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Abstract

Understanding pedestrian proxemic utility and trust will help autonomous vehicles to plan and control interactions with

pedestrians more safely and efficiently. When pedestrians cross the road in front of human-driven vehicles, the two agents

use knowledge of each other’s preferences to negotiate and to determine who will yield to the other. Autonomous vehicles

will require similar understandings, but previous work has shown a need for them to be provided in the form of continuous

proxemic utility functions, which are not available from previous proxemics studies based on Hall’s discrete zones. To fill

this gap, a new Bayesian method to infer continuous pedestrian proxemic utility functions is proposed, and related to a new

definition of ‘physical trust requirement’ (PTR) for road-crossing scenarios. The method is validated on simulation data then

its parameters are inferred empirically from two public datasets. Results show that pedestrian proxemic utility is best described

by a hyperbolic function, and that trust by the pedestrian is required in a discrete ‘trust zone’ which emerges naturally from

simple physics. The PTR concept is then shown to be capable of generating and explaining the empirically observed zone

sizes of Hall’s discrete theory of proxemics.

Keywords Proxemics · Autonomous vehicles · Trust · Pedestrians · Mathematical models of human behaviour

1 Introduction

Autonomous vehicles (AVs) are claimed by many organisa-

tions to be close to commercial reality, but their lack of human

behaviour understanding is raising concerns. While robotic

localisation and navigation in static environments [76] and

pedestrian detection [9] are well understood, AVs do not yet

have the social abilities of human drivers—who can read the

intentions of other road users, predict their future behaviour

and then interact with them [10]. Pedestrians, unlike other

road users such as cyclists, do not usually follow specific

traffic rules, in particular when crossing the road at unsigned

crossing points, making them especially difficult to model,

predict, and interact with. Pedestrians and human drivers
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communicate and interact with one another via nonverbal

signals including their positions and speeds, which are used

to transmit intent information as well as to make progress on

the road [66]. For example, a vehicle which drives deliber-

ately close to a pedestrian to scare them is telling them to

yield, while a vehicle which maintains a larger distance from

them is inviting them to cross.

Recent trials of autonomous minibuses in La Rochelle

(France) and Trikala (Greece) [52], highlighted the major

drawback of perfectly safe self-driving cars: it was found that

pedestrians were intentionally stepping in front of the AV sev-

eral times in a day, delaying their progress in the knowledge

that they would always yield to the pedestrian. This abuse of

perfect safety systems is known as the ‘big problem with self-

driving cars’ [8], and in the limiting case of optimal pedes-

trian behaviour and large crowd size becomes the ‘freezing

robot problem’ of vehicles making no progress at all, as they

are constantly forced to yield in every interaction [78].

To make progress towards such understanding, we recently

proposed and solved a game-theoretical mathematical model

of the road-crossing scenario represented in Fig. 1, based on

the famous game of ‘chicken’ and called ‘sequential chicken’

[27]. In this model, the pedestrian and vehicle compete for
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Fig. 1 Road-crossing scenario

space in the road as they move towards one another and

threaten to collide with one another, by making a tempo-

ral series of game theoretic decisions to advance or yield.

The model’s utility parameters for collisions and value of

time were fit to human behaviours in a series of labora-

tory experiments [11–13,16]. We also analysed real-world

pedestrian–vehicle interactions through sequence analysis

[15] to learn the most important features and how their order-

ing could be predictive of the outcome of an interaction [14].

The simplest mathematical solution of this game theoretic

model was found to require the AV to deliberately hit the

pedestrian with a small probability, in order to create a cred-

ible threat which discourages other pedestrians from taking

advantage of it in the rest of the interactions [27]. This is

not an ethical or legal arrangement for programming AVs in

practice [79]. But the model then also suggested the possi-

bility of an alternative solution: if the rare, large penalty of

collisions could be replaced with more frequent but smaller

negative utilities inflicted on pedestrians, then the same aver-

age penalty could be created and progress made by AVs

without having to hit any pedestrians.

This motivates a new search for ways in which an AV

could inflict small negative utilities onto pedestrians. Humans

have evolved a sense of comfort and discomfort around one

another as part of their social interaction mechanisms, which

could provide a convenient and legal source of small neg-

ative utilities. For example, two pedestrians who actually

collide with one another while trying to reach their desti-

nations will obviously experience a real, physical negative

utility, but it is found empirically that they also experience

discomfort—a purely internally generated, psychological

negative utility—when they are close but not actually touch-

ing. The study of this relationship was named proxemics

by Hall [30]. Hall classified four discrete distance zones

between people—intimate, personal, social and public—

corresponding to distances where most people feel distinct

levels of comfort or discomfort during interactions. If humans

have evolved to feel real psychological negative utilities in

the presence of only a possibility of collision, without it actu-

ally having to take place, then simply invading their personal

space could be sufficient to penalise them enough to satisfy

the game theory requirements.

It is not necessary for the reader of the present study to

understand the game theory model, which provides only the

motivation for the present study rather than any methods.

The key motivation, taken only from its conclusions, is that

it requires a utility function to directly assign numerical util-

ities to agents as a function of their positions. Positions are in

general continuous values so a continuous proxemic utility

function is required. Section 2 reviews the proxemic litera-

ture and finds that this is not yet available, which motivates

the present study to develop new methods to infer it in the

required form.

The method in Sect. 3 then forms a first step towards infer-

ring pedestrian proxemic preferences for autonomous vehicle

interaction control. It consists in directly inferring the con-

tinuous proxemic utility function of pedestrians from offline

data from human driver–pedestrian interactions. This is the

function that could then be programmed into autonomous

vehicles using the sequential chicken game theory model to

provide small negative utilities.

To link continuous proxemic utility functions to the more

conventional views and models of proxemics from this litera-

ture, which are mostly based on Hall’s discrete zones, Sect. 4

then introduces a new concept: ‘physical trust requirement’.

We show that this concept partitions the set of possible states

of the world during interactions into three subspaces, for each

agent. In the first, a negative utility such as a collision will

happen and there is nothing either agent can do to prevent

it. In the second, the negative utility may happen but only

the other agent can choose to act to prevent it—this is the

‘trust zone’. In the third, the negative utility may happen but

the pedestrian themself can act to prevent it, without need-

ing to trust the other agent. This definition of physical trust

requirement may be general to many human–robot interac-

tions in physical or abstract state spaces, but in the case of

autonomous vehicle interactions with pedestrians, we pro-

vide results showing that it maps cleanly and numerically to

Hall’s physical proxemic zones, offering an explanation for

why they emerge as discrete zones even when the proxemic

utility function itself is continuous.

Section 5 finally applies both the proxemic utility function

inference and physical trust requirement concept to existing

public datasets, to report a real world continuous proxemic

utility and physical trust requirements for the first time.
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2 RelatedWork

This section gives a survey of related work, to search for

any existing reports of numerical proxemic functions, or for

any related results which might be used to infer such func-

tions without the need for a new experiment. In particular,

Hall’s influential work has encouraged most studies to mea-

sure and report results in terms of discrete zones, discarding

the continuous distance information which we now require.

This motivates the present study to infer continuous proxemic

utility functions for the first time.

2.1 Proxemics in Social Sciences

Measuring interpersonal distances during social interactions

is a well-studied topic in the social sciences since the intro-

duction of the concept by Hall [30]. For example, it was

found for human–human interactions that the intimate space

is up to 0.45 cm, the personal space is up to 1.2 m, the social

space is up to 3.6 m, and the public space is beyond this [45].

Thompson et al. [75] measured individuals’ interaction pref-

erences via the rating of videotapes. This study showed that

people have a distance where they feel comfortable during

their interactions and when the distance is smaller or greater

than that, they feel more discomfort. Hayduk [31] showed

via a study with university students that personal space is

a two-dimensional noncircular and flexible space that can

vary in shape and size. Hecht et al. [32] performed two labo-

ratory experiments (including one in a virtual environment)

with subjects and found that personal space has a circular

shape with about a 1-m radius. However, we believe that

personal space can be modelled using only one dimension

in the present road-crossing scenario. Stamps [72,73] whose

work is based on the theory of permeability, i.e. how people

perceive (e.g. their safety) and make preferences within an

environment, studied the effects of distance on participants’

perception of threat. These results showed that the perceived

threat decreases with larger distances.

2.2 Proxemics in Human–Robot Interactions

Proxemics is also an active research area in human–robot

interaction (HRI), as shown in the review proposed by Rios-

Martinez et al. [65] which focuses on social cues, signals and

proxemics for robot navigation. A recent review on nonverbal

communication for human–robot interaction was proposed in

[69].

Walters et al. [81] proposed a framework that shows how

to measure proxemic features in HRI. Their study involved

participants interacting with different robots and their pref-

erences were measured. It is explained that factors that

may change human proxemics even by 20 to 150 mm can

be significant. In [3], a mobile robot was developed with

an autonomous proxemic system that could approach and

avoid people using the distances from [81]. Koay et al. [42]

measured participants’ proxemics preferences using comfort

level device during an HRI task.

Mead et al. [55] proposed an automatic method for anno-

tating spatial features from 3D data of indoor human–robot

interactions. In [56], the same data was used to train a Hid-

den Markov Model (HMM) to classify the interactions either

as initiating or terminating based on the extracted physi-

cal Mehrabian’s metric [59] or psychophysical Hall’s metric

[30]. In [57], the same authors studied the interaction between

a robot and more participants, one by one. The interactions

consisted in moving the robot towards the participants and

backwards several times. The results showed that individ-

uals’ pre-interaction proxemic preference (mean = 1.14 m,

std = 0.49 m) was consistent with previous studies. With a

uniform performance in the robot behaviour, the proxemic

preference reached a mean = 1.39m and a std = 0.63 m, the

participants adapted their proxemic preferences to improve

the robot performance. Mead et al. [58] also investigated

the influence of proxemics on human speech and gestures

and measured how that impacts on the robot speech and

gesture production. Their study consisted in recruiting 20

participants interacting by pairs (10 in total) who didn’t know

each other and each participant had to interact with the robot

(PR2). Their result for human–human interactions (HHI),

with a mean = 1.44 m and a std = 0.34 m, was consistent

with previous studies but the HRI result (mean = 0.94 m, std

= 0.61 m) was much larger than in previous studies, which

could be explained by the presence of robot gestures.

Heenan et al. [33] used proxemics and Kendon’s greet-

ing observations [40] for a Nao robot interacting with human

encounters. They applied Takayama and Pantofarou’s [74]

empirical results for proxemics, which are 0.4–0.6 m (aver-

age interpersonal distances) with a 1.35 m robot’s height.

They observed a larger distance between women partici-

pants and the robot, while men kept the same distance in

HHI and HRI. In these experiments, the researchers also

found an improvement of the robot’s social skills thanks

to the proxemic behaviour and its greeting manner. Warta

et al. [83] measured levels of social presence in HRI in a

hallway. Participants were given a questionnaire to complete

after interacting with a robot for a navigation task. In [39],

Joosse et al. used a coding system to detect a set of attitudinal

(likeability, human-likeness, trust) and behavioural attributes

including non-verbal behaviour (eye-gaze, proxemics, emo-

tion etc.) from participants interacting with a robot. The study

showed some strong human reactions to a robot invading their

personal space.

Kostavelis et al. [44] proposed a dynamic Bayesian net-

work on top of an interaction unit to model human behaviour

for a robot. Their method takes proxemic distances into

account, allowing the robot to approach people at differ-

123



1932 International Journal of Social Robotics (2021) 13:1929–1949

ent distances depending on their current activity. Torta et

al. [77] performed two psychometric experiments with sub-

jects interacting with a small humanoid robot and proposed a

parametric model of the personal space based on the results

of these experiments. The model takes into account the dis-

tance and the direction of approach, and was evaluated with

a user study where subjects are sitting and approached by the

robot.

Henkel et al. [35] evaluated two predefined proxemic

scaling functions (linear and logarithmic) for human–robot

interactions. Their approach is different from ours in that

the robot computes a gain value based on the proxemic dis-

tance with the human and then moves accordingly. Their

experiments with participants in a search and rescue sce-

nario and followed by a questionnaire showed a preference

for a logarithmic proxemic scaling function. Patompak et al.

[63] developed an inference method to learn human prox-

emic preferences. Their method is based on the social force

model and reinforcement learning. They argued that prox-

emic spaces can be limited to two zones, the first being the

quality interaction area where a robot could go without cre-

ating discomfort, and the private area which is the personal

space. In addition, we believe that one more area is needed

to model the trust relationship between humans and robots.

2.3 Proxemics in Pedestrian–AV Interactions

A comprehensive review on pedestrian models for autonomo-

us driving is proposed in [9,10], ranging from low-level

sensing, detection and tracking models [9] to high-level

interaction and game theoretic models [10]. In the con-

text of autonomous vehicles, more work has been focused

on pedestrian crossing behaviour [53], trajectory prediction

[84] and for eHMI (external Human–Machine Interface)

[20,29,50,54]. Very few studies have investigated interper-

sonal distances for pedestrian-vehicle interactions.

Risto et al. [66] studied the use of drivers’ movement to

signal intent and how these signals were understood by other

road users. They video recorded pedestrian–vehicle interac-

tions at different intersections and observed that pedestrian

discomfort can be created by the vehicle approaching very

close to the crosswalk boundary, which leads the pedestrian

to slightly change their trajectory towards the other edge of

the crosswalk. It was also noted that drivers tend to stop

short, i.e. those who intended to stop used to do so much

earlier than required by the law (i.e. at the white line for stop

or crosswalk). Interview responses and observations showed

that pedestrians use to understand ‘some forms of movement

from the vehicle as communicating a message’. For example,

[15] and [47] showed evidence that such implicit signalling

through speed and positioning are the main form of signalling

used in road-crossing interactions, as explicit forms of sig-

nalling such as hand gestures and facial expressions are not

often used.

Domeyer et al. [24] investigated the quantitative param-

eters (i.e. time) of pedestrian–vehicle interactions at four

pedestrian crossings, using annotated videos. In particular,

the authors were interested in the effects of vehicle stopping

short time (i.e. their proximity with the pedestrians). Their

results showed that the median short stop time was around

1 s. They also found that vehicles, that had higher short stop

times, were creating more safety margins, thus were more

delayed. However, it was found that the stopping short time

did not increase the overall time that the vehicle and the

pedestrian would spend at an intersection.

2.4 Trust in Human–Robot Interactions

Various definitions of trust have been used for human–robot

interactions. This section introduces some of these definitions

and reports findings from several studies.

For instance, Lee and See [46] reviewed the concept of

trust in automation. They defined trust as an ‘attitude that

an agent will help achieve an individual’s goals in a situa-

tion characterised by uncertainty and vulnerability’. In [71],

Smithson described trust as ‘a psychological state that entails

the willingness to take risks by placing oneself in a vulnerable

position with respect to the trustee’. He described uncertainty

as being prevalent to a trust relationship, there is no trust with-

out any risks. Henschke [36] described trust as a ‘key value’

in the development of autonomous systems. This paper dis-

cussed the ethical issues with autonomous systems but also

referred to trust in these systems as a complex concept which

could be defined as either reliability, predictability, goodwill,

affect or public trust.

Floyd et al. [26] introduced the idea of inverse trust. They

proposed a mathematical decision model for an autonomous

system to measure the level of trust of a human team-mate

and then adapts its own behaviour accordingly. Devitt et al.

[23] described that with complex and intelligent autonomous

systems, humans could become ‘overly trusting or overly

skeptical’, especially when robots become intelligent enough

and could manipulate their trust. Agrigoroaie and Tapus

[2] focused their work on human informal behaviour and

proxemics. The study showed that autonomous systems that

are capable of understanding the processes behind human

decision-making can have better interactions with them and

are more likely to be trustworthy.

In [80], van den Brule et al. argued that not only the robot

performance is important but also its behavioural style can

have some influence on people’s level of trust. Their exper-

iments in video and in VR showed that task performance is

key for trustworthiness but that the robot behavioural style

was also significant in the videos. Lewis et al. [48] explained

123



International Journal of Social Robotics (2021) 13:1929–1949 1933

that trust is dynamic (i.e. changing over time), and in [62]

trust towards automation is directly related to reliance.

2.5 Trust in Human–AV Interactions

The study of pedestrian trust in AVs is a recent research topic.

Previous work has mainly investigated the concept of trust

for passengers of autonomous vehicles during shared-driving

mode [4,19]. More often, pedestrian trust in AVs has been

investigated via the design and testing of external Human–

Machine Interfaces [20,54]. Rothenbuecher et al. [67] found

that pedestrians lacked trust when interacting with a vehicle

‘disguised’ into an AV because they could not see a human

driver inside, but at the same time they expected to trust

more the AV because of its algorithmic capabilities. Deb et

al. [22] performed a study using questionnaires to evaluate

pedestrian receptivity towards autonomous vehicles, show-

ing that males trust AVs more than females. The authors also

warn that pedestrians could take advantage of perfectly safe

autonomous vehicles.

Saleh et al. [68] proposed a framework that relies on

social cues, e.g. intent understanding, to model trust between

vulnerable road users and autonomous vehicles. Reig et al.

[64] studied pedestrian trust in autonomous vehicles via

interviews, showing for example that participants who were

favourable to AVs were more likely to trust them and that the

lack of knowledge about AV technology leads to mistrust.

Using the definition of trust in [46] introduced above, Jayara-

man et al. [38] studied pedestrians’ trust in autonomous

vehicles in a VR experiment followed by a questionnaire

using a Likert scale. It is argued that human trust increases

with the increase of available information, and found that

the AV’s driving behaviour and the presence of light can

influence the trust of pedestrians. This study also showed

correlations between pedestrian behaviour (distance to col-

lision, gaze and jaywalking time) and their trust towards the

AV.

2.6 Research Aims

Despite the numerous reviewed studies on proxemics and

trust from the social science and human–robot interaction

research communities, many works rely on qualitative or

discretized findings from human experiments using question-

naires, interviews and video analyses. Pedestrian proxemics

and trust are very recent topics in the context of autonomous

vehicles research. No found studies have inferred continu-

ous valued human proxemic utilities as now required by AV

controllers, or linked these to trust concepts. There is little

agreement on the definition of trust and new trust concepts

are regularly proposed, which are mostly informal rather

than directly implementable as mathematics and software

for autonomous vehicles. Thus, the rest of the paper will

contribute towards filling these gaps.

Summary of contributions This paper proposes:

– A novel Bayesian approach to infer proxemic utility func-

tions;

– A new concept and mathematisation of ‘physical trust

requirement’ for pedestrian–AV interactions, and also

applicable to more general human–robot interactions

which can numerically generate and explain Hall’s prox-

emic zones;

– Empirical results of our method on two public datasets

to infer pedestrian proxemic utility functions and trust

zones.

3 Proxemic Utility Modelling

Our method consists in inferring the proxemic utility function

of pedestrians from existing public datasets from interactions

between human drivers and pedestrians. No new empirical

experiments are performed in this study. Bayesian theory is

used to fit parameters and compare competing models. The

approach is first validated on simulated data whose ground

truth correct answer is available, before running on empirical

data from two public datasets in Sect. 5.

3.1 Proxemic Utility Definition

It is possible to measure the utilities (i.e. perceived costs

and/or benefits) which humans assign to states of the world,

by asking for or otherwise observing their preferences

between states. Such preference orderings for rational agents

can be shown to be mathematically equivalent to the assign-

ment of a single number to each state, which is defined as

the utility. This mapping from states to numbers is called the

utility function [6].

We consider utility functions U as models M with param-

eters θ = {a0, . . . , an},

U = M(X , a0, . . . , an), (1)

that assigns a real value U to the state X .
We assume that human proxemic utility can be described

by such a parametric model with the state X being the
physical distance between the two agents. Based on our
prior knowledge from Hall’s theory, we expect the size of
the negative utilities to roughly reduce with distance, so
we choose several candidate parametric models, M , with
a variable number of parameters, θ , including a hyperbolic
function (2), a Gaussian function (3) and different degrees of
polynomials (4),

Mhyperbolic(X , θ) = a0 X−1, (2)

MGaussian(X , θ) = N (X , a1 = µ, a0 = σ 2), (3)

Mpolynomial(n)(X , θ) = an Xn + an−1 Xn−1 + · · · + a1 X + a0. (4)
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We chose these candidate functions via three considera-

tions. First, if we assume very little about the form of the

function—just that it is reasonably smooth—then we need

to have at least one highly flexible generic model which

is able to fit to any smooth function. This is delivered by

the polynomial candidate. Second, we have a prior scien-

tific intuition—a hypothesis to test—that the function will

be roughly hyperbolic shaped, starting high and falling off

with distance. We include a hyperbolic model for this rea-

son. Finally, the Gaussian is included just because it is a

common function which often emerges in solutions of phys-

ical processes and easy to include. If additional candidates

are proposed in the future, they can also be tested against the

ones included here.

Throughout this paper, we assume that all agents are ratio-

nal and that utility can be measured in units of seconds

(roughly equivalent to ‘time is money’). Human pedestri-

ans and drivers assign a value of travel time in their journeys

[1,5,17,37,82], and using this as the unit will simplify the

analysis. We do not model the negative utility of a crash as

an additional explicit term because the proxemic model is

already able to include it as the utility of a zero distance

contact.

3.2 Proxemic Utility InferenceMethod

A Bayesian inference method is used to infer the proxemic

utility functions from observed data. It consists in fitting dif-

ferent parametric models to the data in order to obtain the

best parameters for each model. The observations are the dis-

tances between the two agents, X , their speeds, v and vped ,

and the outcomes of the interactions (pedestrian crossing

or stopping). We used nonlinear least squares optimisation

(implemented via the Python Scipy.optimize package) for

the model fitting. At each optimisation iteration, we used the

candidate model parameters proposed by the optimiser to

compute optimal actions for the pedestrian for every possi-

ble distance X . These optimal actions are compared against

the actual actions seen in the data, for the particular distances

in the data, and this comparison is used to compute the prob-

ability that given the model, the proposed parameters are the

true ones.

This is done using Bayes’ theorem as follows: under a

given model, M , with parameters θ and data D, we have,

P(θ |M, D) =
P(D|θ, M)P(θ |M)∑
θ ′ P(D|θ ′, M)P(θ ′|M)

. (5)

We assume a flat prior over θ so that,

P(θ |M, D) ∝ P(D|θ, M), (6)

which is the data likelihood, given by,

P(D|θ, M) =
∏

i

P(Ai |xi , x ped i
, v, vped , θ, M ′), (7)

where Ai is the pedestrian observed action choice, e.g. cross-

ing or stopping, xi and x ped i
are observed car and pedestrian

locations at the start of an interaction and v and vped are

observed car and pedestrian speeds. M ′ is a noisy version

of the optimal model M , which plays actions from M with

probability (1 − s) and maximum entropy random actions

(0.5 probability of each speed) with probability s. This is

a standard noise modification, used for example in psycho-

logical Bayesian data analysis [11,16,49], which allows the

model to fit data where agents have made deviations from

perfectly optimal strategies. Without this noise term, the

model would assign probability zero to any deviation from

perfect behaviour. But humans—and most other objects mod-

elled using statistics—rarely behave exactly according to any

mathematical model, so the noise term enables the models to

fit approximate behaviours.

3.3 Model Comparison

To select the best fitting proxemic utility function from the

set of candidate models Mi , we would like to compute and

take the maximum of P(Mi |D). This is computationally hard

due to a required integral over the parameters of the models,

P(Mi |D) = P(Mi )

∫
θi

P(D|Mi , θi )P(θi |Mi )θi . (8)

We instead compute and use the Bayesian Inference Cri-

terion, (BIC) [70] which is a standard approximation to this

integral,

B I C = log(n)K − 2 log(L) ≈ P(Mi |D). (9)

The integral, and the BIC approximation to it, are able to

correctly compare competing models Mi in cases where

the models have differently (K ) sized parameter spaces, by

combining the likelihood L = P(D|Mi , θ̂i ) of n observa-

tions in data D under the model Mi with the Occam factor

arising from the prior over the model’s parameter space,

P(θi |Mi ), assuming a flat prior on the models themselves,

P(Mi ) = P(M j ). This automatically and correctly penalises

models with many parameters for potentially overfitting to

data [70].

3.4 Validation via a Simulation Study

To validate our proxemic utility inference method, we devel-

oped a simulation with a simple crossing scenario with a
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Fig. 2 Pedestrian–vehicle interaction simulation

pedestrian and a car on a road with a width w, as shown in

Fig. 2. We simulate the internal reasoning of a pedestrian

based on a known (ground-truth) proxemic utility function

and the vehicle time utility for a crossing decision. Simulated

pedestrian behaviour data is generated, and used to infer back

the proxemic function. Validation occurs if the inferred prox-

emic function matches the input proxemic function used to

generate the behaviour.

3.4.1 Assumptions

The purpose of the simulation is only to validate that the sys-

tem is able to recover the ground truth (i.e. infer the ground

truth values used as inputs to the simulation back from the

output of the simulation). It does not matter which particular

ground truth is used for validation. So to create the simu-

lated data, we choose the following arbitrary settings: the

car moves at a constant speed (2 m/s) and the pedestrian is

standing at the edges of a crosswalk, ready to cross. The

pedestrian also moves at constant speed, 1 m/s. The pedes-

trian is assumed to have an internal reasoning about the utility

of crossing and avoid a potential crash with the car. They

compare the negative utility (effects) caused by the proxim-

ity with the car with the time delay that would occur if they

wait for the car. If the proximity cost (measured in seconds,

assuming time is a currency) is less than the time delay, i.e. if

they are able to cross before the car reaches the intersection,

then they are incentivised to do so.

3.4.2 Data Generation and Inference Results

We generated data from a pedestrian–vehicle interaction sim-

ulation, using a predefined proxemic utility function. We

defined random starts for the vehicle, to create 1000 different

pedestrian–vehicle interactions. We then used the data col-

lected to implement and test our inference method to recover

the original proxemic utility function. Examples of functions

that we tested are shown below.

Hyperbolic Function Firstly, we evaluated our inference

method with a ground truth hyperbolic proxemic function,

Mhyberbolic(X , a0) = a0 X−1, (10)

with a0 = 1, as shown in Fig. 3a along with the time utility

function and the crossing decision for the interactions. As

we can see in the results of the model fitting, in Fig. 3b,

the best model is the hyperbolic function with the maximum

likelihood (loglik = −105.36) and the lowest BIC value (BIC

= 217.629). All other models have a lower likelihood and a

higher BIC value, for example, the second best model is the

quadratic function with a likelihood of −107.55 and a BIC

equal to 235.839.

Quadratic Function Secondly, we used an arbitrary

quadratic function,

Mquadratic(X , a2, a1, a0) = −X2 + 5X + 25, (11)

as the ground truth. Figure 4a shows the ground truth

quadratic proxemic and time utility functions with the pedes-

trian crossing decisions. As shown in Fig. 4b, the best model

is the quadratic function with the maximum likelihood (loglik

= −1089.72) and the lowest BIC value (BIC = 2200.158). All

other models have a lower likelihood and a higher BIC value,

for example, the second best model is the cubic function with

a likelihood of −1109.49 and a BIC equal to 2246.615.
Quartic Function Thirdly and lastly, we evaluated our

method with an arbitrary quartic function, (i.e. polynomial
function of degree 4),

Mpolynomial(4)(X , a4, a3, a2, a1, a0) = −0.08X4−X3+3X+0.5,

(12)

as the ground truth as shown in Fig. 5a along with the time

utility function and the crossing decision for the interactions.

The results of the model fitting are shown in Fig. 5b. The quar-

tic and septic functions have the maximum likelihood (loglik

= −122.93) but the quartic function is ranked as the second

best model according to the BIC values with a BIC equal

to 280.415. Instead, the Gaussian model (loglik = −129.52,

BIC = 272.875) is selected as the best model due to its lower

number of parameters. However, we can note here that the

shape of the ground truth function shown in Fig. 5a looks

very similar to a Gaussian, so the selection of the Gaussian

model for this case is perfectly understandable.

The above results show that our proposed method for infer-

ring proxemic utility function works on simulated data and

with different ground utility functions.

4 Physical Trust Requirement

4.1 Trust Definition

Refining Lee and See’s concept of trust [46] reviewed above,

where trust is defined as an attitude in ‘a situation charac-

terised by uncertainty and vulnerability’, we define a new

related concept: physical trust requirement (PTR), a Boolean

property of the physical state of the world (not of the psy-

chology of the agents) with respect to one agent during an
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Fig. 3 Simulation with a hyperbolic proxemic function

interaction, true if and only if the agent’s future utility is

affected by an immediate decision made by another agent.

We thus measure the need for trust from pedestrian

behaviour in uncertain situations. The PTR divides the prox-

emic function into three zones as shown in Fig. 6, as the PTR

is true in the trust zone and false in the crash and escape

zones. We made some assumptions and used numerical val-

ues to obtain specific equations and numbers for the three

zones in our road crossing case:

1. Crash zone This is the region very close to the human

agent, where they will be affected by negative conse-

quences and no-one can prevent them from occurring, so
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Fig. 4 Simulation with a quadratic proxemic function

no trust is involved. In the road-crossing case, this occurs

when the pedestrian is in the road and the car is very close,

with neither able to run or brake to prevent the collision.

The crash zone, {d : 0 < d < dcrash}, is the region

delimited by the reaction and braking distances of the

vehicle, given by the standard stopping distance equa-

tion [51],

dcrash = vtdriver +
v2

2µg
, (13)

where the first term depends on the human driver’s

psychological thinking reaction time, tdriver , and the

second term represents the physical braking distance
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Fig. 5 Simulation with a quartic proxemic function

(depending on the physical friction between tyres and tar-

mac, and equal to the length of any physical skid marks

left by the vehicle after the driver begins to apply the

brakes), v is the vehicle speed, µ the coefficient of fric-

tion and g the gravity of Earth.

2. Escape zone This defines the area where the human agent

is able to choose their own action to avoid the negative

utility, rather than relying on the other agent. As such, it

does not need to trust the other agent. In our road-crossing

case, this occurs when the vehicle is further away from

the pedestrian, so that the pedestrian has time to act and
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Fig. 6 Proxemics–trust relation in pedestrian–vehicle interaction

save themself without trusting the vehicle to yield.

The escape zone, {d : descape < d}, is the set of dis-

tances beyond which pedestrians do not fear any potential

danger from the vehicle. In this zone, pedestrians can

complete their crossing before the vehicle arrives. The

escape distance descape is the minimum distance at which

this is the case. Consider the time tcross = w/vped it takes

for the pedestrian to cross, during this time, the vehicle

moves by distance wv/vped , where vped is the pedestrian

speed and w is the width of the road. When we also add

the distance moved by the vehicle during tped , the human

pedestrian’s reaction time to make their crossing decision

before starting to walk or not walk, then we obtain the

escape distance,

descape = vtped + vtcross

= vtped + w
v

vped

. (14)

This escape distance then defines the start of the escape

zone.

3. Trust zone We define the trust zone as the region of the

proxemic function where the PTR is true. The other agent

(e.g. the car) can choose (e.g. by slowing down) to pre-

vent them from receiving negative effects (e.g. collision),

but the human is incapable of making any action to affect

the utility outcome themself. In the road crossing case,

this occurs when the pedestrian cannot get out of the

car’s way in time to avoid collision, but the car is able

to brake and yield to prevent the collision if it chooses

to do so. This excludes the crash zone in which nei-

ther agent has any available choice to avert collision,

and also excludes the escape zone. So the trust zone

is {d : dcrash < d < descape}, the intermediate space

between the crash and escape zones.

When the pedestrian is in the crash zone, the vehicle has no

possibility to avoid an accident, whereas in the escape zone

the pedestrian can always cross safely. When the pedestrian

is in the trust zone, the vehicle has the sole power to decide if

a collision will occur. It is thus in the trust zone that it would

be important to study whether and how people do or should

trust autonomous vehicles or not.

4.2 Zones Analysis: Comparison with Hall’s Zones

We here derive some mathematical results from our zone

definitions and link them to previous results on Hall’s prox-

emic zones. Figure 7 shows the distances dcrash and descape

and the zones defined by equations 13 and 14, for vari-

able vehicle speeds v. We here assume: w = 2 m for

the road width, tdriver = 1 s as the driver reaction time

[21,28], vped = 1.1 m/s as the average walking speed of the

pedestrian [25,41,60], tped = 1.5s as the pedestrian reaction

time (chosen to be similar to the driver reaction time but a lit-

tle larger because drivers may be more focussed on their task

than pedestrians) [18], µ = 1 for the coefficient of friction

[34,61] and g = 9.8 m/s2 for the gravity of Earth.

By comparison, the related work review found that Hall

zones for human–human interactions are usually reported to

be around: intimate up to 0.45 cm, personal up to 1.2 m,

social up to 3.6 m, and public beyond this [45].

The vertical line in Fig. 7 shows the case v = 1.1 m/s in

which the vehicle has the same speed as the pedestrian, i.e. the

vehicle is behaving as if it was a second pedestrian interacting

with the first. In this case, the size of the Hall personal zone,

1.2 m, closely matches that of our crash zone in Fig. 7a,

dcrash = 1.16 m when v = 1.1 m/s (as would be the case

when the other is another human rather than a vehicle) and

retaining other parameters (including, quite unrealistically,

retaining the friction model and coefficient walking rather

than wheels). The size of the Hall social zone, 3.6 m, also

closely matches our descape = 3.65 m from the graph.

We also note that Fig. 7a predicts that social human–robot

interactions in which the robot is slower than a human, as is

the case for most humanoids, will have smaller crash and trust

zones, which matches the related work reviewed in which

personal and social zones were found to reduce compared to

human–human proxemics. Also, the trust region in Fig. 7b

gets smaller with speed, reaching zero width when linear and

quadratic curves meet at around 45 m/s = 162 km/h. This is

quite close to official and unofficial speed limits on most

countries’ motorways/freeways.

If we further define and consider R, the zone ratio given

by the size of the trust zone relative to the speed of the car,

R =
Descape

Dcrash

=
vtped +v(w/vped)

vtdriver + v2/2µg
=

tped +(w/vped)

tdriver +v/2µg
. (15)

Then we see that as vehicle speed increases, the effect of

tdriver becomes negligible, and the zone ratio tends to zero,
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(a) At lower speeds. (b) At higher speeds.

Fig. 7 Distances and zones predicted by the PTR model for different car speeds v (7a is a close-up of 7b)

Fig. 8 The ratio of escape zone size to crash zone size, R, decreases

as the car speed v increases, showing that the crash zone dominates at

high speeds

meaning that the crash zone’s size comes to dominate the

others:

v → ∞ ⇒ R →
2µg(tped + (w/vped))

v
→ 0, (16)

and as vehicle speed decreases, the zone size ratio converges

to a constant:

v → 0 ⇒ R →
tped + (w/vped)

tdriver

, (17)

which shows that if the ratio of zone sizes is consid-

ered rather than their absolute size, then all dependency

on friction and gravity has vanished in the high and

low speed limits. Thus, all road and car specific con-

cepts have vanished to leave a more general proxemic

relationship which may be of interest in general human

interaction cases rather than only road-crossings. Figure 8

shows the variation of R relative to the speed of the

car, and that the value of R in Eq. (17) tends to the constant

3.5.

5 Empirical Data Study

To demonstrate the inference of empirical pedestrian prox-

emic utility functions, we then apply the method to data from

real-world pedestrian interactions with manual driven vehi-

cles. We used two public datasets containing tracking data

from multiple road users. We only considered the interac-

tions where the pedestrian crosses or stops for utility, i.e.

when the gap is greater than the safety distance so that we

can learn how the pedestrian adjusts their comfort zone. We

then compute the PTR zones for these datasets.

5.1 Datasets

5.1.1 Daimler Pedestrian Benchmark

The Daimler dataset [43] contains 58 pedestrian–vehicle tra-

jectory data and annotations, such as pedestrian crossing

decisions. The dataset was not collected from real-world

interactions, the pedestrians and drivers were actors. The

authors created these interaction scenarios for their work,

44 of these were pedestrian crossing scenarios and the other

14 interactions were stopping scenarios. Figure 9 shows a
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Fig. 9 Pedestrian intention with a vehicle, from its dashcam, in the

Daimler dataset [43]

Fig. 10 Histograms of vehicle and pedestrian speeds in Daimler dataset,

showing that average speeds v ≈ 5.25 m/s and vped ≈ 1.60 m/s are

good approximations

Fig. 11 Crosswalk in inD dataset [7]

Fig. 12 Histograms of vehicle and pedestrian speeds in inD dataset,

showing that average speeds v ≈ 4.79 m/s and vped ≈ 0.99 m/s are

good approximations
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dash cam image of one interaction scenario. The distribution

of vehicle and pedestrian speeds in the dataset is shown in

Fig. 10.

5.1.2 inD (Intersection Drone Dataset)

The inD dataset [7] is a newly released dataset which pro-

vides road users (cars, trucks, cyclists, pedestrians) tracking

data. There are 32 videos recording data from 4 different

intersections in the dataset, which contains thousands of real-

world interactions. But as the videos were not released with

the trajectory data, we decided to focus on one intersection,

where there is clearly a pedestrian crosswalk, thus pedes-

trians crossing the road would necessarily interact with the

upcoming vehicles. Twelve recordings (n◦18 to n◦29) contain

data from the crosswalk shown in Fig. 11. The distribution

of vehicle and pedestrian speeds in the dataset is shown in

Fig. 12.

5.1.3 Criteria for interactions’ selection

As inD dataset contains multiple classes of road users but we

were interested in pedestrian–vehicle interactions only, we

extracted them from the rest of the data in a semi-automatic

manner and annotated them. For each given pedestrian, we

find the car that appeared a few frames earlier and then

we select the frames where they both appear together. We

only kept interactions where the vehicle and the pedestrian

were encountering somewhere near the coordinates (x = 62,

y = −27), to make sure the pedestrians cross at the cross-

walk, not any other locations, where they would jaywalk and

we would have no possibility to know the hidden factors

behind that decision. We selected trajectories where cars and

pedestrians followed a straight path until their encounter, in

order to match with our simulation model. We kept pedes-

trians walking from the bottom right, we didn’t consider

pedestrians coming from the top right because most of them

were not crossing, as there was a car park.

In total, we used the 58 interactions from the Daimler

dataset and we collected 48 more interactions from inD

dataset, with 24 where the car came from the top right of

the image, and the other 24 where cars came from the bot-

tom left of the image. Figure 13 shows some examples of

pedestrian–vehicles trajectories from both datasets.

5.2 Proxemic Utility Model Selection

5.2.1 Proxemic Utility Implementation

First, we applied our proxemic utility inference method on

the two datasets, similar to the simulation study in Sect. 3.4,

except that here we would not know the ground truth func-

tion for final comparison. The goal here is thus to infer the

unknown proxemic utility function from the data and select

the best model with the lowest BIC value.

5.2.2 Proxemic Utility Results

Results of the proxemic utility inference method on the

Daimler and inD datasets are shown in Figs. 14 and 15,

respectively. They show that a hyperbolic function best

describes pedestrian proxemic behaviour in both cases, with

the lowest BIC values (Daimler BIC = 174.482, inD BIC

= 62.325). The proxemic utility costs increases with shorter

proxemic distances, and with a steep growth near the col-

lision point. These results are consistent with the human

experiments in [72,73], where participants’ perception of

threat (negative utilities) increases at shorter distances and

decreases at longer distances.

5.3 Zones Computation

5.3.1 Zones Implementation

Second, we computed two different estimates of the zone

distances, called ‘theoretical’ and ‘empirical’ zones. Both

estimates make use of the data. The theoretical estimate

makes use only of average speeds from the data, and

the empirical estimate makes use of extreme individual

behaviours from the data.

We define theoretical zones as the solutions of the equa-

tions in Sect. 4.1 given by assuming that all vehicles move at

the average speed of the vehicles in the dataset, and all pedes-

trians move at the average speed of pedestrians in the dataset.

This assumption is justified approximately by the histograms

of these speeds in the datasets, as shown in Figs. 10 and 12,

which show that vehicles are all moving at similar urban

speeds of 0–30 km/h and pedestrians are all moving at simi-

lar walking speeds. The average speed of vehicles in Daimler

was v ≃ 5.25 m/s; and in inD: v ≃ 4.79 m/s. The average

speed of pedestrians was in Daimler: vped ≃ 1.60 m/s; and

in inD: vped ≃ 0.99 m/s. We here use the same constants as

in Sect. 4.2, with w = 2 m for the road width, tdriver = 1 s

as the driver reaction time, tped = 1.5s, µ = 1 for the coef-

ficient of friction and g = 9.8 m/s2 for the gravity of Earth.

We define empirical zones by finding in the datasets the

maximum distance below which pedestrians always stop

and the minimum distances above which they always cross.

This is intended to provide only an exploratory measure.

It is not a true statistical estimator, because its error increases

rather than decreases with sample size due to its dependency

on only the most extreme individuals.
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Fig. 13 Examples of interactions from the datasets

5.3.2 Zones Results

Results of the theoretical zone experiments are shown in dark

blue in Fig. 14 for Daimler dataset and in Fig. 15 for inD

dataset. The empirical zones are shown in dark red in Fig.14

for Daimler dataset and in Fig. 15 for inD dataset.

For the Daimler dataset, the theoretical trust zone is

between 7–15 m and the empirical trust zone is between 14–

45 m. For the inD dataset, the theoretical trust zone is between

6–17 m and the empirical trust zone is between 10–31 m.

The theoretical and empirical zones for the two data sets

are roughly in agreement which suggests the effect of the

actors in Daimler is not important. The boundaries of these

zones, both theoretical and empirical, would change if the

vehicle drives at a higher or lower speed.

The width of all of our theoretical (crash, trust and escape)

zones are smaller than the empirical zones. We found that our

theoretical zones were underestimated relative to the empir-

ical zones, by about three times in Daimler dataset and by

two times in inD dataset. We compute these coefficients by

iteratively updating by increments the theoretical crash and

trust zone boundaries. This underestimation of the theoretical

zones is expected because we computed them under many

simplifying assumptions, including using average speeds

across the datasets and guessed other parameters such as

the driver reaction time (tdriver ), the pedestrian reaction time

(tped ) and the coefficient of friction (µ). If all the interactions

were performed with these average speeds and parameters

(tdriver , tped and µ), then the theoretical zones might match

the empirical zones. In fact, Figs. 16 and 17 show the time

utilities and outcomes (pedestrian crossing decisions) for

each interaction in the Daimler and inD datasets, respec-

tively. In particular, the time utility graphs show the variations

of vehicle speeds across the interactions. This may explain

why our theoretical trust zones do not match the empirical

trust zones. Moreover, if we had computed the theoretical

zones for each interaction (with their corresponding speeds),

it would not be possible to analyse and to make a general dis-

cussion on these zones with respect to the proxemic utility

function, which was drawn from all the interactions in each

dataset.

For this reason, we will base the rest of our analysis of

trust on the empirical zones. We can see that the trust zone is

the area of the proxemic utility function where the gradient
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Fig. 14 Model fitting results for Daimler dataset

Fig. 15 Model fitting results for inD dataset
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changes more. This reflects the high uncertainty that lies in

the trust zone. The decision of a pedestrian to cross is

uncertain here because the pedestrian has to rely on the

vehicle to make a decision. In contrast, in the crash and

escape zones, we see that the gradient of the proxemic utility

function changes less, this is due to the more determinis-

tic outcome in these areas. In the crash zone, the distance

and the speed of the vehicle give enough information to the

pedestrian for not crossing and in the escape zone, the vehi-

cle behaviour does not interfere into their crossing decision

because the danger cannot be perceived by the pedestrian as

found in [72,73], therefore they will cross.

Finally, for the actual average car speeds in the two

datasets, equation 15, computed by the ratios of the theo-

retical zones Descape/Dcrash from Figs. 14 and 15 , gives for

Daimler R = 15/7 = 2.1, and for inD R = 17/6 = 2.8.

Using the empirical zone boundaries from the same figures,

we obtain Daimler empirical R = 45/14 = 3.2; and inD

empirical R = 31/10 = 3.1. These results closely match the

ratio found for Hall’s zones in Sect. 4.2.

6 Discussion

Although the proxemic utility inference method has proven

successful on simulation and real-world interactions, several

simplifying assumptions were made in order to present and

test the basic principles of the method, from which future

work should try to move away in order to obtain more reliable

results. In particular, we assumed that all vehicles move at

an average vehicle speed rather than their individual speeds,

which is a likely cause of the observed discrepancy between

the theoretical and empirical trust zones. This discrepancy

is a useful self-test of the model’s assumptions, so if future

work brings them closed that would give some confidence in

the proxemic utility results.

The basic premise of this study, as taken from the game

theory model conclusions, was that a proxemic function

captures the feeling of discomfort from space invasion by

vehicles. However, speed considerations might be extended

into the utility function itself: a pedestrian might feel com-

fortable standing 10 m from a car if it is moving towards them

at 1 m/s, but not at 10 m/s. Including the speed of the vehicle

as an additional parameter in the pedestrian’s utility function

would formally move future models from being proxemic

functions to include a kinesic component (i.e. involving speed

as well as proximity) as suggested in [24] and this may further

improve interaction control.

We assumed that the pedestrian and the vehicle were solely

interacting with each other, ignoring simultaneous interac-

tions with other individuals. We also assumed that the agents

always moved along straight, orthogonal paths as in the game

theory model, thus we did not include the interactions where

pedestrians were not crossing straight away. We used only

parametric models to infer the proxemic utility function,

future work could explore the use of non-parametrics such as

Gaussian Processes and compare their performance against

the present models, which is possible via the BIC. Reviewed

previous work on proxemics has shown that demographics,

social, cultural and environmental factors can have an influ-

ence on the proxemic distances [55], therefore it would be

important to incorporate some of this additional informa-

tion and to build a more precise inference model on them.

Reviewed previous work on human–robot interactions has

shown that the physical size such as height of the other agent

also affects proxemics zone sizes, which suggests a similar

role for physical car sizes in modifying proxemic utilities. In

particular, it provides a further explanation for how buying

expensive sports utility vehicles (SUVs) can be rational via

their infliction of stronger proxemic penalties onto other road

users, thus allowing the driver to win more interactions and

reduce their own journey times [27].

Additional future work could look into testing our method

on human–AV interactions in virtual reality experiments, and

demonstrates its effectiveness on a real autonomous system

for better interactions with people. In these settings, it would

be possible to collect causal data rather than the passive data

used in the present study, as the vehicle can be actively con-

trolled as an independent variable in order to measure the

dependent behaviour of the pedestrian, more clearly sepa-

rating the causal logic between the two agents during their

interaction.

We have mainly focused on pedestrian–vehicle interac-

tions, but the concepts and methods here could be applied

to other human–robot interaction tasks. For example, human

factory workers collaborating with a robot arm could be mod-

elled by a trust zone in which the arm is able to hit them

without time or space to escape.

We have merged Hall’s intimate and personal zones to

map jointly into our collision zone, and did not attempt to

explain any theory of intimacy within this zone. In general

proxemics, our collision zone would be the distance at which

a physical attack such as a punch or grab (analogous to the

vehicle collision) may (a) have already happened or (b) be

in unstoppable progress. Possibly this would subdivide with

(a) as Hall’s intimate zone and (b) as Hall’s personal zone,

with the width of the intimate zone being the collision area

width w.

Using space invasion to inflict small negative utilities via

discomfort on members of the public may still be considered

unethical or illegal in some cases. In many jurisdictions, such

as in the UK, this is an ongoing dilemma under active debate

by authorities [79]. We hope the present study will contribute

to this debate, by showing how this option trades off against

other possible negative utilities, including those inflicted

on passengers of such vehicles whose journeys would be
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Fig. 16 Time utility and ground truth interaction outcomes for Daimler dataset

Fig. 17 Time utility and ground truth interaction outcomes for inD dataset

delayed by overly assertive pedestrians pushing in front of

them. Human drivers already use many such credible threats

to encourage pedestrians to get out of the way. In many

cases, these threats result in actual collisions. Replacing

these threats by automated systems which only invade space

rather than potentially collide would improve safety.

7 Conclusion

A previous game theoretic model has suggested that autono-

mous vehicles must either risk making no progress at all

by yielding to all road-crossing pedestrians to stay safe, or

maintain a credible threat of actually colliding with them

to encourage them to yield. Neither of these are desirable

outcomes. The new method developed in the present study

now enables the inference of continuous pedestrian proxemic

utility functions from pedestrian–driver interaction data. The

game theory model shows that this can be used to make their

interactions both safe and efficient. This can be done by

de-escalating the severe threat of collision to much milder

and legally permissible threat of merely invading their per-

sonal space to create discomfort as a weaker but still effective

penalty for non-collaboration in interactions.

We also defined and mathematically formalised a new

concept of trust based on the proxemic function for

human–autonomous vehicle interactions. These new, quanti-

tatively defined, zones for the physical trust requirement may

assist autonomous vehicle designers in understanding what

is meant and required by the concept of trust. The mathemat-

ical and empirical results of Sect. 4.2 are evidence that our

concept can explain the existence of the classic Hall intimate-
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personal, social and public zones, quite precisely generating

their sizes and ratios, which emerge as a special case for two

low speed agents interacting.

Our concept generalises these Hall zones beyond their

usual use in human–human interactions to allow for larger

zones as the speed of the other agent increases from human

to vehicle speed, and shows how trust zones become rela-

tively smaller at higher (e.g. freeway/motorway) speeds. It

also generalises to interactions with agents moving slower

than humans and predicts smaller zones in these cases, which

is consistent with the human–robot proxemics studies previ-

ously reviewed.
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