl number.
In particular, the low Prandtl number (Pr < 0:67) rotating convection
itself excites inertial waves.47 These convectively created inertial waves
might also be unstable to elliptical instability and could, due to their
constant generation by the oscillatory convection, result in another
source of potentially continuous tidal dissipation. Finally, Hot Jupiters,
like Jupiter itself, tend to have strong magnetic fields.49 Therefore, the
inclusion of MHD is likely to be important and can have significant
effects on tidal dissipation. In these simulations the LSVs of convection
and the elliptical instability are likely to be suppressed, as magnetic
fields inhibit the formation of large-scale structures. This should allow

FIG. 16. Energy injection rate (into 3D modes) I3D as a function of e for various
Rayleigh numbers. The vertical dashed line at e ¼ 0.08 marks the transition
between sustained behavior on the left, and bursts on top of sustained behavior on
the right. Three lines are fitted to the data at Ra ¼ 6Rac . The sustained behavior is
consistent with an e2 scaling, represented by the black line. Bursts of the elliptical
instability contribute on top of this sustained energy injection, resulting in a much
larger energy injection. The sustained þ bursts energy injection is fitted using an e3

fit in blue, and an e6 fit in red.
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for a continuous operation of elliptical instability.6 It is, however,
unclear what the influence of convection will be in this interaction.

C. Conclusion

We have investigated the interactions of elliptical instability and
rotating Rayleigh–B�enard convection in a Cartesian model using
psuedo-spectral hydrodynamical numerical simulations involving hor-
izontal shearing waves. First, we simulated elliptical instability without
convection in wide boxes (with stress-free impenetrable boundaries in
the vertical) for the first time and found the nonlinear evolution of the
instability to produce geostrophic vortices that dominate the flow to
an even greater extent than in cubical boxes. The introduction of con-
vection leads to a suppression of elliptical instability that we argue is
primarily due to the convectively generated LSV. It also gives rise to a
sustained energy injection into the flow (i.e., transfer from the
elliptical/tidal flow) that scales as e2, which can be interpreted such
that the convection operates as an effective viscosity (independent of
e) in damping the tidal flow.

The suppression of elliptical instability by convection was investi-
gated in detail using numerous approaches. Measuring the 3D
motions, which are weakened by the LSV, we showed that during a
burst of elliptical instability, the power is concentrated in the center of
the vortex. We also presented a detailed analysis of the frequency and
wavenumber Fourier spectra of the energy in our simulations to clearly
identify inertial modes and convective flows. We observed that the
elliptical instability (and energy injection into inertial modes more
generally) is indeed inhibited by convective flows. Rotating convection
also weakly excites inertial modes, which are identified as power in
modes along the dispersion relation, in the absence of elliptical
instability.

When initializing simulations of elliptical instability from a con-
vective turbulent state including an LSV, it was found that this LSV
reduces the growth rate of elliptical instability compared with the
inviscid or viscous growth rate prediction. It is also reduced compared
with the prediction modified by crudely adopting the aforementioned
effective turbulent viscosity. The reduction of the growth rate by the
LSV indicates that the dominant resonances are de-tuned by it or that
there are significant perturbations in the phases of the waves by the
LSV. Our Fourier space analysis showed that the fastest growing mode
with an LSV is the same as the one found in the absence of an LSV for
all bursts of elliptical instability. This indicates that the latter argument
may be more applicable.

We also found that the inertial waves excited by elliptical instabil-
ity can transport heat; when the elliptical instability is weak relative to
convection or suppressed this has little effect on the Nusselt number,
but when the elliptical instability is comparable in strength to the con-
vection, it can significantly enhance transport. The elliptical instability
can also result in heat transport in stably stratified regimes, but this
weakens as the stratification becomes stronger (within the linearly
unstable regime).

The elliptical instability leads to an energy transfer rate from the
tidal/elliptical flow (and hence dissipation rate), that is, approximately
proportional to e3, as previously found in the absence of convection.5,8

This scaling is similar to results obtained for related instabilities such
as the precessional instability.38,39 Indeed, when the elliptical instability
operates, the energy transfer rates are quantitatively similar to those
found in prior work.6 This implies that when it is not suppressed by

convection, the astrophysical energy transfer rates (e.g., in hot Jupiters)
from the elliptical instability are negligibly affected by convection.
However, we should point out that in the narrow range of simulations
where the e3 scaling is obtained without being suppressed by convec-
tion, the data are also consistent with a stronger e6 scaling observed
previously. Further work exploring more turbulent regimes at higher
Ra and smaller Ek and Pr would be beneficial to further explore the
scaling laws to allow robust extrapolation to stars and planets.
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APPENDIX A: RESOLUTION

Multiple tests were performed to ensure that our simulations
were properly resolved. We ensure that heat transport is well
resolved by testing the Nusselt number. If upon increasing the verti-
cal (or horizontal) resolutions (nx, ny, nz are the numbers of grid
points in each direction), the Nusselt number was negligibly altered,
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i.e., the previous resolution was suitable for resolving the convec-
tion. In Fig. 17, the Nusselt number for different vertical resolutions
for one of our most demanding simulations with Ra ¼ 15Rac and
e ¼ 0:1 (Ek ¼ 5� 10�5:5) is plotted. It is clear that too small verti-
cal resolution influences Nu and that we get convergence numeri-
cally in this case when nz 
 160. Similar test simulations were done
for all Ra to ensure a good vertical resolution.

A horizontal wavenumber power spectrum of the kinetic
energy showing simulations with various horizontal box sizes is
shown in Fig. 18 for a demanding case with Ra ¼ 20Rac and e ¼ 0:2
(Ek ¼ 5� 10�5:5). The LSV caused by convection leads to the
smallest wavenumber modes becoming dominant. Choosing a
larger box only serves to let the vortex grow larger over time.
However, during the initial burst phase at the start of the simula-
tion, around t¼ 0.005, the LSV is still forming and power is not yet
contained in the largest scales. Therefore, we can check these early
phases to see whether the box size is appropriate to accommodate
the convection and elliptical instability. Additionally, we can exam-
ine the power at the anti-aliasing scale, as this will reveal whether
the flow is well resolved. We desire that the power here is at least a
factor of 103 lower than that in the peak to consider a simulation to
be “well resolved.” Based on the horizontal power spectra in Fig. 18,
we conclude that a horizontal resolution of 256� 256 with a box
size of 4� 4 is suitable. In addition, two power laws are plotted, in
dashed-black, the k�5=3? associated with the Kolmogorov spectrum
of turbulence, which matches the middle or inertial subrange of all
spectra quite well, except for 8 � 8 � 1. Furthermore, the dashed-
red k�3? power law associated with wave turbulence is plotted, possi-
bly matching the smaller wavenumbers.

Increasing Ra leads to more turbulent simulations, requiring
higher resolutions to accurately capture small-scale effects, which
becomes computationally expensive. To minimize computational

expense, we desire to minimize resolution subject to the simulation
being well resolved. One further check is that the most important
quantity we study, the energy injection term I, is numerically con-
verged. To this end, an additional test was performed with a simula-
tion with Ra ¼ 20Rac; e ¼ 0:1 and a resolution of 512� 512� 224.
The energy injection term I3D of this simulation is compared with

FIG. 17. Nusselt number vs time for different vertical resolutions for Ra ¼ 15Rac, e
¼ 0.1, and Ek ¼ 5� 10�5:5. The convection is well resolved here for nz ¼ 160,
as increasing nz further does not affect Nu.

FIG. 18. Horizontal power spectrum for simulations with Ra ¼ 20Rac , e ¼ 0.2,
Ek ¼ 5� 10�5:5, with resolution nx ¼ ny ¼ 256; nz ¼ 224, for various box sizes.
Anti-aliasing scale of the simulations are: 536 (blue), 268 (orange), 134 (yellow),
and 67 (purple). All spectra are at t ¼ 0:005, i.e., during the initial burst of elliptical
instability, to ensure these bursts are well resolved. Indicated is the Kolmogorov
power law in dashed-black with the slope of k�5=3? and the wave turbulence power
law in dashed-red with the expected slope of k�3? .

FIG. 19. Comparison of I3D for two simulations with Ra ¼ 20Rac , e ¼ 0.1, and res-
olutions 256� 256� 224 and 512� 512� 224. Aside from small fluctuations the
two simulations are in agreement.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 024116 (2023); doi: 10.1063/5.0135932 35, 024116-19

VC Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0135932/16674877/024116_1_online.pdf

https://scitation.org/journal/phf


one with resolution 256� 256� 224 in Fig. 19. Aside from small
fluctuations the two simulations are in agreement, indicating that
horizontal resolutions of 256� 256 are appropriate to study the
energy injection accurately. The resolutions used for all Ra at fixed
Ek are given in Table I.

APPENDIX B: DIFFERENT BOX SIZES

To test the effect of different box sizes on energy transfers and
Fourier spectra, we ran multiple simulations with Ra ¼ 6Rac and
different e (Ek ¼ 5� 10�5:5). We have plotted I3D as a function of e
with different markers denoting different box sizes in Fig. 20. The
blue markers represent results at 1 � 1 � 1, the green markers are 2
� 2 � 1, the yellow markers 3 � 3 � 1 and the burgundy markers 4
� 4 � 1. The mean energy injection in the sustained regime is
shown to be independent of box size, and all markers follow the
same e2 scaling. The values on the right in the bursty regime do
change, as the 4 � 4 � 1 results becomes bursty for e 
 0:05;

whereas simulations with smaller horizontal box sizes do not.
Results at 3 � 3 � 1 only indicate burstiness at e 
 0:1, while 2 � 2
� 1 and 1 � 1 � 1 remain in the sustained regime beyond e ¼ 0:1.

The explanation for this behavior lies in the allowed values of
k? as the box size is varied. For smaller box sizes, the values of k?
and, hence, k increase (for the same kz), so for a resonance with
kz=k ¼ 61=2, kz (and hence k) must also be larger. Figure 21 shows
the h� k spectrum on the dispersion relation for 1 � 1 � 1,
Ek ¼ 5� 10�5:5; Ra ¼ 0; e ¼ 0:1, during the initial burst of ellipti-
cal instability; these are the linearly most unstable modes. The dom-
inant k modes lie on lines of n¼ 4 and n¼ 5. These larger values of
k imply larger decay rates ��k2, and therefore, a decreased growth
rate due to viscosity. This suppresses the elliptical instability for
larger e when the box is smaller. The suppression of the elliptical
instability is, thus, artificially enhanced (reduced) by the choice of a
smaller (larger) box. Upon extrapolating this effect to a full planet,
it is expected that the viscosity suppression of the elliptical instabil-
ity is weak due to the large scales available to the system.

APPENDIX C: LIMITED WAVENUMBER RANGE
FREQUENCY SPECTRA

We present the same plots as in Fig. 11 with a limited wavenum-
ber range of k ¼ ½2; 12�. One effect of the limited wavenumber range,
combined with our finite grid, is that a number of columns on the
right will contain no energy. Only higher wavenumbers can have these
angles. The limited k range does not affect the linear growth spectrum
in Fig. 22(a) as the power is concentrated in wavenumbers within our
adopted range. During the inertial wave breakdown in Fig. 22(b), we
can clearly see the power concentrated along the inertial wave disper-
sion relation, as well as the mirrored dispersion relation representing
the secondary non-resonant interactions between the waves and the
background tidal flow.9 In the convective simulations in the bottom
two panels, there is indeed power along the dispersion relation where
inertial waves are expected, providing another tentative hint for inertial
waves in rotating convection.

TABLE I. Table of resolutions used in simulations at different Ra.

Ek ¼ 5� 10�5:5 nx � ny nz

Ra=Rac ¼ �6;�4;�3;�1;
�0:8; 0:3; 0:8; 1:99; 3; 4; 6

256 � 256 96

Ra=Rac ¼ 7; 8 256 � 256 128
Ra=Rac ¼ �10; 9; 10; 15 256 � 256 160
Ra=Rac ¼ 20 256 � 256 224

FIG. 20. Same as Fig. 16 showing I3D but for different box sizes. Changing the box
size has no impact on the sustained energy injection, but smaller boxes result in
the elliptical instability being suppressed for higher e.

FIG. 21. Same as the left panel of Fig. 12 showing the linear growth phase for
Ra ¼ 0; e ¼ 0:1 in a 1 � 1 � 1 box.
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