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Abstract 

Introduction MRI bone surface area and femoral bone shape (B-score) measures have been employed as quantita-
tive endpoints in DMOAD clinical trials. Computerized Tomography (CT) imaging is more commonly used for 3D visu-
alization of bony anatomy due to its high bone-soft tissue contrast. We aimed to compare CT and MRI assessments of 
3D imaging biomarkers.

Methods We used baseline and 24-month image data from the IMI-APPROACH 2-year prospective cohort study. 
Femur and tibia were automatically segmented using active appearance models, a machine-learning method, to 
measure 3D bone shape, area and 3D joint space width (3DJSW). Linear regression was used to test for correlation 
between measures. Limits of agreement and bias were tested using Bland-Altman analysis.

Results CT-MR pairs of the same knee were available from 434 participants (78% female). B-scores from CT and MR 
were strongly correlated (CCC = 0.967) with minimal bias of 0.1 (SDD = 0.227). Area measures were also correlated 
but showed a consistent bias (MR smaller). 3DJSW showed different biases (MR larger) in both lateral and medial 
compartments.

Discussion The strong correlation and small B-score bias suggests that B-score may be measured reliably using 
either modality. It is likely that the bone surface identified using MR and CT will be at slightly different positions within 
the bone/cartilage boundary. The negative bone area bias suggests the MR bone boundary is inside the CT boundary 
producing smaller areas for MR, consistent with the positive 3DJSW bias. The lateral-medial 3DJSW difference is pos-
sibly due to a difference in knee pose during acquisition (extended for CT, flexed for MR).

Trial registration NCT03 883568
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Background
Osteoarthritis (OA) of the knee is a serious disease result-
ing in pain, loss of function and reduced quality of life; it 
is a leading cause of disability among older adults [1–3]. 
The pathophysiology of OA involves multiple tissues, 
with deterioration of both cartilage and bone considered 
integral to the OA process [4, 5]. The primary structural 
assessment of OA is often based on radiographs in which 
pathologic changes such as osteophytes are taken as the 
first signs of disease. Other bony changes (sclerosis and 

*Correspondence:
Alan Brett
Alan.Brett@stryker.com
1 Imorphics, Worthington House, Towers Business Park, Wilmslow Road, 
Manchester M20 2HJ, UK
2 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University 
of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12891-023-06187-2&domain=pdf
https://bmjopen.bmj.com/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT03883568&atom=%2Fbmjopen%2F10%2F7%2Fe035101.atom


Page 2 of 13Brett et al. BMC Musculoskeletal Disorders           (2023) 24:76 

deformation of the bone contour) may be visualized at 
later stages of the disease and are included with osteo-
phytes in the semiquantitative Kellgren- Lawrence grade 
(KLG) [6], the most commonly-used OA radiographic 
scoring system. However, radiography is relatively insen-
sitive in detecting earlier changes and is imprecise due to 
its dependence on both acquisition method and reader 
[7].

The use of Magnetic Resonance Imaging (MRI) in 
the study of OA has not only enabled a more thorough 
understanding of the anatomy and pathology of the OA 
joint in three-dimensions, it also provides a detailed vis-
ualization of multiple tissues with excellent soft-tissue 
contrast. Several MRI studies using semiquantitative 
scoring systems have demonstrated pathology associated 
with OA in knees with normal radiographs. The presence 
of MRI-detected osteophytes has been shown to occur 
in 74% of knees with normal radiographs and the preva-
lence of “any abnormality” has been found to be as high 
as 89% [8].

Quantitative assessment of MR images can provide 
direct measurement of cartilage and bone [9], and a 
number of quantitative 3D MR imaging biomarkers for 
the assessment of knee OA have been developed and 
validated using large MR image datasets [10]. MRI bone 
morphology changes in subchondral surface area [11, 12] 
and parameterized shape descriptions [13, 14] have been 
employed as endpoints in DMOAD clinical trials [15, 16].

Statistical shape modelling (SSM), a type of supervised 
machine-learning, allows for the parametrization of com-
plex 3D anatomical shapes such as the knee [17]. The 
method can be employed both to describe and compare 
knee shape; and to automatically search for and segment 
a knee shape in an image, enabling the analysis of very 
large image datasets [18]. Measurement of bone area and 
shape changes from MR images using SSMs has been 
shown to predict radiographic onset of OA [19], is asso-
ciated with radiographic structural progression [20] and 
discriminates knees with OA from non-OA [21].

Recently, Bowes et  al. [13] introduced a method for 
the reduction of the 3D shape of femur to a single metric 
value termed the “B-score”. This statistical z-score met-
ric compares the shape of non-OA and OA knees on a 
continuous linear scale with an origin at 0 (KLG 0 mid-
dle-aged knee) and a unit scale based on the standard 
deviation of these KLG 0 knees. The approximate observ-
able B-score range is from −3 to +7 with advancing OA 
in the positive direction. The B-score has been shown to 
be an objective, automated assessment of OA status with 
clinical risk defined for current and future pain, func-
tional limitation and Total Knee Replacement (TKR) [13].

Radiographic Joint space width (JSW) meas-
ured between the femoral and tibial margins on a 

weight-bearing x-ray is widely accepted as an indicator of 
knee joint health. Because the radiograph is a 2D projec-
tion of a 3D structure, measurements are highly depend-
ent on the acquisition conditions, such as the position 
of the knee, knee flexion angle, and the alignment of the 
X-ray beam with the tibial plateau. Even with carefully 
followed protocols using customized knee positioning 
devices and optimal acquisition conditions, conventional 
radiographs can remain insensitive, inaccurate, and have 
poor concurrent validity for knee OA features [22]. In 
contrast, the measurement of 3D JSW using tomographic 
imaging is unencumbered by the problem of overlap-
ping anatomy and reproducible anatomical alignment. 
3D JSW therefore represents a relatively novel OA imag-
ing biomarker that is readily available from MR images 
that are acquired for quantitative assessment of cartilage 
and bone in DMOAD trials. Measurement of 3D JSW has 
been previously demonstrated using weight-bearing CT 
images [23, 24] though this has not been performed using 
supine MR and CT images.

While the widespread use of MRI for clinical trials 
and research in OA has led to bone imaging biomarkers 
being developed for this modality, MR is more usually 
employed for soft-tissue and trabecular bone evaluation 
since MR imaging pulse sequences usually depict cortical 
bone as a signal void. Computerized Tomography (CT) 
imaging is more commonly used for 3D visualization of 
bony anatomy due to its high bone-soft tissue contrast 
[25]. In addition, CT images are not subject to the geo-
metric distortion that can be caused in MR images due to 
magnetic field inhomogeneities [26], a potential problem 
that is addressed in DMOAD clinical trials by the careful 
and consistent positioning of the knee near the isocenter 
of the magnet, where the field is most homogeneous.

To test the robustness to the choice of imaging modal-
ity of the B-score as a measure of femoral cortical bone 
shape in DMOAD clinical trials, we compared the results 
of automated analysis of CT-MR image pairs acquired at 
baseline and 24-month timepoints. We also compared a 
similar bone shape z-score of the tibia, and measures of 
bone area from femur and tibia, and medial and lateral 
tibiofemoral 3DJSW.

Methods
Subject image data
We used image data from the IMI “Applied Public-Private 
Research enabling OsteoArthritis Clinical Headway” 
(APPROACH) study. APPROACH is an exploratory, 
European, 5-centre, 2-year prospective longitudinal 
cohort study. It includes clinical, imaging, biomechanical 
and biochemical parameters, in a cohort of 297 partici-
pants (age; 66.5 ± 7.1, female; 230 (77%), BMI; 28.1 ± 5.3) 
recruited primarily from prior European OA cohorts 
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using machine learning models based on retrospective 
patient data to exhibit a high likelihood of radiographic 
JSW loss and/or knee pain over the course of the study 
[27]. The study has been approved by the Ethical Com-
mittees of the participating countries and has been regis-
tered in Clini caltr ials. gov (NCT03883568).

Low-dose CT images (120kVp, 220 mAs, 0.625 mm 
slices, 0.3 mm in-plane resolution, medium kernel) were 
acquired at 5 sites for 271 participants at baseline and 215 
participants at 24-months. Both knees were positioned to 
be as straight as possible, with the feet on a wedge to pro-
duce around  15o of internal rotation at the hip. These CT 
images were matched with sagittal 3D WATS, 3D FFE, or 
3D FLASH MR images (1.5 mm slice thickness; 0.31 mm 
in-plane resolution; TR 17 ms, TE 7 ms, FA 12–15° with 
fat-saturation or water excitation) of the single index (left 
or right) knee for each subject acquired using 1.5 T or 
3 T MR systems. MR acquisition protocol was to rotate 
the leg so that the toes and patella faced upward, elevate 
knee by putting cushions below it so that the center of 
the knee is place in the center of the coil and avoid scan-
ning the knee in a fully extended or hyperextended posi-
tion. CT and MR images were acquired within a mean of 
12 (median: 0, max: 162) days of each other. Additional 
test-retest sagittal 3D WATS, 3D FFE, or 3D FLASH 
MR images with repositioning were available from 37 
participants at baseline (8), 6-month (16) and 24-month 
(13) timepoints. KLG was read centrally from standard 
weight-bearing x-rays taken at the screening visit [27].

Statistical shape modelling & image search
Femur and tibia bones were automatically segmented 
from MR images using active appearance models 
(AAMs), a type of SSM trained to search images, pro-
vided by Imorphics (Manchester, UK). AAMs are proven 
technology that can segment knee bone surfaces with 
sub-millimeter accuracy as has been described previously 
[21, 28]. AAMs were constructed using a training set, 
from 3D high-resolution water-excitation MR images, 
selected to provide examples of all stages of OA [29].

A similar AAM was constructed for the automated 
search of CT images with a second-stage refinement 
using convolutional neural network machine-learning 
[30]. The AAM was trained on manual segmentations of 
122 CT images displaying varying KLG grades, and the 
CNN was trained on a separate set of 3500 pre-operative 
CT images from a database of CT scans acquired robotic 
total knee replacement surgery [31]. Segmentation model 
accuracy was validated using another independent set of 
1097 pre-operative images and expert manual segmen-
tations. Measurement accuracy was assessed using the 
mean absolute point-to-surface distance between model 
and manual segmentations. Mean segmentation errors 

were 0.12 mm (standard deviation (SD)) 0.04 mm (mm) 
for femora and 0.13 (0.08) mm for tibiae.

Bone shape
We constructed an ‘OA vector’, defined as the line pass-
ing through the mean shape of a population with OA 
(OA Group, defined as all knees with KLG ≥2 at all four 
time points of 0, 1, 2 and 4 years) and a population with-
out OA (Non-OA Group, defined as those with KLG of 
0 at each of the same time points). For the femur, dis-
tances along the OA vector have previously been termed 
‘B-score’ [13], with the origin (B-score 0) defined as the 
mean shape of the Non-OA Group for each sex. The 
B-score has the form of a statistical z-score so that 1 unit 
is defined as 1 SD of the Non-OA Group along the OA 
vector (positive values towards the OA Group) [13]. A 
similar bone shape z-score was constructed on an OA-
vector for the tibia for each sex.

We used the same femur and tibia OA-vectors con-
structed using MR images to produce both the MR and 
CT image bone shape results. For the femur, this was the 
previously described shape vector used to produce the 
B-score. The OA-vector for the tibia has also been pre-
viously described [12]. When analyzing a CT image, the 
resulting bone shape surface from the CT AAM search 
was searched for a best fit using a version of the MR AAM 
trained to fit to a predefined surface shape. This process 
produces an MR AAM shape instance with the correct 
MR model landmark points but with the shape of the CT 
image search result. This MR model shape instance can 
then be projected onto the previously defined MR OA-
vectors for femur or tibia. To determine the accuracy of 
this step, we measured the mean of absolute point-to-
surface distances between the CT AAM search result and 
the derived MR AAM shape instance across all available 
baseline and 24-month CT-MR image pairs.

Bone area
Anatomical regions of total area of subchondral bone 
(tAB) [32] representing medial and lateral femur (MF, 
LF), medial and lateral femoral trochlea (TrFMed, 
TrFLat) and medal and lateral tibia (MT, LT) were out-
lined on the mean AAM bone shape as previously 
described [21]. The boundaries of the MF.tAB and LF.tAB 
regions and trochlea grove were defined as a line on the 
bone corresponding to the anterior edge of the medial 
or lateral meniscus in the mean shape. During auto-seg-
mentation with AAMs, these regions are automatically 
propagated to each bone surface, allowing for the meas-
urement of anatomically corresponded tAB regions on 
the knee bone surfaces from each subject. The six regions 
originally defined on the surface mesh of the mean MR 
AAM shape were then projected to the surface mesh 
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of mean CT AAM shape by registering the two surface 
meshes using Iterative Closest Point (ICP) algorithm [33].

3D joint space width
3D JSW measurements (3DJSW) were produced for all 
the landmark points enclosed by central regions defined 
on the medial and lateral tibial plateaus (Fig.  1). Each 
region consists of approximately 2000 landmarks and 
were defined on the surface mesh of the mean shape of 
the MR AAM as the cLT and cMT regions previously 
described anatomically for manual cartilage measure-
ment [34]. These regions were then projected to the sur-
face mesh of mean CT AAM shape by registering the 
two surface meshes using Iterative Closest Point (ICP) 
algorithm [33]. During auto-segmentation with AAMs, 
these regions are automatically propagated to each bone 
surface, allowing for the measurement of 3DJSW at 
anatomically corresponding positions in each subject. 
Measurements at each point were made between the seg-
mented tibial and femoral mesh surfaces along a normal 
to the tibial surface. An average 3DJSW was then com-
puted from the measurements at all points in the medial 
or lateral region.

Statistical analysis
We used linear regression and Lin’s Concordance Cor-
relation Coefficient (CCC) [35] to test for correlation 
between the MR and CT measures of bone shape, area 
and 3DJSW. Limits of agreement and systematic bias was 
tested using Bland-Altman analysis of these measures. 
Analysis was performed on both the full dataset incor-
porating all available KLG scores and on a limited subset 
incorporating only KLG 2 & 3 scores, since these would 
typically be chosen for inclusion in a DMOAD trial. 

Smallest detectable difference (SDD) of the two bone 
shape measures was computed from test-retest image 
pairs using Bland-Altman analysis. Images acquired from 
the same subject but at baseline or 24-month timepoints 
were treated as independent.

Results
Baseline and 24-month CT-MR image pairs of the same 
knee laterality were available from 231 and 203 partici-
pants respectively, resulting in 434 CT-MR image pairs 
for analysis. In the analysis set, there were 338 female 
knees (78%). Kellgren-Lawrence Grading for the analyzed 
(index) knee in these participants was KLG 0 (19%); KLG 
1 (31%); KLG 2 (30%); KLG 3 (16%); KLG 4 (3%) with 5 
knees ungraded (1%), providing coverage across the OA 
spectrum. The limited subset incorporating KLG 2 & 3 
knees comprised 197 CT-MR pairs with KLG 2 (65%) and 
KLG 3 (35%).

Mean time between CT and MR image acquisition was 
10 (median: 0 days; 95th percentile: 116) days. At least 
half of the MR-CT scans were acquired on the same day, 
and 95% were acquired within 4 months of each other, a 
period of time which is unlikely to result in measurable 
anatomical change. In general, where there was a time 
between acquisition of modalities, the CT acquisition 
came later. SDD of the B-score measure from test-retest 
comparison was 0.227 which is comparable to the SDD 
of 0.251 measured previously [13]. For the tibia z-score, 
SDD was 0.373. The mean (SD) of absolute point-to-
surface fitting errors between the CT AAM search result 
and the derived MR AAM shape instance across all avail-
able baseline and 24-month CT-MR image pairs was 
0.098 (0.022) mm.

Fig. 1 Three-dimensional measurement of central medial and lateral mean joint space width (3DJSW). The central medial region is shown in red, 
and the lateral region is shown in blue (right figure). The coronal view of a typical knee is shown in the left figure, which shows where these two 
regions are located, and how measurements are taken, normal to the 3D tibial surface
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Table 1 presents summary statistics for shape, area and 
3DJSW measures: Bland-Altman bias with 95% confi-
dence intervals, Bland-Altman limits of agreement, linear 
regression coefficient of determination  R2, and Concord-
ance Correlation Coefficient (CCC) for the full dataset. 
Summary statistics for the limited KLG 2 &3 dataset is 
presented in supplemental Table S1. Figure 2 shows lin-
ear regression and Bland-Altman analysis for B-score. 
Figures 3 and 4 show linear regression and Bland-Altman 
analysis for bone areas MF.tAB and LF.tAB. Figures 5 and 
6 show linear regression and Bland-Altman analysis for 
medial and lateral 3DJSW. Results for trochlea bone area, 
tibia shape, and tibia bone area are provided in supple-
mental Figs. S1-S5.

B-scores measured using CT or MR images were 
strongly correlated (CCC = 0.967) and showed good 
agreement with a small MR positive bias of 0.100 
[95% CI: 0.052, 0.14]. Limits of agreement (LOA) for 
B-score were − 0.896 and + 1.096 which is significantly 
higher range than the SDD of +/− 0.227. Although 
the tibia z-score measures were also highly correlated 
(CCC = 0.924), the agreement was less good with a nega-
tive bias of −0.424 [−0.475, −0.374]. All bone area meas-
ures were also highly correlated between CT and MR 
with a consistent negative bias (MR measures smaller). 
The 3DJSW measures were less well correlated and both 
larger were for MR than for CT but had a different bias 
in the lateral of 1.044 [0.979, 1.110] mm and compared 

to a bias of 0.424 [0.342, 0.507] mm in the medial side. 
Bland-Altman plots for all measures showed little or no 
apparent correlation and so did not indicate any associa-
tion between measurement values and bias.

Discussion
B-score measures from MR or CT images were strongly 
correlated and showed good agreement with a relatively 
small bias of 0.1, suggesting that bone shape may be reli-
ably measured using either modality. This bias could be 
applied to CT B-score measures as a small positive cor-
rection. However, the bias is considerably smaller than 
the SDD of 0.227 measured from MR images, and the lin-
ear regression model crosses the unity line indicating that 
this bias is positive (MR larger) for the lower B-scores and 
negative (CT larger) for the higher B-scores. Therefore, 
this small correction is probably not significant in most 
practical applications when measuring B-scores using CT 
images. In the limited subset analysis of KLG 2&3 knees, 
the B-score bias was reduced to 0.049, suggesting that for 
clinical trials incorporating such a a cohort, the potential 
difference obtained for the measure from the two modal-
ities is probably not significant. In fact, this represents 
about 12 months of expected B-score change in a non-
OA cohort [16].

The Bland-Altman limits of agreement between CT 
and MR measurements are relatively large compared to 
the SDD derived from the MR test-retest image data. This 

Table 1 Bland-Altman bias (MR minus CT), limits of agreement and linear regression statistics for the comparison of various MR and 
CT derived measures for the full dataset (KLG 0–4)

Measure Bland-Altman bias [95% CI] Bland-Altman limits of agreement R2 CCC 

Lower [95% CI] Upper [95% CI]

Femur shape
B-score

0.100
[0.052, 0.140]

−0.896
[−0.979, −0.813]

1.096
[1.013, 1179]

0.938 0.967

Tibia shape
z-score

−0.424
[−0.475, −0.374]

−1.471
[−1.558, −1.384]

0.622
[0.535, 0.709]

0.910 0.924

MF.tAB
(mm2)

−54.983
[−61.218, −48.748]

−184.522
[−195.322, −173.722]

74.556
[63.756, 85.356]

0.964 0.969

LF.tAB
(mm2)

−42.792
[−47.019, −38.569]

−130.563
[−137.880, −123.245]

44.975
[37.657, 52.292]

0.970 0.971

MT.tAB
(mm2)

−5.858
[−9.235, −2.482]

−75.997
[−81.84, −70.149]

64.380
[58.432, 70.128]

0.962 0.978

LT.tAB
(mm2)

−21.329
[−23.896, −18.762]

−74.659
[−79.106, −70.213]

32.001
[27.555, 36.447]

0.965 0.968

TrFMed.tAB
(mm2)

−28.346
[−30.714, −25.978]

−77.544
[−81.646, −73.443]

20.853
[+16.751, +24.955]

0.932 0.918

TrFLat.tAB
(mm2)

−39.387
[−43.002, −35.773]

−114.477
[−120.738, −108.217]

35.703
[29.442, 41.963]

0.947 0.945

Medial 3DJSW
(mm)

1.044
[0.979, 1.110]

−0.315
[−0.428, −0.202]

2.404
[2.290, 2.517]

0.575 0.635

Lateral 3DJSW
(mm)

0.424
[0.342, 0.507]

−1.295
[−1.438, −1.151]

2.144
[2.000, 2.287]

0.467 0.489
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increased variability when comparing B-scores meas-
ures from CT and MR is unlikely to be due to the slightly 
higher sample variance in the CT measurement (4.15 
compared to 3.95 for MR measurement). An observable 
difference in variance would produce correlation struc-
ture in the Bland-Altman plot, in which most of the big 
differences observed between CT and MR would occur 

when CT measurement is at one of the extremes of its 
range, since it is far less likely for MR measurement to be 
a nearby value; and this structure is not seen. Therefore, 
it is more likely that the increased variability is due to CT 
and MR surfaces being somewhat different due to the 
reconstructed CT and MR bone surfaces being somewhat 
different. A probable cause of this is geometric distortion 

Fig. 2 CT vs MRI B-score for the full dataset (KLG 0–4). Top: Bland-Altman (MR minus CT) plot; Bottom: linear regression
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by MR magnetic field inhomogeneity which would cause 
variability across participants and across imaging sites.

In contrast to the B-score, the tibia shape z-scores 
were somewhat lower from MR images, especially for the 
higher shape scores, with a bias of 0.424. Shape measures 
of the proximal tibia are somewhat more variable than 
those of the distal femur, with an SDD of 0.373, possibly 
because of the comparatively smaller surface area of this 

bone. Analysis of the tibia bone has been less well devel-
oped, and the reason for the bias here warrants further 
investigation.

CT and MR bone area measures also were all strongly 
correlated and all exhibited a negative bias indicating that 
the measures from MR images were consistently smaller 
than those from CT images. Because the two modalities 
measure different physical properties of materials, it is 

Fig. 3 CT vs MRI bone area MF.tAB for the full dataset (KLG 0–4). Top: Bland-Altman (MR minus CT) plot; Bottom: linear regression
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likely that the bone surface identified using MR and CT 
will be at slightly different positions within the bone/soft-
tissue (cartilage) boundary. While the bone surface in an 
MR image will be indicated by a boundary between corti-
cal bone with little water content, and cartilage which has 
a higher water content, the bone surface in a CT image 
is defined by the differing electron densities of cortical 

bone and cartilage. The consistent negative bias across 
all the bone area measures would indicate a MR bone 
boundary surface inside that of the CT boundary. This is 
also consistent with the larger 3DJSW measures (positive 
bias) from MR in comparison to CT.

In all measures, the analysis of the limited KLG 2&3 
subset indicated a remarkably similar pattern and 

Fig. 4 CT vs MRI bone area LF.tAB for the full dataset (KLG 0–4). Top: Bland-Altman (MR minus CT) plot; Bottom: linear regression
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magnitude of the various statistical measures except for 
somewhat higher coefficient of determination and con-
cordance correlation coefficient values in both the lateral 
and medial 3DJSW measurements.

Because MRI is not typically used to examine bony 
structures, there are few studies comparing the geometry 
of bone surfaces described by segmentation from CT or 

MR imaging. However, the use of imaging to generate 
3D bone models by 3D printing for use in surgical plan-
ning and prostheses, including the design of patient-spe-
cific cutting guides and implants routinely uses CT, and 
the radiation dose from CT imaging can be a concern 
for elective surgery, prompting several studies compar-
ing cadaveric bone model surfaces derived from CT and 

Fig. 5 CT vs MRI medial 3DJSW for the full dataset (KLG 0–4). Top: Bland-Altman (MR minus CT) plot; Bottom: linear regression
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MR in the lower limb [36–39]. Although these studies 
all use different MR sequences, segmentation methodol-
ogy, surface alignment algorithms, and surface compari-
son measures; MR and CT surfaces were found to be of 
comparable sub-millimeter accuracy with no significant 
differences in surface error. However, consistent with 
our results, the MR-derived surfaces were all found to be 

inside the CT-derived surfaces. In a direct comparison 
of MR and CT, Neubert et al [39] found that MR-based 
bone models were slightly smaller than CT-based mod-
els for all of 3 different MR sequences. A comparison of 
MR and CT to reference models generated by digitizing 
bone surfaces free of soft tissue with a mechanical con-
tact scanner by Rathnayaka et al demonstrated that 75.8% 

Fig. 6 CT vs MRI lateral 3DJSW. Top: Bland-Altman (MR minus CT) plot; Bottom: linear regression
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of the surface area of MRI models underestimated the 
CT models [36]. Using optical scans of cleaned bones 
as ground truth, Broeck et al found that 3D bone mod-
els created from CT images are an overestimation of 
the actual bone, and MRI segmentation results in a 3D 
bone model that is on average an underestimation of the 
cleaned bone [37].

In contrast to orthopedic surgical planning, CT is not 
commonly employed in DMOAD trials due ionizing 
radiation and lack of soft tissue contrast. However, CT 
is more widely available than MRI and may have some 
advantages in clinical trials in which measurements from 
bone but not from bone marrow lesions or soft tissues 
are used as endpoints. CT images tend to be less expen-
sive to acquire and standardization of CT image acqui-
sition across sites in a multicenter trial should be more 
easily achieved than for MRI because of their lower com-
plexity in setting acquisition protocols and lack of poten-
tial geometric distortion. CT does have an additional 
advantage in the determination of bone mineralization, 
and the measurement of bone mineral density (BMD) has 
been used to investigate OA-associated changes includ-
ing subchondral bone trabecular remodeling [25, 40]. 
In addition, CT arthrography is considered the imaging 
reference standard for in vivo assessment of cartilage 
thickness [41], although this does require injection of 
intra-articular contrast material. Iterative reconstruc-
tion techniques are available which substantially reduces 
the ionizing radiation dose. Cone beam CT (CBCT) 
machines are becoming available that not only expose a 
patient to a much lower dose than conventional CT for a 
bilateral knee scan (~0.1 mSv or around 2 weeks of back-
ground radiation) [42], but also introduce the prospect 
of weight-bearing image acquisition and standardized 
3DJSW measurement, which may provide more informa-
tion about the disposition of the osteoarthritis knee than 
supine imaging [24].

The positive bias found here for both medial and lat-
eral 3DJSW is consistent with the MR-derived surface 
being within the CT-derived surface, resulting in greater 
distance between MR femoral and tibial surfaces. How-
ever, there are substantially different biases for medial 
and lateral 3DJSW with the medial side being wider by 
around 0.6 mm. It is possible that this can be explained 
by differences in knee positioning during CT or MR 
acquisition. The APPROACH study CT acquisition pro-
tocol stipulated both knees to be as straight as possible 
with the feet on a wedge to produce around  15o of inter-
nal rotation at the hip. In contrast, the MR acquisition 
protocol was to rotate the leg so that the toes and patella 
faced upward, elevate knee by putting cushions below it 
so that the center of the knee is place in the center of the 
coil and avoid scanning the knee in a fully extended or 

hyperextended position. Therefore, the leg was imaged 
fully extended during a CT scan and partially flexed dur-
ing an MR scan. In a supine (open-chain) knee, during 
last 15-20o of knee flexion, anterior tibial glide persists 
on the tibial medial condyle because its articular surface 
is longer than that on the lateral side. Prolonged anterior 
glide on the medial side produces external tibial rota-
tion of around  15o, this is known as the “screw-home 
mechanism” [43]. This has the effect of repositioning the 
medial tibial region of the 3DJSW measurement (Fig. 1) 
more below a more anterior aspect of the medial femur, 
whereas the repositioning of the lateral tibial 3DJSW 
region will be less pronounced. This has consequences 
for the measurement of 3DJSW of the supine knee, and 
careful attention should be paid to the reproducible posi-
tioning of the knee. Further validation of non weight-
bearing 3DJSW is therefore warranted.

The main limitation of this study was the lack of suf-
ficient CT data to construct a new version of the OA-
vector using shape measures derived from CT images. 
It would have been useful to compare this approach to 
the method that was used here, which was to fit the MRI 
AAM to the CT AAM search result surface and then 
project the rusting shape into the MRI OA-vector space. 
There was also no test-retest repositioning image data 
for CT available, which meant that we could not deter-
mine SDD of CT as a repeatability measure. In terms of 
the 3DJSW analysis, the difference in leg position during 
image acquisition meant that comparison of modalities is 
probably unreliable.

Conclusions
In conclusion, the femoral bone shape (B-score) may be 
reliably measured using either MR or CT with a small 
bias that could probably be ignored for all practical 
purposes. Because it is a parameterised shape measure 
rather than a geometric measure, the B-score has the 
advantage over bone area measures of being both scale-
independent and robust to changes in the position of the 
surface boundary due to the choice of imaging modality. 
The 3DJSW is potentially useful in the determination of 
meniscal or cartilage changes from CT or MR images, 
but is a geometric measure and is therefore dependent 
upon the relative positions of the femur and the tibia dur-
ing image acquisition.
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