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Abstract

Recent empirical studies have highlighted the large degree of analytic

flexibility in data analysis which can lead to substantially different

conclusions based on the same data set. Thus, researchers have

expressed their concerns that these researcher degrees of freedom

might facilitate bias and can lead to claims that do not stand the

test of time. Even greater flexibility is to be expected in fields in

which the primary data lend themselves to a variety of possible

operationalizations. The multidimensional, temporally extended nature

of speech constitutes an ideal testing ground for assessing the

variability in analytic approaches, which derives not only from

aspects of statistical modeling, but also from decisions regarding the

quantification of the measured behavior. In the present study, we gave

the same speech production data set to 46 teams of researchers

and asked them to answer the same research question, resulting in

substantial variability in reported effect sizes and their interpretation.

Using Bayesian meta-analytic tools, we further find little to no evidence

that the observed variability can be explained by analysts’ prior

beliefs, expertise or the perceived quality of their analyses. In light

of this idiosyncratic variability, we recommend that researchers more

transparently share details of their analysis, strengthen the link

between theoretical construct and quantitative system and calibrate

their (un)certainty in their conclusions

Keywords

crowdsourcing science, data analysis, scientific transparency, speech,

acoustic analysis
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Introduction

In order to effectively accumulate knowledge, science needs (i) to

produce data that can be replicated using the original methods and (ii)

to arrive at robust conclusions substantiated by such data. In recent

coordinated efforts to replicate published findings, scientific disciplines

have uncovered surprisingly low success rates (e.g., Open Science

Collaboration 2015; Camerer et al. 2018) leading to what is now

referred to as the replication crisis. Beyond the difficulties of replicating

scientific findings, a growing body of evidence suggests that researchers’

conclusions often vary even when they have access to the same data.

The latter situation has been referred to as the inference crisis (Rotello

et al. 2015; Starns et al. 2019) and is, among other things, rooted in

the inherent flexibility of data analysis (often referred to as researcher

degrees of freedom: Simmons et al. 2011; Gelman and Loken 2014). Data

analysis involves many different steps, such as inspecting, organizing,

transforming, and modeling data, to name a few. Along the way, different

methodological and analytic choices need to be made, all of which may

influence the final interpretation of the data.

These researcher degrees of freedom are both a blessing and a curse.

They are a blessing because they afford us the opportunity to look at
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nature from different angles, which, in turn, allows us to make important

discoveries and generate new hypotheses (e.g., Box 1976; Tukey 1977;

De Groot 2014). They are a curse because idiosyncratic choices can lead to

categorically different interpretations, which eventually find their way into

the publication record where they are taken for granted (Simmons et al.

2011). Recent projects have shown that the variability between different

data analysts is vast and can lead independent researchers to draw different

conclusions from the same data set (e.g., Silberzahn et al. 2018; Starns

et al. 2019; Botvinik-Nezer et al. 2020). These studies, however, might

still underestimate the extent to which analysts vary because data analysis

is not restricted to the statistical analysis of ready-made numeric data.

These data can in fact be the result of complex measurement processes

that translate a phenomenon, such as human behavior, into numbers. This

is particularly true for fields that draw conclusions about human behavior

and cognition from multidimensional data like audio or video data. In

fields working on speech production, for example, researchers need to

make numerous decisions about what to measure and how to measure it, in

other words, how to operationalize the phenomenon under investigation.

This is not trivial, given the temporal extension of the acoustic signal and

its complex structural composition.

In this article, we investigate the impact of analytic choices on

research results when many analyst teams examine the same speech

production data set, a process that involves both decisions regarding

the operationalization of linguistically relevant constructs and decisions

regarding statistical analysis. Specifically, we discuss the degree of

variability in research results obtained by 46 teams who had to choose the

operationalization and statistical procedures to answer the same research

question, on the basis of the same set of raw data (here, speech recordings).

Our goals are twofold: (i) our study conceptually replicates previous

many-analyses projects, by probing the effects of different statistical

analyses and by assessing the generalizability of published findings to

other disciplines (here, the speech sciences); (ii) our study extends the

scope of inquiry to include flexibility in the operationalization of complex

human behavior (here, speech). This is an important addition in that the

increased number of “forking paths” in the “garden of analytic choices”—

derived from the many decisions involved in quantification—might reveal
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a higher degree of variability across analysts than previously observed,

thus giving us a more realistic estimate of variability.

Researcher degrees of freedom

Data analysis comes with many decisions, for example how to measure

a given phenomenon or behavior, which data to submit to statistical

modeling and which to exclude in the final analysis, or what inferential

decision-making procedure to apply. This can be problematic because

humans show cognitive biases that can lead to erroneous inferences.

Humans are biased (e.g., Tversky and Kahneman 1974), e.g. they see

coherent patterns in randomness (Brugger 2001), convince themselves

of the validity of prior expectations (“I knew it”, Nickerson 1998), and

perceive events as being plausible in hindsight (“I knew it all along”,

Fischhoff 1975). In conjunction with an academic incentive system that

rewards certain discovery processes more than others (Sterling 1959;

Koole and Lakens 2012), we often find ourselves exploring many possible

analytic pipelines, but only reporting a selected few.

This issue is particularly amplified in fields in which the raw data lend

themselves to many possible ways of being measured (Roettger 2019).

Combined with a wide variety of methodological and theoretical traditions

as well as varying levels of quantitative training across subfields, the

inherent flexibility of data analysis might lead to a vast plurality of analytic

approaches that can lead to different scientific conclusions (Roettger et al.

2019). Analytic flexibility has been widely discussed from a conceptual

point of view (Simmons et al. 2011; Wagenmakers et al. 2012; Nosek

and Lakens 2014) and in regard to its application in individual scientific

fields (e.g. Wicherts et al. 2016; Charles et al. 2019; Roettger 2019). This

notwithstanding, there are still many unknowns regarding the extent of

analytic plurality in practice.

Consequently, a substantial body of published papers likely present

overconfident interpretations of data and statistical results based on

idiosyncratic analytic strategies (e.g., Simmons et al. 2011; Gelman

and Loken 2014). These interpretations, and the conclusions that derive

from them, are thus associated with an unknown degree of uncertainty

(dependent on the strength of evidence provided) and with an unknown

degree of generalizability (dependent on the chosen analysis). Moreover,

the same data could lead to very different conclusions depending on
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the analytic path taken by the researcher. However, instead of being

critically evaluated, scientific results often remain unchallenged in the

publication record. Despite recent efforts to improve transparency and

reproducibility (e.g. Miguel et al. 2014; Klein et al. 2018) and the advent

of freely available and accessible infrastructures, such as those provided

by the Open Science Framework (osf.io), critical re-analyses of published

analytic strategies are still uncommon because data sharing remains rare

(Wicherts et al. 2006).

Crowd-sourcing alternative analyses

Recent collaborative attempts have started to shed light on how different

analysts tackle the same data set and have revealed a large amount of

variability. In a pioneering collaborative effort, Silberzahn et al. (2018)

let twenty-nine independent analysis teams address the same research

hypothesis: whether soccer referees are more likely to give red cards

to dark-skin-toned players than to light-skin-toned players. The analytic

approaches and, consequently, the results varied widely between teams.

Twenty teams (69%) found support for the hypothesis, and 9 (31%) did

not. Out of the 29 analytic strategies, there were 21 unique combinations

of covariates. Importantly, the observed variability was neither predicted

by the teams’ preconceptions about the phenomenon under investigation

nor by peer ratings of the quality of their analyses. The authors’ results

suggest that analytic plurality may be an inevitable byproduct of the

scientific process and not necessarily driven by different levels of expertise

or bias.

Several other recent studies corroborated this analytic flexibility across

different disciplines. Dutilh et al. (2019) and Starns et al. (2019)

investigated analysts’ choices when inferring theoretical constructs based

on the same data set using computational models. Both studies revealed

vastly different modeling strategies, even though scientific conclusions

were similar across analysis teams (see also Parker et al. 2020, and

Botvinik-Nezer et al. (2020), regarding analytic flexibility in ecology and

neuroimaging data, respectively). Bastiaansen et al. (2020) crowd-sourced

clinical recommendations based on analyses of an individual patient. Their

results suggest that analysts differed substantially regarding decisions

related to both the statistical analysis of the data and the theoretical

rationale behind interpreting the statistical results.
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Building on the many-analysts approach, Landy et al. (2020) asked 15

research teams to independently design studies to answer five different

research questions related to moral judgments. Again, they found vast

heterogeneity across researchers’ conclusions. The observed variation was

not predicted by the researchers’ expertise, but seem to vary for the

five different research questions which might exhibit different degrees

of theoretical underspecification. This is in line with Auspurg and

Brüderl (2021) who re-analyzed the red card study mentioned above. The

authors argue that some of the observed heterogeneity across analysts

in Silberzahn et al. (2018) might have been driven by flexibility in

statistically interpreting the research question.

While these studies attested a large degree of analytic flexibility with

possibly impactful consequences, they focused on analytic decisions

related to the study design, the statistical analysis or the architecture

of computational models. In these studies the data sets were fixed and

neither data collection nor measurement could be changed. Thus the

estimates of variability found in the literature might reflect a lower bound

only, ignoring large parts of the forking paths related to measurement.

However, in many fields the primary raw data are complex signals,

for which theoretical constructs need to be operationalized relative to a

theoretically motivated research question. This is especially true in the

Social Sciences, where the phenomenon under investigation corresponds

to both observable and unobservable human behavior.

Decisions about how to measure theoretical constructs related to

human behavior and cognition might interact with downstream decisions

about statistical modeling and vice versa. For instance, Flake and

Fried (2020) discuss the cascading impact that different practices can

have on psychometric research. The authors highlight, among others,

the following degrees of freedom in the choice and development of

measures: definition of the theoretical construct, justification of the

selected measure, description of the measure and of how it maps onto the

construct, response coding and related transformations, as well as post-

hoc modifications to the chosen measure. Taken together, these aspects

alone dramatically increase the combinations of possible analytic choices,

and hence flexibility in research outcomes.

In those disciplines concerned with communication, human behavior

often corresponds to multidimensional visual and/or acoustic signals. The
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complex nature of this data exponentiates the number of possible analytic

approaches, thus further increasing analytic flexibility. In order to estimate

this increased flexibility, the present study looks at experimentally elicited

speech production data.

Operationalizing speech

Research on speech lies at the intersection of the cognitive sciences,

informing psychological models of language, categorization, and memory,

guiding methods for diagnosis and treatment of speech disorders, and

facilitating advancement in automatic speech recognition and speech

synthesis. One major challenge in the Speech Sciences is the mapping

between communicative intentions (the unobserved behavior) and their

physical manifestation (the observed behavior).

Speech signals are complex as they are characterized by structurally

different acoustic parameters distributed throughout different temporal

domains. Thus, choosing how to assess a communicative intention of

interest is an important analytic step. Take for example the sentence in

(1).

(1) “I can’t bear another meeting on Zoom.”

Depending on the speaker’s intention, this sentence can be said in different

ways. For instance, if the speaker is exhausted by all their meetings, they

might acoustically highlight the word another or meeting to contrast it

with more pleasant activities. If, on the other hand, the speaker is just

tired of video conferences, as opposed to say face-to-face meetings, they

might acoustically highlight the word Zoom.

If we decide to compare the speech signal associated with these two

intentions, how can we quantify the difference between them? In other

words, given their physical manifestation (speech), what do we measure

and how do we measure it? Because of the continuous and transient nature

of speech, identifying speech parameters and temporal domains within

which to measure those parameters becomes a non-trivial task. Utterances

stretch over several thousand milliseconds and contain different levels

of linguistically relevant units such as phrases, words, syllables, and
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individual sounds. The researcher is thus confronted with a considerable

number of parameters and combinations thereof to choose from.

From a phonetic viewpoint, linguistically relevant units are inherently

multidimensional and dynamic: they consist of clusters of parameters that

are modulated over time. The acoustic parameters of units are usually

asynchronous, i.e. they appear at different time points in the unfolding

signal, and overlap with parameters of other units (e.g. Jongman et al.

2000; Lisker 1986; Summerfield 1981; Winter 2014). A classic example is

the distinction between voiced and voiceless stops in English (i.e. /b/ and

/p/ in bear vs. pear). This contrast is manifested by many acoustic features

which can differ depending on several factors, such as the position of the

consonant in the word and context of surrounding sounds (Lisker 1977).

Furthermore, correlates of the contrast can even be found away from the

consonant, in temporally distant speech units. For example, the initial /l/

of the English words led and let is affected by the voicing of the final

consonant (/d, t/) (Hawkins and Nguyen 2004).

The multiplicity of phonetic measurements grows exponentially if we

look at larger temporal domains, as is the case with suprasegmental

aspects of speech. For example, studies investigating acoustic correlates

of word stress (e.g. the difference between ı́nsight and incı́te) use a wide

variety of measurements, including temporal characteristics (duration

of certain segments or sub-segmental intervals), spectral characteristics

(intensity, formants, and spectral tilt), and measurements related to

fundamental frequency (f0) (e.g., Gordon and Roettger 2017). Moving

on to the expression of higher-level communicative functions, like

information structure and discourse pragmatics, relevant acoustic cues

can be distributed throughout even larger domains, such as phrases and

whole utterances (e.g., Ladd 2008). Differences in position, shape, and

alignment of f0 modulations over multiple locations within a sentence

are correlated with differences in discourse functions (e.g., Niebuhr

et al. 2011). The latter can also be expressed by global vs. local pitch

modulations (Van Heuven et al. 2002), as well as acoustic information

within the temporal or spectral domain (e.g., Van Heuven and Van Zanten

2005). Extra-linguistic information, like the speaker’s intentions, levels

of emotional arousal or social identity, are also conveyed by broad-

domain parameters, such as voice quality, rhythm, and pitch (Foulkes and

Docherty 2006; Ogden 2004; White et al. 2009).
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In short, when testing hypotheses on speakers’ intentions using speech

production data, researchers are faced with many choices and possibilities.

The larger the functional domain (e.g. segments vs. words vs. utterances),

the higher the number of conceivable operationalizations. For example,

several decisions have to be made when comparing the two realizations of

the sentence in (1), one of which is intended to signal emphasis on another

and one of which emphasizes Zoom (see 2a and 2b).

(2a) I can’t bear ANOTHER meeting on Zoom.

(2b) I can’t bear another meeting on ZOOM.

Do we compare only the word another in (2a) and (2b), or also the word

Zoom? Do we measure utterance-wide acoustic profiles, whole words, or

just stressed syllables? Do we average across the chosen time domain or

do we measure a specific point in time? Do we measure f0, intensity, or

something else (Stevens 2000)?

When looking at phrase-level temporal domains, the number of possible

alternative analytic pipelines increases substantially. Figure 1A shows a

typical example of a decision tree with which speech researchers are

often confronted. Each of the four analytic decisions in the example have

different possible options. Here only one particular path has been taken.

A different one would likely produce different results and might lead to

different conclusions. Once we have decided to compare f0 of the word

another across the two utterances, there are still many choices to be made,

all of which need to be justified. As Figures 1B-C illustrate, we could

measure f0 at specific points in time like the onset of the temporal window,

the offset, or the midpoint. We could also measure the value or time of

the f0 minimum or maximum. We could summarize f0 across the entire

window and extract the mean, median or standard deviation of f0, all

of which have been used to analyze speech data in previous work (see

Gordon and Roettger 2017). But the journey in the garden of analytic

paths goes on. Other important operationalization steps could involve

filtering the audio signal, smoothing the extracted f0 track, removing

values that substantially deviate from surrounding values or expectations,

either manually or automatically, and so on.

These decisions are intended to be made prior to any statistical analysis,

but are at times revised a posteriori in light of unforeseen or surprising

outcomes (i.e. after data collection and/or preliminary analyses). This
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Figure 1. Illustration of the analytic flexibility associated with acoustic analyses. (A) An

example of multiple possible and justifiable decisions when comparing two utterances; (B)

Waveform and f0 track of the utterances I can’t bear ANOTHER meeting on Zoom and I can’t

bear another meeting on ZOOM. The green boxes mark the word another in both sentences;

(C) Spectrogram and f0 track of the word another, exemplifying possible operationalizations

of differences in f0.

multitude of possible decisions are multiplied by those researcher degrees

of freedom related to statistical analysis (e.g. Wicherts et al. 2016).
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In sum, speech data is made of complex physical signals that generate

an as-of-yet unappreciated amount of analytic flexibility in the choice of

measures and operationalizations. The present paper probes this garden

of forking paths in the analysis of speech. To assess the variability in

data analysis pipelines, including both operationalization and statistical

analysis, across independent researchers, we provide analytic teams

with an experimentally elicited speech production data set. The data

set derives from the unpublished research project Prosodic encoding of

redundant referring expressions, which set out to investigate whether

speakers acoustically modify utterances to signal unexpected referring

expressions.* In the following section we introduce the research question

and the experimental procedure of said project, and we describe the

resulting data set as used in the current study.

The data set: The acoustic properties of atypical modifiers

Referring is one of the most basic and prevalent uses of language and

one of the most widely researched areas in Language Science. When

trying to refer to a banana, what does a speaker say and how do they

say it in a given context? The context within which an entity occurs (i.e.,

with other non-fruits, other fruits, or other bananas) plays a large part

in determining the choice of referring expressions. Generally, speakers

aim to be as informative as possible to uniquely establish reference to

the intended object, but they are also resource-efficient in that they avoid

redundancy (Grice 1975). Thus one would expect the use of a modifier,

for example, only if it is necessary for disambiguation. For instance, one

might use the adjective yellow to describe a banana in a situation in which

there are both a yellow and a less ripe green banana available, but not

when there is only one banana.

Despite the coherent idea that speakers are both rational and efficient,

there is much evidence that speakers are often over-informative. Speakers

use referring expressions that are more specific than strictly necessary

for the unambiguous identification of the intended referent (Sedivy

2003; Rubio-Fernández 2016), which has been argued to facilitate object

identification and make communication between speakers and listeners

more efficient (Arts et al. 2011; Paraboni et al. 2007; Rubio-Fernández

∗Results of this research project were neither published nor publicly presented and are stored on a private OSF

repository.
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2016). Recent findings suggest that the utility of referring expressions

depends on how useful they are for a listener (compared to other referring

expressions) to identify a target object. For example, Degen et al. (2020)

showed that modifiers that are less typical for a given referent (e.g. a

blue banana) are more likely to be used in an over-informative scenario

(e.g. when there is just one banana)(see also Westerbeek et al. 2015). This

account, however, has mainly focused on content selection (Gatt et al.

2013), i.e. what words to use.

Even when morphosyntactically identical expressions are involved,

speakers can modulate utterances via acoustic properties like temporal

and spectral modifications (e.g., Ladd 2008). Most prominently, languages

can use intonation to signal discourse relationships between referents.

Intonation marks discourse-relevant referents for being new or given

information, to guide the listeners’ interpretation of incoming messages.

Beyond structuring information relative to the discourse, a few studies

suggest that speakers might use intonation to signal atypical lexical

combinations (e.g. Dimitrova et al. 2008, 2009). Referential expressions

such as blue banana were produced with greater prosodic prominence than

more typical referents such as yellow banana. These results are in line

with the idea of resource-efficient, rational language users who modulate

their speech in order to facilitate listeners’ comprehension. However, the

above studies are based on a small sample size (10 participants) and on

potentially anti-conservative statistical analyses, leaving reason to doubt

the generalizability of the studies’ conclusions.

To further illuminate the question of whether speakers modify speech to

signal atypical referents, and overcome some of the limitations of previous

work, thirty native German speakers were recorded in a production

study while interacting with a confederate (one of the experimenters)

in a referential game, following experimental procedures typical of the

field. The participants had to verbally instruct the confederate to select

a specified target object out of four objects presented on a screen. The

subject and confederate were seated at the opposite sides of a table, each

facing one of two computer screens. The participant and the experimenter

could not see each other nor each others’ screens. Figure 2 shows

the experimental procedure time-line. After a familiarization phase, the

subject first saw four colored objects in the top left, top right, bottom left,

and bottom right corners of the screen. One of the objects served as the
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Figure 2. Experimental procedure. The upper row illustrates the trial sequence for the

speaker (participant) and the lower row illustrates the trial sequence for the confederate. After

a preview of 1500ms the speaker sees an arrow indicating one of the referents (b). Reading

the orthographic instructions out loud, the speaker gives the confederate verbal instructions

onto which referent they should drag the cube (c). The confederate, in turn, drags the black

cube onto the target referent (d). Both the arrow and the orthographic instruction disappear

from the speaker’s screen and a new referent is indicated by an arrow on the same display

alongside a new orthographic instruction (e). The speaker gives the confederate verbal

instructions (f) which the confederate follows by dragging the cube onto the next referent (g).

target, another as the competitor, and the remaining two objects served as

distractors. Objects were referred to using noun phrases consisting of an

adjective modifier denoting color and a modified object (e.g. gelbe Zitrone

‘yellow lemon’, rote Gurke ‘red cucumber’, rote Socken ‘red socks’).

In the center of the screen, a black cube was displayed, which could be

moved by the experimenter. Participant read a sentence prompt out loud

(Du sollst den Würfel auf der COLOR OBJECT ablegen ‘You have to put

the cube on top of the COLOR OBJECT’) to instruct the experimenter to

drag the cube on top of one of the four depicted objects (the competitor)

using the mouse. After the experimenter had moved the cube as instructed,

the subject would read another sentence prompt (Und jetzt sollst du den

Würfel auf der COLOR OBJECT ablegen ‘And now, you have to put
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the cube on top of the COLOR OBJECT’) instructing the experimenter

to move the cube on top of a different object (the target). The second

utterance in the trial was the critical trial for analysis.

The two sentence prompts were used to create a focus contrast between

the competitor and the target object. Focused units denote the set of

all (contextually relevant) alternatives (e.g., Rooth 1992). Concretely, a

focus contrast marks one or more elements in a sentence as prominent,

by different linguistic means depending on the language (Mati’c and

Wedgwood 2013; Burdin et al. 2015). For instance, if the competitor

and target objects differ but their color does not (e.g. yellow banana

vs. yellow tomato), the noun is said to be in focus (Noun Focus condition,

NF). If the objects are the same but differ in color (e.g. yellow banana

vs. blue banana), the color adjective is in focus (Adjective Focus

condition, AF). If both the color and the object differ (e.g. yellow banana

vs. blue tomato), then the whole noun phrase is in focus (Adjective/Noun

Focus condition, ANF). The NF condition constituted the experimentally

relevant condition, while the AF and ANF conditions acted as fillers.

Crucially, the color-object combinations in the Noun Focus (NF) condition

were manipulated with respect to their typicality. The combinations were

either typical (e.g. orange mandarin), medium typical (e.g. green tomato),

or atypical (e.g. yellow cherry), as established by a norming study that

was conducted prior to the production experiment just described.† Each

subject produced 15 critical trials (NF condition). Each trial was repeated

twice, yielding a total of 30 trials per participant and a grand-total of 900

(15× 2× 30 participants) spoken utterances.

For the present study, 46 analysis teams have received access to

the entire data set generated by the production study. The data set is

constituted by audio recordings and annotation files in a format that is

typical for the field. The teams were instructed to answer the following

research question, using the provided data set: Do speakers acoustically

modify utterances to signal atypical word combinations?

†A detailed description of the norming and production studies from the Prosodic encoding of redundant

referring expressions project, which was given to the analysts with the data set, can be found in

methods norm prod.pdf at https://bit.ly/3Ahawc7.
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Methods

As outlined in Section Operationalizing speech, researchers are faced with

a large number of analytic choices when analyzing a multidimensional

signal such as speech. Analysts must identify and operationalize relevant

measurements, as well as the temporal domain(s) from which these

measurements are to be taken, and then possibly transform said

measurements before submitting them to statistical models, which must

be chosen alongside inferential criteria. The complexity of speech data

constitutes the ideal testing ground to assess the upper bound of analytic

flexibility that social science might face across disciplines. We employed a

meta-analytic approach to assess (i) the variability of the reported effects,

and (ii) how analytic and researcher-related predictors affect the final

results.

In this study, we followed the procedures proposed by Parker et al.

(2020) and Aczel et al. (2021). The project comprised the following five

phases:

1. RECRUITMENT: We recruited independent groups of researchers to

analyze the data and review others’ data analyses.

2. TEAM ANALYSIS: We gave researchers access to the speech corpus

and let them analyze the data as they saw fit.

3. REVIEW: We asked reviewers to generate peer-review ratings of the

analyses based on methods (not results).

4. META-ANALYSIS: We evaluated variability among the different

analyses and how different predictors affected the outcomes.

5. WRITE-UP: We collaboratively produced the final manuscript.

We initially estimated that this process, from the time of an in-principle

acceptance of the Stage 1 Registered Report to the end of Phase 5,

would take nine months. Phase 4 (meta-analysis) took longer than initially

anticipated and the total duration of the project was approximately 12

months.

The project OSF repository contains all the materials mentioned

in this paper and can be accessed at https://osf.io/3bmcp/.

The repository holds three main OSF components (Data, Teams

analyses and Questionnaires), and a link to the project’s GitHub

repository. The following sections report the criteria for sample size, data

exclusions, data manipulations, and all the measures in the study.
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Phase 1: Recruitment of analysts and initial survey

An online landing page provided a general description of the project,

including a short pre-recorded slide-show that summarizes the data

set and research question (https://many-speech-analyses.

github.io). The project was advertised via social media, using

mailing lists for linguistic and psychological societies, and via word

of mouth. Social media advertising was accompanied by a short

recruitment form (recruitment form.pdf). The target population

comprised active speech science researchers with a graduate/doctoral

degree (or currently studying for a graduate/doctoral degree) in

relevant disciplines. All individuals interested in participating were

asked to complete a questionnaire detailing their familiarity with

numerous analytic approaches common in the speech sciences

(analytic approach quest.pdf). Researchers could choose to

work independently or in small teams. For the sake of simplicity, we

will refer both to a single researcher and teams as ANALYSIS TEAMS.‡

Recruitment for this project commenced after having received in-principle

acceptance.

As outlined above, our primary aim is to assess the variability

of the reported effects, rather than the meta-analytic estimate of

the investigated effect per se. To estimate the degree of uncertainty

around effect variability as driven by number of teams, we ran

a series of sample size simulations with values of variability

extracted from Silberzahn et al. (2018). The code is available at

https://many-speech-analyses.github.io/many_

analyses/scripts/r/simulations/simulations, Section

2.§ Variability among teams was operationalized as the standard deviation

of the teams’ reported effects from Silberzahn et al. (2018) (which we

z-scored prior to simulations to make it comparable to our study). For the

mean of the teams’ true standard deviation (0.68 z-score), the simulation

indicates that the degree of uncertainty around the estimated teams’

standard deviation will be below 1 SD at any sample size greater than 10

teams. Thus in order to achieve our main goal, i.e. estimating variability

among teams, we considered a minimum sample size of 10 teams as

‡Terms in small caps in this and later sections are included with their definition in the glossary at the end of the

paper for the reader’s convenience.
§Cached model outputs can be found at https://osf.io/wds2m/.
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sufficient. Given the exploratory nature of our study, however, we have

sampled as many analysts as possible. We received initial expressions of

interest to participate from more than 200 analysts, though there was a

substantial drop-out rate (see Section Results).

After submitting their analyses, we asked the analysts to also function as

peer-reviewers. Each team had to review four other analyses. All analysts

involved share co-authorship on this manuscript and participated in the

collaborative process of producing the final manuscript. Informed consent

was obtained as part of the intake form.

Phase 2: Primary Data Analyses

The analysis teams registered for participation and each of the ana-

lysts individually answered a demographic and expertise questionnaire

(intake form.pdf). A PDF version of this and all other question-

naires are available in the repository’s Questionnaires component, at

https://osf.io/h6z8w/. The questionnaire collected information

on the analysts’ current position and self-estimated breadth and level

of statistical expertise and acoustic analysis skills. We then requested

that they answer the research question: Do speakers acoustically modify

utterances to signal atypical word combinations? To do so, they were

given the data generated by the experiment described in Section The data

set. Data included the audio recordings with corresponding time-aligned

transcriptions in the form of Praat TextGrid files. These can be found in

the Data component at https://osf.io/5agn9/.

Once their analysis was complete, they answered a structured

questionnaire (analytic quest.pdf), providing information about

their analysis technique, an explanation of their analytic choices, their

quantitative results, and a statement describing their conclusions. They

also uploaded their analysis files (including the additionally derived data

and text files that were used to extract and pre-process the acoustic data),

their analysis code (if applicable), and a detailed journal-ready analysis

section.

Phase 3: Peer Review of Analyses

The analyses from each team were evaluated by four different teams who

functioned as peer-reviewers. Each peer-reviewer was randomly assigned

to analyses from at least four analysis teams. Reviewers evaluated the
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methods of each of their assigned analyses one at a time in a sequence

determined by the initiating authors. The sequences were systematically

assigned so that, if possible, each analysis is allocated to each position in

the sequence for at least one reviewer.

The process for a single reviewer was as follows. First, the reviewer

received a description of the methods of a single analysis. This included

the narrative methods and results sections, the analysis team’s answers to

the questionnaire regarding their methods, including analysis code and

the data set. The reviewer was then asked in an online questionnaire

(peer review quest.pdf) to rate both the acoustic and the statistical

analyses and to provide an overall rating, using a scale of 0-100,

respectively. To help reviewers calibrate their rating, they were given the

following guidelines:

•100. A perfect analysis with no conceivable improvements from the

reviewer.

• 75. An imperfect analysis but the needed changes are unlikely to

dramatically alter the final interpretation.

• 50. A flawed analysis likely to produce either an unreliable estimate

of the relationship or an over-precise estimate of uncertainty.

• 25. A flawed analysis likely to produce an unreliable estimate of the

relationship and an over-precise estimate of uncertainty.

• 0. A dangerously misleading analysis, certain to produce both an

estimate that is wrong and a substantially over-precise estimate

of uncertainty that places undue confidence in the incorrect

estimate.

The reviewers were also given the option to include further comments in

a text box for each of the three ratings.

After submitting the review, a methods section from a second analysis

was made available to the reviewer. This same sequence was followed

until all analyses allocated to a given reviewer were provided and

reviewed.¶

¶Initially we planned to present simultaneously all four (or more) methods sections to each reviewer after the

fourth round, with the option to revise their original ratings and provide an explanation. Ultimately, we decided

to skip this step due to time constraints.
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Phase 4: Evaluating variation

The initiating authors (SC, JC, TR) conducted the analyses outlined in this

section. We did not conduct confirmatory tests of any a priori hypotheses.

We consider our analyses exploratory.

Descriptive statistics We calculated summary statistics describing

variation among analyses, including (a) the nature and number of acoustic

measures (e.g. f0 or duration), (b) the operationalization and the temporal

domain of measurement (e.g. mean of an interval or value at a specified

point in time), (c) the nature and number of model parameters for both

fixed and random effects (if applicable), (d) the nature and reasoning

behind inferential assessments (e.g. dichotomous decision based on p-

values, ordinal decision based on a Bayes factor), as well as the (e) mean,

(f) standard deviation and (g) range of the standardized effect sizes (see the

next section for the standardization procedure). These summary statistics

are reported in Descriptive statistics of the Results section.

Meta-analytic estimation We investigated the variability in REPORTED

EFFECT SIZES using Bayesian meta-analytic techniques. As the measure

of variability, we took the meta-analytic GROUP-LEVEL STANDARD

DEVIATION (σαt
, see below), where each analysis team represents a group.

As we detail in the Results section below, we have also run further non-

preregistered analyses. For these we refer the reader to that section, while

we only describe the preregistered analyses in the following paragraphs.

Based on the common practices currently in place within the field,

we anticipated that researchers would use multilevel regression models,

thus common measurements of effect size, such as Cohen’s d, might

have been inappropriate. Furthermore, Aczel et al. (2021) suggest that

directly asking analysts to report standardized effect sizes could bias the

choice of analyses towards types that more straightforwardly return a

standardized effect. Since the variables used by the analysis teams might

have substantially differed in their measurement scales (e.g, Hertz for

frequency vs. milliseconds for duration) which was indeed the case, we

have standardized all reported effects by refitting each REPORTED MODEL

with centered and scaled continuous variables (z-scores, i.e. the observed

values subtracted from the mean divided by the standard deviation) and

sum-coded factor variables. Each STANDARDIZED MODEL was fitted as a

Bayesian regression model with Stan (Team 2021), RStan (Team 2020),
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and brms (Bürkner 2017) in R (R Core Team 2020). Model refitting also

constituted a way of validating the reported analyses, a step recommended

by Aczel et al. (2021). Details about the refitting procedure can

be found at https://many-speech-analyses.github.io/

many_analyses/scripts/r/04_refit_workflow. Relative to

the registered protocol, we made minor changes to the refitting procedure,

specifically file and variable naming conventions and the use of

treatment contrasts instead of sum coding. All models converged (R̂ was

approximately 1). Of the models with divergent transitions (n = 10), the

number of divergences ranged from 1 to 156 (143 represents 3.9% of total

number of samples), which the authors deemed not to be problematic.

The coefficients of the critical predictors (i.e. critical according to

the analysis teams’ self-reported inferential criteria) obtained from the

standardized models were used as the STANDARDIZED EFFECT SIZE

(ηi) of each reported model. Moreover, to account for the differing

degree of uncertainty around each standardized effect size, we used the

standard deviation of each standardized effect size as the STANDARDIZED

STANDARD ERROR (sei). This enabled us to fit a so-called “measurement-

error” model, in which both the standardized effect sizes and their

respective standard errors are entered in the meta-analytic model. As

a desired consequence, effect sizes with a greater standard error are

weighted less than those with a smaller standard error in the meta-analytic

calculations.

After having obtained the standardized effect sizes ηi with related

standard errors sei, for each critical predictor in each reported model,

we conducted a BAYESIAN RANDOM-EFFECTS META-ANALYSIS using

a multi-level (intercept-only) regression model. The outcome variable

was the set of standardized effect sizes ηi. The likelihood of ηi
was assumed to correspond to a normal distribution (Knight 2000).

The analysis teams were entered as a group-level effect (i.e., (1 |
team), called random effect in the frequentist literature). The standard

errors sei were included as the standard deviation of ηi to fit a

measurement-error model, as discussed above. We used regularizing

weakly-informative priors for the intercept α (Normal(0, 1)) and for

the group-level standard deviation σαt
(HalfCauchy(0, 1)). We fit this

model with 4 chains of Hamiltonian Monte-Carlo sampling for the

estimation of the joint posterior distribution, using the No U-Turn Sampler
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(NUTS) as implemented in Stan (Team 2021), and 4000 iterations

(2000 for warm-up) per chain, distributed across 8 processing cores

and 2 threads in within-chain parallelization. The model did not incur

any divergent transitions (R̂ was not greater than 1) and the estimated

sample sizes were sufficient. The code used to run the model can

be found at https://many-speech-analyses.github.io/

many_analyses/scripts/r/06_meta-analysis_prereg.

The posterior distribution of the population-level intercept α allowed us

to estimate the range of probable values of the standardized effect size

η̂. The posterior distribution further allowed us to investigate the effect

of a set of analytic and researcher-related predictors, detailed in the next

section. Crucially, the posterior distribution of the group-level standard

deviation σαt
(i.e. the standard deviation of the group-level effect of team)

allowed us to quantify the degree of variation between the teams’ analyses

on a standardized scale.

Analytic and researcher-related predictors affecting effect sizes As

a second step, we investigated the extent to which the individual

standardized effect sizes are affected by a series of ANALYTIC AND

RESEARCHER-RELATED PREDICTORS.

Analytic predictors. We estimated the influence of the following

predictors related to the analytic characteristics of each team’s reported

analysis:

• Measure of uniqueness of individual analyses for the set of predictors

in each model [numeric].

• Number of models the teams reported to have run [numeric].

• Major dimension that has been measured to answer the research

question [categorical].

• Temporal window that the measurement is taken over [categorical].

• Average peer-review rating, as the mean of the overall peer-review

ratings for each analysis [numeric].

Following Parker et al. (2020), the measure of uniqueness of predictors

was assessed by the Sørensen-Dice Index (SDI, Dice 1945; Sørensen

1948). The SDI is an index typically used in ecology research to

compare species composition across sites. It is a distance measure

similar to Euclidean distance measures, but is more sensitive to more

heterogeneous data sets and deemphesizes outliers. For our purposes, we
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treated predictors as species and individual analyses as sites. For each pair

of analyses (X, Y ) (across and within teams), the SDI was obtained using

the following formula:

SDI =
2|X ∩ Y |

|X|+ |Y |

where |X ∩ Y | is the number of variables common to both models in the

pair, and |X|+ |Y | is the sum of the number of variables that occur in

each model. For example, if two pairs of models differ in either only

one predictor (e.g. DV ˜ typicality vs. DV ˜ typicality + trial) or in two

predictors (e.g. DV ˜ typicality vs. DV ˜ typicality + trial + speech rate),

the latter model pair would exhibit a larger SDI than the former. In order to

generate a unique SDI for each analysis team, we calculated the average

of all pairwise SDIs for all pairs of analyses using the beta.pair()

function in the betapart R package (Baselga et al. 2020).

The major measurement dimension of each analysis was categorized

according to the following possible groups: duration, intensity, f0,

other spectral properties (e.g. frequency, center of gravity, harmonics

difference, etc.), and other measures (e.g. derived measures such principal

components, vowel dispersion, etc.). The temporal window that the

measurement is taken over is defined by the target linguistic unit. We

assume the following relevant linguistic units: segment, syllable, word,

phrase, sentence. Since each analysis received more than one peer-review

rating, we calculated the mean rating and its standard deviation for each.

These were entered in the model formula as a measurement-error term

(me(mean, sd) in brms).

Researcher-related factors. We also included the following predictors:

• Research experience as the elapsed time from receiving the PhD.

Negative values will indicate that the person is a student or graduate

student [numeric].

• Initial belief in the presence of an effect of atypical noun-adjective

pairs on acoustics, as answered during the intake questionnaire

[numeric].

To obtain an aggregated research experience score and initial belief

score for each team based on the members’ individual scores, we
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calculated the mean and standard deviation of these predictors for each

team. These were entered in the model formula as a measurement-error

term (me(mean, sd) in brms). The expedient of using a measurement-

error term (which includes the teams’ standard deviation) ensures

information about within-team variance is not lost (which would be the

case if including the mean only).

We had initially planned to also include a measure of conservativeness

of the model specification, as the number of random/group-level

effects included and the number of post-hoc changes to the acoustic

measurements the teams reported to have carried out. When fitting the

model, we realized that the measure of conservativeness is related to the

standard error of the estimates (i.e. more group-level effects = higher

standard error). Moreover, there was no team that declared to have made

post-hoc changes to the analyses, thus we decided against including these

two preregistered predictors in the model.

Model specification. The model was fitted as a measurement-error

model, with the predictors detailed in the preceding paragraphs. The

outcome variables of the model were the standardized effect sizes and

related standard deviation.

A normal distribution was used as the likelihood function of αt[i]. The

mean of αt[i] was modeled on the basis of the overall intercept β and on the

coefficients of each predictor. The numeric predictors were centered and

scaled and the categorical predictors were sum coded. We used a normal

distribution with mean 0 and standard deviation 1 as the prior for the

intercept and the predictors. The model was run with the same settings

as with the meta-analytic model. The code used to run the model can

be found at https://many-speech-analyses.github.io/

many_analyses/scripts/r/06_meta-analysis_prereg.

Data management All relevant data, code, and materials have

been publicly archived on the Open Science Framework (https:

//osf.io/3bmcp/). Archived data include the original data set

distributed to all analysts, any edited versions of the data analyzed

by individual teams, and the data we analyzed with our meta-

analyses, which include the standardized effect sizes, the statistics

describing variation in model structure among analysis teams, and the

anonymized answers to our questionnaires of analysts. Similarly, we

archived both the analysis code used for each individual analysis and
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the code from our meta-analyses. We also archived copies of our

survey instruments from analysts and peer-reviewers. Further documents

concerning the collaborative editing of the Registered Report can

be found at https://drive.google.com/drive/folders/

1-DOcj1qtEkvWfzu_FrsxkIGfPS0DyLXB?usp=sharing.

We excluded from our synthesis any individual analysis submitted after

peer review (Phase 3) or those unaccompanied by analysis files without

which it was not possible to follow the research protocol. We also excluded

any individual analysis that does not produce an outcome that could be

interpreted as an answer to our primary question. We also did no include

analyses for which we could not extract standardized effect sizes. For a

list of exclusion criteria, see Section Descriptive statistics below.

Phase 5: Collaborative Write-Up of Manuscript

The initiating authors discussed the limitations, results, and implications

of the study and collaborated with the analysts on writing the final

manuscript for review as a stage-2 Registered Report.||

Results

The results section is divided into three parts. We first provide a

statistical description of team composition, nature of acoustic analyses

and statistical approaches, and peer-review ratings. Second, we report

the results of the meta-analytic model, focusing on between-team and

between-model variability. Finally, we present the analysis of the effect

of analytic and researcher-related predictors on the meta-analytic effect.

The research compendium of the study, containing all the code and

data presented here, can be found in the GitHub repository linked

in the research compendium at https://osf.io/3bmcp/, in the

scripts/r/ folder. An interactive web application that allows the

interested reader to explore the data set is available at https://

many-speech-analyses.github.io/shiny.

∥The comment history can be found at https://docs.google.com/document/d/

1CFgRo93mRgifpuFOuQE3vNBeMW-H7ps9eD--vxH-6CQ/edit?usp=sharing.
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Descriptive statistics

In the following sections, we will describe the characteristics of the

analysis teams that participated in the study and the analytic approaches

they adopted. An important aspect that emerges from the descriptive

analysis is the large variation in analytic strategies.

Characteristics of analysis teams Eighty-four teams initially signed up

to participate in the study, comprising 211 analysts. Thirty-eight of the

signed-up teams dropped out during the analysis phase.

Forty-six teams submitted their analyses by the established deadline.

Only analyses from which it was possible to extract an effect size were

included in the meta-analysis. Of the analyses submitted by the 46 teams,

the initiating authors identified 33 teams with submissions meeting the

criteria for inclusion in the meta-analytic model. Reasons for exclusion

were: use of Generalized Additive Models (4 teams) which do not lend

themselves easily to the meta-analytic methods employed in this study, use

of machine learning techniques (3 teams), use of typicality as the outcome

variable/response (3 teams), or use of other methods that returned statistics

that could not be included in the meta-analytic model. Note that due to the

unforeseen variability across teams, the latter exclusion criteria were not

preregistered and were applied after having seen all analytic strategies.

In what follows, we describe the characteristics of those teams

whose analyses were included in the meta-analytic model. A

complete summary of all the analyses from the 46 submitting

teams is available in the supplementary materials at https:

//many-speech-analyses.github.io/many_analyses/

RR_manuscript/supplementary_materials.pdf.

The included analyses were provided by 33 teams, comprising 120

analysts, with a median of 3.0 individuals per team. Upon sign-up, we

collected background information from each analyst through the intake

form, which was administered during Phase 1, prior to the data being

released to the teams. Analysts had a median of 5.4 years of experience

after completing their PhD, ranging from -3.8 years, i.e. PhD students

(or less experienced) to 12.4 years, suggesting that, on average, analysts

were experienced researchers. The analysts’ prior belief in the effect under

investigation, on a scale from 0 to 100, ranged from 46.4 to 92.0 with a

median of 70.0. We take this to suggest that, overall, analysts had a rather
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high positive prior belief in the investigated relationship between acoustics

and word combination typicality.

At the end of Phase 2 (primary data analysis), the teams had submitted

a grand total of 115 individual models (including 192 critical model

coefficients, given that some models returned more than one critical

coefficient) to answer the research question, with a median of 3 models

per team. Table 1 provides a summary of the contributing teams and their

analyses.

Acoustic analysis The analytic teams differed in their approach to the

acoustic analysis of the speech signal, including choices related to specific

acoustic measures, the temporal window used, and how the measures were

transformed. Thirty-seven percent of the models used f0 as the outcome

variable, 33% used a measure of duration, 13% used vowel formants, 15%

intensity, and 3% other measures.

Forty-five percent of models used acoustic measures taken at the level

of the segment (e.g. comparing the acoustic profile of a vowel), 45% from

the word level (e.g. comparing the acoustic profile of Banane ‘banana’),

3% at the level of the phrase (e.g. the noun phrase including determiner

and adjective, e.g. “the green banana”), 3% from the whole sentence,

and 3% used a different time window. Based on a coarse coding of how

acoustic measures were operationalized, we find a total of 55 different

measurement specifications. For example, if we consider those analyses

that target f0, we find that it is operationalized in many different ways

including the minimum, the maximum, the mean, the median, as a range

in an interval or a ratio between two intervals. The measurement is

sometimes taken from the interval of a vowel in the article, the adjective

or noun; it is sometimes taken from the word interval of the article,

adjective or noun; or it is taken from either the noun phrase interval or

the entire sentence. Some of these measures were normalized relative to

other elements in the sentence or relative to the speaker.

Statistical analysis The large decision space related to how the acoustic

signal was measured is further expanded by the choices in the statistical

analysis, including the chosen inferential framework, the type of model,

and the model specification, including choice of predictors, interactions

and group-level effects.

The mean of the number of different predictors included in teams’

models was 2 (defined as variables or columns in the data table).
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This means that, in addition to the critical predictor (typicality of the

adjective noun combinations), models had on average one additional

predictor (range = 1 - 5). Possible information that was used as predictors

included the information structure of the sentence, trial number, semantic

dimensions of the referent, part of speech, and speaker gender.

The data given to the teams allowed them to operationalize the predictor

of interest, word typicality, in different ways. Among the possible

operationalizations, 69% of models contained typicality as a categorical

variable (e.g. atypical vs. typical), 28% used a continuous typicality scale

from 0-100 by calculating the mean typicality for each word combination

as obtained from the norming study, while 3% of the models used

the median typicality rating. Note that the design of the experiment

alongside its description indicated that the experiment was designed to

categorically operationalize typicality. This possibly explains the analysts’

strong preference.

The majority of models were run within a frequentist framework (84%).

Sixteen percent were run within a Bayesian framework. While teams

almost exclusively used linear models to analyze their data (98%), teams

differed drastically in how they accounted for dependencies within the

data.

The data contains several dependencies between data points, with

multiple data points coming from the same subject and with multiple

data points being associated with the same adjective or noun. An

appropriate way to account for this non-independence is by using models

that include so-called random or group level effects (e.g., Gelman and

Hill 2006; Schielzeth and Forstmeier 2009), variably known as mixed-

effects, hierarchical, multi-level, or nested models (among other names).

Nine percent of the linear models specified no random effects at all

(without pooling their data), effectively ignoring these non-independences

(Hurlbert 1984). Sixty-two percent specified random intercepts only, and

29% specified both random intercepts and random slopes to account

for the non-independence. On average, teams that specified random

effects included 2.5 random terms in their models. Based on statistical

framework, type of model, distribution family, fixed terms, and not

including random effects, there were a total of 52 different model

specifications.
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When considering both acoustic and statistical analyses, we have found

a grand total of 119 different analytic pipelines. In other words, each

individual analysis submitted was unique.

Our quantitative assessment did not include other degrees of freedom,

all of which are additional sources of variation: Teams differed with

regard to how the acoustic signal was segmented ranging from fully

automated forced-alignment with minimal manual correction to complete

manual alignment performed by the analysts; teams differed in whether

the statistical analysis was based on a subset of the data or the

whole data set; and they differed whether and if so how measurements

were excluded based on both qualitative (i.e. whether specific speech

production instances were excluded or not) and quantitative grounds

(i.e. whether data were trimmed or not).

The question arises whether these unique analysis pipelines led to

different conclusions. Thirteen teams out of the thirty-three (39.4%)

reported to have found at least one statistically reliable effect (based on the

inferential criteria they specified). Of the 192 critical model coefficients,

45 were claimed to show a statistically reliable effect (23.4%).

Review ratings Teams reviewed each others’ acoustic and statistical

analyses. The mean rating of the acoustic analyses, on a scale from 0 to

100, is 71.5 (SD = 13.5). The mean rating of the statistical analysis is

69.4 (SD = 15.9). For reference, as mentioned in the Methods section, a

score of 75 was defined as “an imperfect analysis but the needed changes

are unlikely to dramatically alter the final interpretation”, indicating that

on average reviewers judged the provided analyses to be appropriate,

although “imperfect”.

Meta-analytic estimation

This section deals with the meta-analytic analysis of the results submitted

by the teams. As discussed above, the analyses of only 30 teams out of all

the submitted analysis were included in the meta-analytic model discussed

here. First, we report on the between-team variability estimate (i.e. the

meta-analytic group-level standard deviation σαt
), which is the focus of

this study, followed by the meta-analytic estimate (i.e. the intercept of the

meta-analytic model, in other words, the estimated effect of typicality on

the acoustic production of adjective-noun combinations).
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Table 1. Descriptive statistics of teams, acoustic analyses, and statistical analyses included

in the meta-analysis. The data set included analyses from 33 teams and 120 analysts.

Team characteristics Range Median

Team size 1.0 – 12.0 3.0

Years after PhD -3.8 – 12.4 5.4

Prior belief 46.4 – 92.0 70.0

Acoustic analysis peer rating 41.2 – 88.3 73.8

Statistical analysis peer rating 33.0 – 93.3 73.2

Overall peer rating 39.0 – 88.7 70.8

Acoustic analyses n %

Outcome F0 44 37

Duration 39 33

Intensity 18 15

Formants 15 13

Other 3 3

Temporal window Segment 54 46

Word 53 45

Sentence 4 3

Phrase 3 3

Other 4 3

Typicality operationalization Categorical 82 69

Continuous (mean) 33 28

Continuous (median) 3 3

Statistical analyses n %

Framework Frequentist 100 84

Bayesian 19 16

Model Linear model 117 98

GAM 1 1

Other 1 1

Range Median

N Models 1 – 16 3

Predictors 1 – 5 2

Random terms 1 – 10 2

Intercept 1 – 10 2

Slope 0 – 4 0
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Between-team variability The primary aim of this analysis is to assess

the degree of between-team variability. As a measure of between-

team variability, we chose to use the meta-analytic group-level standard

deviation (σαt
).

According to the preregistered meta-analytic model, the group-level

standard deviation for teams is between 0.03 and 0.07 standard units at

95% credibility. In other words, the estimated range of variation across

teams lies somewhere between ±0.06 (0.03 * 1.96) and ±0.13 (0.07 *

1.96) standard units with 95% credibility.

Non-preregistered. However, in our preregistration we did not take

into account that teams might submit multiple analyses/models which,

if unaccounted for, violates the independence assumption. Teams were

explicitly instructed to only submit one effect size without enforcing

it. As a result, some teams followed the instruction and submitted

only one model while others submitted multiple models. To account

for this added layer of dependency, we have run a model with team

and model ID nested within team as group-level effects ((1|team) +

(1|team:model id)), which allows us to estimate both the between-

team variation and the between-analysis variation. This analysis was not

preregistered and should thus be interpreted with caution.**

The nested model yields a posterior 95% CrI for between-team

variability of 0 to 0.04 standard units (β = 0.02, SD = 0.01), corresponding

to a mean deviation range of about ±0 to ±0.1 standard units and 95%

probability. The posterior 95% CrI for between-analysis variability (nested

within teams) is 0.11 to 0.14 standard units (β = 0.132, SD = 0.01). For

the sake of illustration, these would correspond to an estimate of between-

model variability in segment and word durations that ranges between 7 to

14 ms for segments and between 7 and 33 ms for words at 95% credibility.

We interpret these values in more details in the Discussion section.

Taken together, the models suggest that the variability of reported effects

between any model (within team or across) is substantially larger than the

variability across individual teams. We return to this important observation

later.

∗∗Note that before fitting this model, we fitted a separate one in which model ID was the only (non-nested)

group-level effect. The estimated group-level effect of model ID is identical to that of the nested model, so we

will not discuss it further.
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Meta-analytic intercept After assessing the variation between teams and

analyses, we now turn to the meta-analytic estimate of the effect of

typicality on the acoustic realization of sentences with adjective-noun

combinations. The meta-analytic model estimates the range of probable

values of the standardized effect size to be between -0.026 and 0.016

standard units (95% CrI, mean = -0.005). In other words, our best guess is

that speakers might not encode typicality in the acoustic signal (e.g. by

duration, f0, etc,) or, if they do, they do so by a maximum of ±0.03
standard units.

Non-preregistered. As mentioned in the previous section, we have

run an additional model, using team and model ID nested within team

as group-level effects. In this non-preregistered model, the meta-analytic

intercept estimate is between -0.016 and 0.03 standard units (95% CrI,

β = 0.008). This suggests that the acoustic measures of typical word

combinations are 0.02 standard units lower to 0.03 standard units higher

than the measures of atypical word combinations, at 95% confidence. This

result is qualitatively similar to the results obtained in the preregistered

model.

The meta-analytic intercept conflates estimates from a variety of

responses taken from very different places in the utterance (nouns,

adjectives, determiners, entire phrases or sentences, etc). This means that

some of the effects on a particular response as observed in a specific

location within the utterance might naturally be positive, while other

negative, resulting in a meta-analytic intercept of about zero. We want

to stress, however, that our focus is not on the meta-analytic intercept per

se, but on the fact that a seemingly straightforward research question led

to so many possible outcomes. More on this in the Discussion section.

Figure 3 illustrates the individual intercepts for critical typicality

coefficients across models and teams, sorted in ascending order

based on their mean. Given the nature and wide variety of acoustic

operationalizations, there is no natural interpretation of the scale, so we

cannot interpret the direction of estimates. When looking at the raw

estimates and their variance (grey triangles and lines), it is striking how

much estimates differed. Estimates ranged from -0.7 to 1.01 standard

units.

While the majority of model estimates and their uncertainty after

shrinkage yields inconclusive results (i.e. are compatible with a point null

Prepared using sagej.cls



Multidimensional signals and analytic flexibility 37

Figure 3. Standardized effect sizes across all critical coefficients provided by the teams. Raw

estimates are displayed in grey. Estimates after shrinkage as provided by the meta-analytic

model are displayed in black.

hypothesis), there are 27 model estimates for which the 95% credible

interval does not contain zero (14%).

Analytic and researcher-related predictors

After assessing the variability across teams and models, we now turn to

estimating the impact of a series of predictors on the reported standardized

effects. There is a large amount of variation between and within teams,

raising the question as to whether we can explain some of this variation or

whether it is purely idiosyncratic (Breznau et al. 2021).

We have run a model as described in Section Analytic and researcher-

related predictors affecting effect sizes above. Figure 4, panel C, displays

the coefficients for all predictors alongside their 80% and 95% credible

intervals. The model suggests that most team-specific predictors yield very

small deviations from the meta-analytic estimate and their 95% credible

intervals include zero, leaving us highly uncertain about their direction.

Neither analysts’ prior beliefs in the phenomenon (β = -0.01, 95% CrI

= [-0.04, 0.01]), nor their seniority in terms of years after completing

their PhD (β = 0.01, 95% CrI = [-0.02, 0.04]) seem to affect model

estimates. Similarly, the evaluation of the quality of the analysis from their
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peers yielded a rather small effect magnitude, again characterized by large

uncertainty (β = 0.02, 95% CrI = [-0.01, 0.05]). Interestingly, the model

uniqueness, i.e. how unique the choice and combination of predictors are,

affects the analysts’ estimate, with more unique models producing higher

positive estimates (β = 0.04, 95% CrI = [0.02, 0.07]).

Looking at the most important choices during measurement, both the

acoustic parameter under investigation (e.g. f0 or duration) and the choice

of measurement window affected the results. Panels A and B of Figure

4 display the posterior estimates for the measurement outcome (i.e. what

acoustic dimension was measured, panel A) and measurement window

(i.e. what is the unit over which the outcome was measured, panel B).

If, on one hand, an acoustic dimension related to f0 was measured,

estimates are lower than the meta-analytic estimate. If, on the other

hand, duration was measured, estimates are higher than the meta-analytic

estimate. Similarly, if acoustic parameters were measured across the entire

sentence, estimates are lower than the meta-analytic estimate. In other

words, depending on the choice of measurement and the measurement

window, analysts might have arrived at different conclusions about how

and if typicality is expressed acoustically.

It is due of the latter patterns that we need to interpret the results of the

model with great caution. Since there are combinations of analytic choices

that appear to systematically result in lower or higher estimates and the

fact that predictors are not fully crossed (i.e. we do not have the same

amount of data for all combinations of e.g. outcome and measurement

window), the estimates for certain predictors might be biased if predictors

are collinear. This bias might be amplified by the fact that the scale

has no natural way of being interpreted across all teams with different

measurements cancelling each other out. We checked correlations between

predictors and while predictors do not seem to be highly collinear, the

estimates might still be biased.

Discussion

Summary

We gave 46 analyst teams the same speech data set to answer the same

research question: Do speakers acoustically modify utterances to signal

atypical word combinations? In order to answer this question, teams had

to interpret the research question by operationalizing constructs within
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Figure 4. The effects of analytic and researcher-related predictors on the reported

standardized effect sizes. (A) Posterior samples for the four most frequent outcome variables;

(B) Posterior samples for the four most frequent temporal windows: Black points indicate

medians; shaded areas represents 50/80/95% highest density intervals. (C) Mean posterior

samples (white circles) and 80/95% credible intervals for all predictors grouped into predictors

related to (1) temporal window, (2) outcome variable, and (3) team/analysis.

multidimensional signals, operationalizing and choosing appropriate

model predictors, and constructing appropriate statistical models. This

complex process has led to a vast “garden of forking paths”, i.e. to a

wide range of combinations of possible analytic decisions. The submitted

analyses exhibited at least 52 unique ways of operationalizing the acoustic

signal alongside 55 unique ways of constructing the statistical model.

By multiplying the numbers of acoustic and model specifications, there

are in principle 2860 possible unique combinations. Note that this is

a conservative estimate of the number of possible analytic choices for

our research question, ignoring many other degrees of freedom like

e.g. acoustic parameter extraction, outlier treatment, and transformations,

all of which might have an impact on the final results (Breznau et al. 2021).
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Different analysis paths led to different categorical conclusions with

39.4% of teams reported to have found at least one statistically

reliable effect. To gain a better understanding of whether the observed

quantitative variability can result in theoretically different claims, we

will contextualize them in actual acoustic measures. We calculated the

standard deviation of a selection of acoustic measurements, as submitted

by the analysis teams: duration, f0 and intensity, taken from different

time windows. These standard deviations can be considered as a coarse

indication of the variability in the obtained acoustic measures. We can

now use these values to interpret the meta-analytic estimates, which are in

standardized units, by transforming the standardized units to measures of

duration, f0 and intensity.††

For example, for those analyses that investigated the duration of

vowels (e.g. the duration of the stressed vowel in Banáne), the reported

duration measures exhibit standard deviations that range from 33.4

to 51.4 ms. These standard deviations allow us to convert the meta-

analytic estimates into milliseconds by multiplying those values with

the the standard unit values of the meta-analytic estimates. The reported

effect estimates from teams varied between -0.7 and 1.01 standard

units, which corresponds to estimated segment duration differences (for

atypical vs typical combinations) ranging from -23.34 to 33.84 ms. A

more conservative approach is to convert the meta-analytic estimates of

between-model variation, thus obtaining an estimate of between-model

variability in milliseconds that ranges between 7.2 and 14.1 ms at 95%

credibility. The calculation is thus: the minimum standard deviation of

duration multiplied by the lower limit of the 95% CrI of the between-

models variability estimate, times 1.96 to obtain a 95% CrI: 33.4 * 0.11 *

1.96 = 7.2 ms; the maximum standard deviation of duration multiplied by

the upper limit of the 95% CrI of the between-models variability estimate,

times 1.96: 51.4 * 0.14 * 1.96 = 14.1 ms.

While this might not immediately strike one as highly variable, it crosses

several theoretically relevant thresholds for perception and articulation:

for example, the widely studied phenomenon of incomplete neutralization

involves vowel duration effects ranging from 7 to 15 ms (Nicenboim

et al. 2018). This particular phenomenon has sparked long-lasting

††Note that these categories necessarily refer to a variegated set of measures, for example the domain “word”

includes words that differed along several dimensions, including their length and their metrical structure.
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Table 2. Estimated 95 percent CrIs of deviation from the meta-analytic effect in acoustic

measures, based on the lower and upper limits of the between-model variation.

Outcome Temporal window Lower Upper Unit

Duration Segment 7-10.8 9.3-14.4 ms

Duration Word 6.9-25.3 9.1-33.4 ms

f0 Segment 0.9-9.4 1.2-12.4 hz

f0 Word 0.8-9.9 1.1-13.2 hz

Intensity Segment 0.7-1.5 0.9-2 dB

Intensity Word 0.7-0.9 1-1.2 dB

methodological and theoretical debates about the very nature of linguistic

representations (Port and Leary 2005) and has been replicated several

times in both production and perception. Vowel duration differences

within this range have also been reported across phenomena associated

with segmental contrasts (Coretta 2019), reduction phenomena (Nowak

2006), and biomechanical reflexes of prominence (Mücke and Grice

2014). Thus, variation between different analyst teams of 7.2 to 14.1 ms

in one or the other direction can be theoretically relevant and might lead

to opposing theoretical conclusions.

While one might find it obvious that measuring different parts of

the speech signal can lead to different results, the fact that analysts

(and reviewer alike) considered all these data analytic pipelines valid

ways of answering the same research question points to a lack of

theoretical consensus on what parts of the speech signal correspond to

what types of communicative functions. Importantly, even if analysts

choose to measure more or less the same acoustic property within the same

measurement window, they arrive at different estimates: For example, six

teams measured f0 in the adjective and predicted f0 based on typicality

as a categorical predictor. Their standardized effect estimates ranged

from -0.11 to 0.38 standard deviations. While these teams in principle

measured the same thing, they differed in analytical details of how f0 was

operationalized (i.e. mean, mininum, maximum, or range) and how their

statistical model was constructed (i.e. the number of predictors ranged

from 1-3 and the number of random effect terms ranged from 1-4). As

shown by Breznau et al. (2021), even seemingly inconsequential analytical

choices can affect conclusions in non-trivial ways.
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The observed variation does not seem to be systematic. For example,

variation between teams was not predicted by the analysts’ prior

expectations about the phenomenon. In fact, teams on average rated

the plausibility of the effect as rather high before receiving access to

the data. The observed variation was neither predicted by the analysts’

experience in the field nor by the perceived quality of the analysis as

judged by other teams. Analyses received overall high peer-ratings for

both the acoustic and the statistical analysis, suggesting that reviewers

were generally satisfied with the other teams’ approaches.

These findings are very much in line with previous crowd-sourced

projects that suggest variation between teams is neither driven by

perceived quality of the analysis nor by analysts’ biases or experience

(e.g., Silberzahn et al. 2018; Breznau et al. 2021). Following Breznau

et al. (2021, p. 9), we are bound to conclude that “[. . . ] idiosyncratic

uncertainty is a fundamental feature of the scientific process that is

not easily explained by typically observed researcher characteristics or

analytic decisions”. Idiosyncratic variation across researchers might be

a fact of life which we have to acknowledge and integrate into how we

evaluate and present evidence.

While properties of the teams did not seem to systematically affect the

results, teams’ estimates seem to highly depend on certain measurement

choices. Human speech entails complex multidimensional signals.

Researchers need to make choices about what to measure, how to measure

it and which temporal unit to measure it in. Some of these choices seem to

result in estimates in one direction while others seem to result in estimates

into another. For example, measurements related to f0 tended to result in

lower estimates while measurements related to duration tended to yield

higher estimates.

The asymmetry observed in the effect direction of different

measurements can have several causes. First, there could be a true

underlying relationship between typicality and the speech signal that

manifests itself in some measures but not others and/or manifests itself

negatively in one acoustic measure but positively in another.

Secondly and orthogonal to a possible true relationship, certain

measurement choices might be associated with stronger expectations

relative to the research question, which might lead to stronger

researcher biases. Many analysts targeted measures related to f0, likely
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because similar functional relationships like information structure and

predictability can be expressed by f0 (e.g. Grice et al. 2017; Turnbull

2017). Moreover, prior work has actually suggested a relationship

between typicality and f0 (e.g. Dimitrova et al. 2008, 2009). Participating

analysts could have been aware of those findings, which might have,

subconsciously or otherwise, nudged their choices into one particular

direction.

Regardless of the cause of these systematic effects, we have to conclude

that depending on the choice of how the speech signal is operationalized,

researchers might find evidence for or against a theoretically relevant

prediction. This conclusion is further supported by the fact that between-

team variability was lower than between-model variability. This is an

important observation when put into context of the fact that most teams

submitted many different models. Teams submitted up to 16 different

models to test for a possible relationship between typicality and the

speech signal. The complexity of the speech signal lends itself to multiple

approaches, but this plurality of hypothesis tests invites bias and can

dramatically increase the rate of falsely claiming the presence of an effect

(Roettger 2019; Simmons et al. 2011). We of course are not arguing that

exploratory analyses should not be employed. Rather, we simply want

to point out that if the theoretical underpinnings of the field were much

clearer, different teams would have converged towards a limited set of

analyses despite of a less specific research question.

In relation to this aspect, one team coordinator decided to drop out of the

project because of its approach being too top-down. The coordinator also

expressed a preference to be able to explore and run a variety of descriptive

analyses followed up with inferential statistics. We find that this attitude

speaks to the main objective of the current study: investigate researchers’

degrees of freedom in the speech sciences. Based on our personal

experience with research in the field, it is common practice to test many

different types of models, using many different types of measurements,

to answer one research hypothesis. While this is a valid way to explore

data and generate new hypotheses, it is not suitable for hypothesis testing.

When operating within the frequentist inferential framework, testing the

same hypothesis with different dependent variables is known to increase

the false-positive (Type-I error) rate. The well-established solution to

this problem is to apply a correction for family-wise error (i.e., alpha
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correction). However, less clear-cut degrees of freedom such as observed

in the present study can not be corrected for in a straightforward way.

If uncorrected for, these degrees of freedom can nevertheless drastically

inflate the false positive rate, even if different choices are highly correlated

(Roettger 2019). Another possible outcome of analytic flexibility as seen

in this study is selective reporting of those tests that yield a desirable

outcome (Kerr 1998; John et al. 2012; Simmons et al. 2011), while

null results remain unreported (Sterling 1959; Rosenthal 1979). Fields

such as the speech sciences that make theoretical advances based on

multidimensional data should be aware of this flexibility and calibrate

their confidence in empirical claims accordingly.

Looking at our results, one might argue (and this interpretation has

been articulated by several teams during the collaborative write-up)

that our sample of speech scientists actually converged on a qualitative

conclusion, i.e. there is no evidence for a relationship. However, if

there truly was no underlying relationship, our results would suggest a

concerning false positive rate with 39.4% of teams reported to have found

at least one statistically reliable effect. This rate is substantially higher

than the conventionally accepted 5% false positive rate in for example

null hypothesis significance testing frameworks. If, on the other hand,

there actually was an underlying relationship, our results would suggest

a concerning false negative rate of -38.4%, with the majority of teams not

detecting the effect. If the latter was true, the fact that the majority of teams

arrived at a null result might also simply be a consequence of the sample

size in the data set being too small to reliably detect an effect (which is

unknown to us). Thus, we do not think that our study provides convincing

evidence that speech researchers converged on the same qualitative answer

to a broad research question.

Lessons for the methodological reform movement

The current results point to important barriers to the successful

accumulation of knowledge. The replication crisis has brought attention

to scientific practices that lead to unreliable and biased claims in the

literature (Vazire 2017; Fidler and Wilcox 2018). One of the suggested

paths forward is for researchers to directly replicate previous studies more

often (Open Science Collaboration 2015; Camerer et al. 2018). While we

agree with the importance of direct replications, our study (and similar
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crowd-sourced analyses before us) suggest that replicating more is simply

not enough. There is only limited value in learning that a particular

procedure is replicable if the idiosyncratic nature of the procedure itself

might not yield a representative result relative to all possible procedures

that could have been applied to the research question. Thus beyond

a mere replication crisis, quantitative disciplines are going through an

“inference crisis” (Rotello et al. 2015; Starns et al. 2019). As shown

by the peer-ratings of the analyses reported in this study, well-trained

and experienced speech researchers not only applied completely different

approaches to the same research question, but also considered most of

these alternative approaches acceptable. Being aware of this idiosyncratic

variation between analysts should lead to more nuanced claims and a

certain level of epistemic humility (see Campbell 1975, for an overview

of the concept).

A desired outcome of knowing that different but reasonable

measurement choices or statistical approaches might lead to different

interpretations of research data is to calibrate our (un)certainty in

the strength of the collected evidence and, in turn, communicate that

(un)certainty appropriately. The fact that the choice of measurement,

measurement window, and predictor choice affect the answer to

the research question further suggests that research assumptions and

hypotheses should be formulated in much greater detail, particularly

so in regards to how measurement systems (here, the acoustic signal)

and underlying conceptual constructs (here, the phonetic expression of

typicality) relate to each other.

We should ideally specify the link between conceptual construct and

quantitative system—the “derivation chain” (Dubin 1970; Meehl 1990)—

prior to data collection and analysis, including defining constructs and

their relationship within the quantitative system, specifying auxiliary

assumptions and boundary conditions, and defining target measurements,

statistical expectations and possible (and impossible) effect magnitudes.

Without well-defined derivation chains, we “are not even wrong” (Scheel

2022) because falsified expectations cannot tell us much about the

conceptual constructs they are based on when the relationship between the

two is underspecified. Some of the analysis teams explicitly recognized

and acknowledged the need to formulate a more precise version of the

research question by preregistering their planned data analysis pipeline.
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Preregistration, i.e. a time-stamped document in which researchers specify

how they plan to collect their data and/or how they plan to conduct their

confirmatory analysis, is can be a useful tool to safeguard researchers

against the urge to explore many different analytical paths before choosing

the one that, in hindsight, seems most justified. However, as long as

the theoretical landscape does not allow for more precise hypotheses,

the value of preregistration is limited and we need to find ways to

appropriately calibrate the confidence in our claims.

Through sharing of materials, data and statistical protocols, we can

make our idiosyncratic choices transparent to others (Munafò et al. 2017;

Vazire 2017). Sharing further enables the evaluation and verification

of underlying claims and allows for the evaluation of empirical,

computational and statistical reproducibility (LeBel et al. 2018). It allows

for alternative analyses to establish analytic robustness (Steegen et al.

2016) and strengthens attempts to synthesize evidence via meta-analyses

(e.g., Nicenboim et al. 2018). Given that minor procedural changes can

sometimes drastically affect the final interpretation of the results (Breznau

et al. 2021), we should ideally share a detailed documentation of the

data collection procedure, the measurement choices, the data extraction,

and statistical analyses. Within fields that deal with speech data, open

source software that permits the extraction of acoustic parameters via

reproducible scripts can help other researchers to trace back seemingly

inconsequential choices during the measurement process (e.g., Praat:

Boersma and Weenink 2021; EMU: Winkelmann et al. 2017; the Montreal

Forced Aligner: McAuliffe et al. 2017).

Making analytic pathways completely re-traceable and preregistering

them in advance does not change the fact that different analysts might

apply different analytic approaches (preregistered or not). Crowd-sourced

projects such as the current one can shed light on the range of degrees of

freedom during analysis and could possibly help produce a consensual

estimated effect if the research hypothesis is specific enough. Crowd-

sourcing analyses is obviously not always feasible in terms of required

resources and time, but could be a consideration for claims that have large

epistemological or practical consequences.

If we develop a good understanding of relevant analytic degrees of

freedom, we could apply all conceivable analytic strategies and compare

the results across all combinations of these choices. Such an analysis can
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provide insight into how much the conclusions change due to analytic

choices as well as which choices have neglible or large impact on the

result. This approach is called a “multiverse analysis” (e.g, Steegen et al.

2016; Harder 2020) and has recently gained popularity across disciplines.

Finally, neither crowd-sourcing nor multiverse analyses will guarantee

that all relevant pathways are explored. Crowd-sourcing is limited by

the sampled analysts and their biases. Multiverse analyses are limited

even further by the group of researchers who define possible analytic

pathways. Eventually, a mature scientific discipline needs to develop

a set of detailed quantitative hypotheses of how conceptual constructs

manifest themselves in the measured system, i.e. in the present case

how communicative pressures of certain functions are expressed in the

acoustic signal. Possible tools to strengthen theoretical development relate

to mathematically formalizing verbal expectations or using computational

models (e.g., van Rooij and Blokpoel 2020; Guest and Martin 2021;

Scheel et al. 2021; Devezer et al. 2021). Although conceptually promising,

in their current state, such formalized models typically work in spaces

that are much lower in dimensionality than the complex systems in which

we measure. Thus, future research should spend resources on attempting

to quantitatively relate the abstract theoretical space to the complex

measurement space.

Caveats

Our study has several limitations that need to be considered when

interpreting our results.

First, while the total number of analyses is larger than most earlier

crowd-sourcing projects, it is likely to be too small to reliably estimate

the impact of certain predictors. Since predictors’ values were not

systematically distributed across teams, our estimates are characterized

by large uncertainty.

Second, uncertainty is further inflated by the fact that the research

question presented to the teams was vague, despite being of a kind

normally found in the speech science literature: Do speakers acoustically

modify utterances to signal atypical word combinations? Interpreting

the research question/hypothesis differently in terms of its statistical

consequences has recently been shown to explain some variation

between analysis teams in many-analyses projects (Auspurg and Brüderl
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2021). The analysts might also have tried to answer different specific

manifestations of the research question that was given to them, leading

to different choices down the line (e.g. Do speakers modify f0 in

atypical adjectives?). It could be argued that some teams would have

not specified such a vague research question to begin with which would

have reduced the possible degrees of freedom substantially. However,

this very underspecification of research hypotheses in the field of speech

science (and beyond, see Scheel 2022) is very common. For example,

researchers seem to have not yet agreed on how to acoustically measure

cross-linguistically common phenomena such as word stress (e.g. Gordon

and Roettger 2017). Research on acoustic markers of clinical conditions

such as depression and schizophrenia are often difficult to compare due to

the wide variety of different acoustic measures employed (e.g. Cummins

et al. 2015; Parola et al. 2022).

Third, the design of this crowd-sourced study has artificially inflated

the variability between teams by encouraging anti-coordination strategies.

Teams knew that there will other analyst teams and therefore might have

chosen a “less canonical” analysis. Since analysts were guaranteed to

become co-authors of a (in principle) guaranteed publication, such an anti-

coordination approach was not explicitly disincentivized.

Forth, our sample is an opportunity sample. We have advertised the

project through online platforms which might have led to the exclusion of

certain potential researcher groups. The sampling strategy also might have

given access to researchers who were less experienced in particular aspects

of the data analysis, possibly introducing uncommon analytic choices or

poor quality analyses. However, to our knowledge, neither the peer review

among teams nor the information gathered through our questionnaires

indicated any obvious cases of what one might consider incompetent

analyses.

In light of both the observed large variability between teams, and

possible sources of bias, a field can benefit from explicit positionality

statements (e.g., Jafar 2018; Darwin Holmes 2020; Fox et al. 2021).

Researchers do not analyze data in a vacuum. It is important to

recognize and disclose one’s positionality, i.e., a reflection about how

educational background, social identity, power, experience and context

might influence researchers’ approaches and interpretations. For example,

the coordinating authors have engaged with meta-scientific research
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before and have been actively involved in methodological debates about

scientific practices including transparency and statistical methods. They

have in the past used the lack of standardized analytic approaches as an

argument for proposing behavior and policy changes in the field. This

might have biased their own judgement during the analysis which itself

came with many researcher degrees of freedom. We hope we were able to

make these degrees of freedom as well as the timing and reasoning of these

analytic choices at least detectable and we invite other researchers to re-

analyze our data and try to replicate our results using a different research

question.

Finally, the present study focused on a particular phenomenon within

the speech sciences using a speech production data set with very specific

properties. The generalizability of our findings to other disciplines, as

well as to other sub-disciplines of the language sciences specifically, is,

of course, limited. We focused on quantitative analyses that require the

operationalization of a multidimensional signal in an artificial elicitation

situation (laboratory speech). While we do believe that our qualitative

conclusions hold across fields exhibiting similar methodologies, the

detailed quantitative results will only be able to directly inform similar

disciplines that work with speech or audio/video signals. This is an

important point to make because cognitive sciences in general, and the

language sciences in particular, have many research areas that are based

on qualitative methods (Haven and Van Grootel 2019). It is conceivable

that the discussed issues apply differently or not at all to qualitative data

analyses.

Conclusion

In recent efforts, several studies have highlighted the large degree of

analytic flexibility in data analysis. When many different analysts have to

analyze the same data set to answer the same research question, analysts

differ in how they approach this task, leading to both different qualitative

answers (i.e. is there evidence for a relationship or not) and different effect

magnitudes. This is concerning, as it can lead to substantially different

conclusions based on the same data set, a state of affairs that can generate

biased inferential decisions and might weaken confidence in the published

literature. More specifically, what we find of particular relevance is the fact

that commonly research proceeds based on publications from one research
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team at a time. If we imagine a situation where any of the 46 teams could

have been the team publishing a study on this topic, it is immediately

clear that that single study is just a very limited view. In light of this we

want to stress that the field has to quickly move from one-off studies to

collaborative approaches like the one employed here and to more frequent

replication attempts for example by incentivizing replication through

dedicated funding and editorial policies, among others.

Going beyond previous empirical studies, the current paper looked

at many analyses of speech data. Speech is a multidimensional signal

that allows for great flexibility because it lends itself to a variety of

possible operationalizations. In this study, 46 teams of speech scientists

analyzed the same data set. Analytic approaches differed vastly in terms

of their operationalization of key constructs, as well as their statistical

analyses. Given the observed variability, conservative estimates of the

sheer number of possible analytic paths for this research question lies

in the thousands. Quantitatively, the between-team and between-model

variation of estimates crosses important theoretical thresholds as to what

constitutes communicative, cognitive, or bio-mechanical values.

In line with previous findings, neither the perceived quality of analyses,

nor the experience or prior beliefs of teams explained the observed

variation. Importantly however, we found some evidence for systematic

effects on teams’ estimates based on what and how they measured the

speech signal. This result, taken together with the meaningful between-

model variation and the tendency to test the research question on multiple

outcome variables, suggests that a vast plurality of acceptable approaches

is expected to frequently lead to different conclusions. We suggest that

fields that use multidimensional data need to acknowledge these degrees

of freedom, consider crowd-sourcing and multiverse analyses when

evaluating epistemologically or practically important phenomena, and

strengthen the link between theoretical predictions and the measurement

system by means of mathematical formalization and computational

modeling.
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Glossary

• Analysis team: team of analysts or single analyst.
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• Reported effect sizes: effect sizes reported by each analysis team.

• Standardized model: Bayesian refit of the team’s model.

• Standardized effect sizes: (ηi) effect sizes returned by the

standardized models.

• Standardized standard error: (sei) standard deviation of the

standardized effect sizes.

• Bayesian random-effects meta-analysis and meta-analytic model:

multilevel intercept-only regression model for meta-analysis.

• Meta-analytic group-level standard deviation: (σαt
) standard

deviation of the group-level effect of team returned by the meta-

analytic model.

• Analytic and researcher-related predictors: predictors used in the

model that assess the effect of analytic and researcher-related factors

on the standardized effects.
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