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A Sum-Difference Expansion Scheme for Sparse

Array Construction Based on the Fourth-Order

Difference Co-Array
Zixiang Yang, Qing Shen, Wei Liu, Senior Member, IEEE, Wei Cui

Abstract—A generalized sum-difference expansion scheme is
proposed to construct sparse arrays based on the fourth-order
difference co-array with increased degrees of freedom (DOFs).
Different from existing structures, both the second-order sum and
difference co-arrays are exploited in array construction under
this scheme, leading to a large consecutive fourth-order difference
co-array with its number of uniform DOFs (uDOFs) derived. To
optimize the provided uDOFs, required design properties of the
initial prototype arrays are discussed. Three examples are then
provided to demonstrate its superior performance over existing
structures in both resolution capacity and estimation accuracy.

Index Terms—Sparse array, fourth-order, difference co-array,
sum co-array, DOA estimation.

I. INTRODUCTION

Sparse array is one typical solution to the underdetermined

direction finding problem [1]–[5], and has been widely studied

in recent years. By calculating the fourth-order cumulants

of the received data from an N -sensor array, the generated

virtual array (fourth-order difference co-array) can resolve up

to O(N4) uncorrelated non-Gaussian sources [6]–[8], while

only O(N2) sources can be resolved via exploiting the second-

order statistics [1], [9].

Achieving remarkable resolution capability requires specif-

ically designed sparse structures. The length of the longest

uniform linear array (ULA) segment contained in a virtual

array is referred to as number of uniform degrees of freedom

(uDOFs) [10], [11], which is directly related to the estimation

performance and primarily considered as a criterion in sparse

array design [6], [10]. A series of nested-array-like (NA-

like) structures exploiting the fourth-order difference co-array

have been proposed, including four-level NA (FL-NA) [6],

NA under expanding and shift scheme (EAS-NA-NA) [12],

enhanced FL-NA (E-FL-NA) [7], and improved EAS-NA-

NA with larger spacing (EAS-NA-NALS) [13], etc. These

structures consist of four sub-arrays, and O(N4) uDOFs can

be provided by an N -sensor array.

On the other hand, some array configurations focus on

the property of hole-free fourth-order difference co-array, and

notable structures include two-level nested sparse array (2L-

FO-NA) [14], compressed NA (CNA) [15], extended Cantor
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array (E-FO-Cantor) [16], and half inverted NA (HINA) [17].

Although the hole-free property guarantees the entire co-array

information can be exploited by easy-to-implement subspace-

based algorithms [18], [19], the number of uDOFs provided

is limited especially for a large sensor number. Among these

structures, only the HINA [17] is capable of offering O(N4)
uDOFs. However, HINA offers less uDOFs than EAS-NA-

NALS for N > 8.

Most existing structures only consider the relationship be-

tween the fourth-order and the second-order difference co-

arrays in construction, while others focus on a specific pro-

totype array (such as NA) and then design its extension

based on the fourth-order difference co-array. In this paper,

we propose a generalized sum-difference expansion (SDE)

scheme, where both the second-order sum and difference co-

arrays are exploited in array construction. For sparse arrays

constructed under this scheme, the inter-element spacings of

the high-level sub-array can be increased by exploiting the

union of the sum and difference co-arrays of the low-level sub-

array, leading to a large consecutive fourth-order difference co-

array. After deriving the number of uDOFs, the required design

properties of the low-level and high-level prototype arrays

are introduced to optimize the uDOFs, and three examples

are presented to demonstrate the superior performance of the

proposed SDE scheme.

II. SIGNAL MODEL

Consider I far-field narrowband uncorrelated sources im-

pinging on a linear array located at A = {p0, · · · , pN−1}du
with du being the unit spacing. Without loss of generality, the

leftmost sensor is marked as the zeroth sensor and {pn}
N−1
n=0 ≥

0. The signal received by this array is

y = A(Θ)s+ n, (1)

where A(Θ) = [a(θ1), · · · ,a(θI)] is the N × I
steering matrix, and its i-th column vector a(θi) =
[e−j2πp0du sin θi/λ, · · · , e−j2πpN−1du sin θi/λ]T is the steering

vector corresponding to the i-th source direction. s =
[s1, · · · , sI ]

T is the source signal vector, while n is the

Gaussian white noise vector.

According to [6], [7], [16], the fourth-order circular cumu-

lant matrix of the received signal vector y is calculated by

Fy =
∑I

i=1
csi

[

a(θi)⊗ a(θi)
∗
]

×
[

a(θi)⊗ a(θi)
∗
]H

. (2)
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Here {·}∗ and {·}H return the conjugate and conjugate trans-

pose of the input, respectively, and ⊗ represents Kronecker

product. csi = cum{si, si, s
∗
i , s

∗
i } is the fourth-order cumulant

[7], [16] of the i-th source signal si (1 ≤ i ≤ I).

To construct an equivalent virtual array based on the fourth-

order difference co-array, Fy is vectorized as [6]

yv = vec{Fy} = Av(Θ)sv, (3)

Av(Θ) = [av(θ1), · · · ,av(θI)], sv = [cs1 , · · · , csI ]
T .

In this model, Av(Θ) is the virtual steering matrix consisting

of sensors in the fourth-order difference co-array (see Defini-

tion 1), while the steering vector av(θi) = [a(θi)⊗a(θi)
∗]∗⊗

[a(θi)⊗ a(θi)
∗] [7], [16], [20].

Definition 1: For an arbitrary linear array A, its fourth-order

difference co-array is D4(A) = {ϑ1 − ϑ2 + ϑ3 − ϑ4 | ϑk ∈ A}
[16], [21].

D4(A) is closely related to second-order difference and sum

co-arrays (D2(A) and S2(A)) [7], [22]. We have

D4(A) = {ϑ5 + ϑ6 | ϑ5, ϑ6 ∈ D2(A)}, (4)

= {ϑ7 − ϑ8 | ϑ7, ϑ8 ∈ S2(A)}, (5)

where D2(A) = {n1 − n2 | n1, n2 ∈ A} and S2(A) = {n3 +
n4 | n3, n4 ∈ A}.

III. SUM-DIFFERENCE EXPANSION SCHEME BASED ON

THE FOURTH-ORDER DIFFERENCE CO-ARRAY

Most representative structures based on the fourth-order

difference co-array have been designed by exploiting the

relationship between D2(A) and D4(A) given in (4), such as

FL-NA [6], EAS scheme [12], and E-FL-NA [7], etc. In this

section, we consider both (4) and (5), and a generalized sum-

difference expansion scheme is proposed.

A. Sum-Difference Expansion Scheme

Definition 2: Consider two prototype arrays A1 and A2,

and the set of sensor positions ASDE for a structure (based on

the fourth-order difference co-array) constructed by the SDE

scheme is

ASDE = {a1 | a1 ∈ A1} ∪ {a2 ·DE | a2 ∈ A2}. (6)

Here DE is the cardinality of the longest consecutive segment

(UE) in the union of the second-order difference co-array

(D2(A1)) and the sum co-array (S2(A1)) of A1, that is,

DE ≜ |UE |, UE = arg max
Ulr⊆D2(A1)∪S2(A1)

|Ulr|, (7)

Ulr = {−l,−l + 1, · · · , r − 1, r}, l, r ∈ N
+, (8)

where | · | returns the cardinality of the input set and N
+ is

the set of positive integers.

The consecutive segment in the fourth-order difference co-

array of the proposed SDE structure is derived in the following

proposition.

Proposition 1: The fourth-order difference co-array (de-

noted by D4(SDE)) of ASDE satisfies

D4(SDE) ⊇ [−α, α], (9)

α =

{

(β + 1)DE −min(Sc(A1)), if Assumption 1 holds,

βDE +max(Dc(A1)), otherwise,

where min(·) and max(·) return the minimum and maximum

values of the input set, respectively. β = max(Uc(A2)) with

Uc(A2) defined as

Uc(A2) = arg max
Um⊆D2(A2)∩S2(A2)

|Um|, (10)

Um = {0, 1, · · · ,m}, m ∈ N
+. (11)

Uc(A2) is the longest consecutive segment (starting from 0)

in the intersection of the second-order difference and sum

co-arrays (D2(A2) ∩ S2(A2)) of A2. Sc(A1) and Dc(A1) denote

the longest consecutive segment in S2(A1) and D2(A1), respec-

tively, with

Sc(A1) = arg max
Upq⊆S2(A1)

|Upq|, Dc(A1) = arg max
Un⊆D2(A1)

|Un|,

Upq = {p, p+ 1, · · · , q − 1, q}, p, q ∈ N, (12)

Un = {−n,−n+ 1, · · · , n− 1, n}, n ∈ N
+. (13)

Assumption 1: DE ≤ max(Sc(A1)) + max(Dc(A1)) + 1 and

β + 1 ∈ S2(A2).

Proof: We focus on the following three sets of cross-

subarray co-arrays in D4(SDE):

φ1 =
{

(ν1 + ν2)DE − (ξ1 + ξ2) | νm ∈ A2, ξn ∈ A1

}

,

φ2 =
{

(ξ1 + ξ2)− (ν1 + ν2)DE | ξn ∈ A1, νm ∈ A2

}

,

φ3 =
{

(ν1 − ν2)DE + (ξ1 − ξ2) | νm ∈ A2, ξn ∈ A1

}

.

Denote D2(A1) (D2(A2)) and S2(A1) (S2(A2)) as the second-

order difference and sum co-arrays of A1 (A2). According to

the definitions of D2(A1), S2(A1), D2(A2), and S2(A2), the sets

φ1, φ2, and φ3 can be rewritten as

φ1 =
{

soDE − s | so ∈ S2(A2), s ∈ S2(A1)

}

= −φ2, (14)

φ3 =
{

doDE + d | do ∈ D2(A2), d ∈ D2(A1)

}

. (15)

By extracting the common consecutive parts of S2(A2) and

D2(A2), subsets φ4, φ5, φ6 can be constructed, expressed as

φ1 ⊇ φ4 =
{

scDE − s | sc ∈ [0, β], s ∈ S2(A1)

}

, (16)

φ2 ⊇ φ5 =
{

s− scDE | s ∈ S2(A1),−sc ∈ [−β, 0]
}

, (17)

φ3 ⊇ φ6 =
{

dcDE + d | dc ∈ [−β, β], d ∈ D2(A1)

}

, (18)

Note that the integer range [0, β] is shared by sc in φ4 and dc
in φ6. Similarly, variables dc in φ6 and −sc in φ5 can both

take values in [−β, 0]. Since D4(SDE) is symmetric about 0, we

only analyze the non-negative part for simplification.

For every κ ∈ [0, β], the set of associated co-array lags in

φ4 is η(κ) =
{

κDE−s | s ∈ S2(A1)

}

, while in φ6, it becomes

ζ(κ) = {κDE + d | d ∈ D2(A1)}. Since D2(A1) is symmetric

about 0, η(κ) ∪ ζ(κ) =
{

κDE − s′ | s′ ∈ S2(A1) ∪ D2(A1)

}

.

As a result, η(κ) ∪ ζ(κ) provides a consecutive segment with

the same length as that of UE (the longest consecutive part

of S2(A1) ∪D2(A1) defined in (7)). In order to concatenate the

elements in η(κ) ∪ ζ(κ) and η(κ + 1) ∪ ζ(κ + 1) to form a

lager consecutive segment, one yields DE ≤ |UE |, and we

set DE = |UE | to achieve the largest consecutive segment.

Considering all κ ∈ [0, β], we derive
⋃

κ∈[0,β]

(

η(κ) ∪ ζ(κ)
)

⊇ [0, β ·DE +max(Dc(A1))]. (19)
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Furthermore, if Assumption 1 is satisfied by selecting

specifically designed prototype arrays A1 and A2, additional

consecutive co-arrays can be provided. By setting sc = β + 1
in (16), a consecutive co-array set is obtained, given as

[(β + 1) ·DE −max(Sc(A1)), (β + 1) ·DE −min(Sc(A1))].

Due to the assumption DE ≤ max(Sc(A1))+max(Dc(A1))+1,

we have

[0, (β + 1) ·DE −min(Sc(A1))] ⊆ D4(SDE). (20)

According to the symmetrical property of the fourth-order

difference co-array, one concludes that D4(SDE) ⊇ [−α, α],
where α = (β+1) ·DE −min(Sc(A1)) if Assumption 1 holds,

while α = β ·DE +max(Dc(A1)) for other cases.

From Definition 2 and Proposition 1, the expansion factor

DE equals the length of the longest continuous segment in

D2(A1) ∪ S2(A1), and DE is linearly related to the number of

uDOFs guaranteed by ASDE. For the EAS scheme [12], the

expansion factor DEAS is chosen as the length of the longest

continuous segment in D2(A1) with only the difference co-

array considered. For the same prototype arrays A1 and A2

(where A2 is a nested array to ensure high DOFs is provided

by the EAS scheme), DE in SDE scheme is always larger than

or equal to DEAS in the EAS scheme due to the contribution

of S2(A1), leading to increased uDOFs as derived in (9).

As shown in Proposition 1, several properties are required

to achieve significantly increased uDOFs via the SDE scheme:

1) a large DE is preferred, and thus the consecutive segment

in D2(A1) ∪ S2(A1) is expected to be as long as possible; 2) a

large number of consecutive elements in D2(A2)∩S2(A2) leads

to a large β, which is finally translated to a large number of

uDOFs; 3) additional uDOFs can be provided if Assumption

1 holds.

B. Examples of Specifically Designed Structures

Based on the above analysis, we then focus on how to design

the prototype arrays, and the following three structures under

the proposed SDE scheme are given as examples.

Structure 1: Transformed nested array (TNA) under the

sum-difference expansion scheme (TNA-SDE). In TNA-SDE

with its configuration given in (6), the prototype array A1 is

chosen as an (N1 +N2)-sensor TNA [23], defined as

A1 ={t1(N2 + 1) | t1 ∈ [0, N1 − 1]}

∪ {t2 + (N1 − 1)(N2 + 1) | t2 ∈ [0, N2]}, (21)

while another prototype array A2 is configured as a classic

nested array [1] with (N3 +N4) sensors, i.e.,

A2 ={t3 | t3 ∈ [0, N3]}

∪ {t4(N3 + 1)− 1 | t4 ∈ [2, N4]}. (22)

The second-order difference co-array of A1 (TNA) is

D2(A1) = [−(N2+1)(N1−1)−N2, (N2+1)(N1−1)+N2],

which is hole-free so that the longest central ULA segment

Dc(A1) = D2(A1). The second-order sum co-array of TNA is

S2(A1) = {s(N2 + 1) | s ∈ [0, 2(N1 − 1)]} ∪ Sc(A1),

with Sc(A1) = [(N1 − 1)(N2 + 1), 2(N1 − 1)(N2 + 1)+ 2N2]
[23], [24]. According to the definition of DE in (7),

DE = 3N1(N2 + 1)− 2 (23)

≤ max(Sc(A1)) + max(Dc(A1)) + 1. (24)

For the nested array A2, the intersection of its second-order

difference and sum co-arrays is [22]

D2(A2) ∩ S2(A2) = [0, N4(N3 + 1)− 1]. (25)

Therefore, β = N4(N3 +1)− 1. The Assumption 1 holds due

to N4(N3 + 1) ∈ S2(A2) and (24). According to Proposition

1, the number of uDOFs offered by TNA-SDE is

MTNA = 2α+ 1 =2N4(N3 + 1)[3N1(N2 + 1)− 2]

− 2(N1 − 1)(N2 + 1) + 1. (26)

Structure 2: Improved transformed nested array under the

sum-difference expansion scheme (ITNA-SDE). For ITNA-

SDE, TNA-II (with N1+N2 physical sensors) [23] is utilized

as A1, and A2 is a nested array shown in (22). Similarly,

relevant parameters in the configuration are shown as follows:

DE = l1 + l3 + 1, β = N4(N3 + 1)− 1, (27)

Dc(A1) = [−l1, l1], Sc(A1) = [l2, l3], (28)

MITN = 2α+ 1 = 2(β + 1)DE − 2l2 + 1, (29)

l1 = N1N2 +N1 − 1, l2 = N1N2 +N1 −N2 + ⌈N2/2⌉ − 1,

l3 =

{

2N1N2 + 2N1, ⌈N2/2⌉ = 2,

2N1N2 + 2N1 + 2⌈N2/2⌉ − 2, ⌈N2/2⌉ ≥ 3.

Note that TNA-II exists only when N2 is greater than 2 [23].

Structure 3: Two-level extended transformed nested ar-

ray (TwETNA) under the sum-difference expansion scheme

(TETNA-SDE). In TETNA-SDE, the prototype arrays A1 and

A2 are TwETNA and nested array, respectively. The definition

and properties of an (N1+N2)-sensor TwETNA can be found

in [24], while A2 is shown in (22). The associated parameters

of TETNA-SDE can be derived, given by

DE = l4 + l6 + 1, β = N4(N3 + 1)− 1, (30)

Dc(A1) = [−l4, l4], Sc(A1) = [l5, l6], (31)

MTET = 2α+ 1 = 2(β + 1)DE − 2l5 + 1, (32)

l4 = N1N2 +N1 − 1, l5 = N1N2 +N1,

l6 =

{

2N1N2 + 2N1 +N2 + ⌈N2/2⌉ − 2, 7 ≤ N2 ≤ 9,

2N1N2 + 2N1 + 2N2 − 2, N2 ≥ 10.

Note that TwETNA exists only when N2 is greater than 6 [24].

IV. COMPARISONS AND SIMULATION RESULTS

A. Comparisons of Different Array Structures

The number of physical sensors and uDOFs (related to the

consecutive co-arrays) of different array structures based on

the fourth-order difference co-array are listed in Table I, where

the optimal sensor allocation strategy is adopted to achieve the

maximum number of uDOFs for each structure. Obviously, for

the same number of physical sensors, the proposed structures,

including TNA-SDE, ITNA-SDE and TETNA-SDE, offer
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TABLE I
COMPARISONS OF SPARSE ARRAYS BASED ON THE FOURTH-ORDER DIFFERENCE CO-ARRAY

Arrays (N = 11) Sensor Allocation Strategy Number of uDOFs Arrays (N = 30) Sensor Allocation Strategy Number of uDOFs

2L-FO-NA (5, 6) 441 2L-FO-NA (15, 15) 3481
FL-NA (4, 4, 3, 3) 383 FL-NA (9, 8, 8, 8) 10367
CNA (5, 6) 521 CNA (15, 15) 5937

EAS-NA-NA (4, 4, 3, 3) 557 EAS-NA-NA (9, 8, 8, 8) 18303
E-FL-NA (4, 4, 3, 3) 617 E-FL-NA (9, 8, 8, 8) 19297

HINA (3, 3, 3, 2) 721 HINA (8, 8, 7, 7) 20481
EAS-NA-NALS (3, 4, 2, 3) 797 EAS-NA-NALS (8, 8, 7, 8) 27249

TNA-SDE (4, 3, 2, 3) 805 TNA-SDE (8, 8, 7, 8) 27267
ITNA-SDE (4, 3, 2, 3) 837 ITNA-SDE (8, 8, 7, 8) 28283

– – – TETNA-SDE (8, 8, 7, 8) 28785

more uDOFs than existing ones, with TETNA-SDE being the

best.

In the following Corollary 1, we theoretically prove that

under a similar sensor allocation strategy, more uDOFs can

be achieved by the proposed TNA-SDE, ITNA-SDE, and

TETNA-SDE compared with EAS-NA-NALS [13], which was

shown to be superior to other existing structures.

Corollary 1: Given the same number of physical sensors

Nt and a similar sensor allocation strategy, TNA-SDE, ITNA-

SDE, and TETNA-SDE always provide more uDOFs than

EAS-NA-NALS.

Proof: Consider Nt =
∑4

i=1 Ni − 1 physical sensors.

The sensor allocation strategy is (N2, N1, N3, N4) for EAS-

NA-NALS, while (N1, N2, N3, N4) for others. The number of

uDOFs provided by EAS-NA-NALS [13] is MLS = (2N4N3+
2N4− 2)(3N1N2+3N1− 2)+4(N1N2+N1)− 3, and those

offered by TNA-SDE, ITNA-SDE, and TETNA-SDE are listed

in (26), (29), and (32), respectively.

We simply derive that MTNA −MLS = 2(N2 + 1), and

MITN −MLS =
{

2(2N4N3 + 2N4 +N2 − ⌈N2/2⌉+ 1), ⌈N2/2⌉ = 2,

2[(2N4(N3 + 1)− 1)⌈N2/2⌉+N2 + 1], ⌈N2/2⌉ ≥ 3,

MTET −MLS =

{

2N4(N3 + 1)(N2 + ⌈N2/2⌉), 7 ≤ N2 ≤ 9,

4N4(N3 + 1)N2, N2 ≥ 10.

Clearly, MTNA − MLS > 0, MITN − MLS > 0, and MTET −
MLS > 0 for N2 ≥ 7.

B. DOA Estimation Results

The ITNA-SDE structure with N = 11 physical sensors,

i.e., ASDE = {0, 4, 8, 12, 14, 15, 17, 48, 96, 240, 384}, is taken

as an example for performance comparison with other existing

structures shown in Table I, and the SS-MUSIC [6] method

is employed to evaluate the root mean square errors (RMSE)

via Monte Carlo simulations of 500 independent trials.

First, consider I = 12 sources uniformly spaced from −60◦

to 60◦. The RMSE results versus input SNR for different

sparse structures are shown in Fig. 1(a). It is clear that our

proposed structure outperforms other structures consistently

for a wide range of input SNR with 2500 snapshots. As also

shown in Fig. 1(b) with a fixed SNR of 10 dB, the performance

of the proposed ITNA-SDE is always the best for different

number of snapshots, indicating the superiority of the proposed

structure.
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Fig. 1. RMSE results of different sparse structures.
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Fig. 2. DOA estimation results of ITNA-SDE, EAS-NA-NALS, HINA, and
E-FL-NA.

Then, we focus on the comparison of resolution capacity

with I = 18 uncorrelated sources (uniformly distributed

between −80◦ and 80◦). The DOA estimation results under

10 dB SNR and 2000 snapshots are given in Fig. 2, where it

can be seen clearly that only the proposed ITNA-SDE structure

is capable of resolving all 18 sources.

V. CONCLUSION

A generalized sum-difference expansion scheme was pro-

posed to construct sparse arrays based on the fourth-order

difference co-array. Under this scheme, the length of con-

secutive segment in the fourth-order difference co-array can

be expanded by simultaneously exploiting both the sum and

difference co-arrays of the prototype arrays. The number of

uDOFs achieved by this scheme was derived, and optimal

design criteria were given. Three structures under the SDE

scheme were presented as examples, all offering more uDOFs

than existing ones. Simulation results have shown that superior

performance in terms of resolution capacity and estimation

accuracy can be achieved through the proposed SDE scheme.
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