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CARING: Towards Collaborative and
Cross-domain Wi-Fi Sensing

A case study for human activity recognition

Xinyi Li, Fengyi Song, Mina Luo, Kang Li, Liqiong Chang, Xiaojiang Chen*, Zheng Wang

Abstract—The quality of a learning-based Wi-Fi sensing system is bounded by the quantity and quality of training data. However,

obtaining sufficient and high-quality data across different domains is difficult due to extensive user involvement. We present CARING, a

federated-learning-based framework to support collaborative and cross-domain Wi-Fi sensing. A key challenge of CARING is to allow

the effective exchange and learning of knowledge across local models that are derived from heterogeneous data sources with uneven

data distributions. We overcome this challenge by first extracting the activity-related representation to train local models. The shared

global model aggregates received local model parameters and sends them back to individual devices for fine-tuning locally in the

deployed environment. By leveraging the crowdsourced knowledge, CARING allows local models to quickly adapt to domain changes

using just a few samples seen at test time. We demonstrate the benefit of CARING by applying it to activity recognition across three

public datasets collected from 5 environments, 7 deployments, 31 users, and 29 activities. Experimental results show that CARING is

highly effective and robust, improving the alternative approach for using single-sourced training data by up to 47%, giving an accuracy

of over 80% (up to 100%) for various cross-domain scenarios.

Index Terms—Wi-Fi Sensing, Cross-domain, Collaborative sensing, Federated learning, Human activity and gesture recognition

✦

1 INTRODUCTION

Human activity and gesture recognition build upon Wi-Fi-
based sensing techniques promise many exciting application
scenarios, from fitness tracking [1] and health monitoring [2]
to safety authentication [3]. However, Wi-Fi signals usually
carry adverse domain1 information is unrelated to human
activities and gestures. As a result, the classifiers trained
with primitive signals in one domain usually undergo
drastically drop in accuracy with another domain. This
drawback leads to poor user experience, limiting the scale
at which Wi-Fi sensing can be operated.

Efforts have been made to address changing domain
factors of Wi-Fi sensing – a problem known as cross-domain
sensing [4], [5], [6]. Existing works in this direction in-
clude generating virtual samples to train a “one-fit-for-all”
model for different domains [7]. Such data augmentation
approaches, while important, are unlikely to cover all pos-
sible domain changes using a single set of training data
at design time. Other techniques try to convert the test
samples into a domain-agnostic representation to minimize
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1. In this work, a domain is a deployment setup including factors like
users, deployment environment (e.g., a particular room or office), and
device setup. A new domain emerges when one or multiple domain
factors change.

the environmental impact [8], [9]. However, it is very hard,
if not impossible, to find a single transformation function
that works across domains in large-scale deployment. In
addition, all existing approaches have a fundamental draw-
back by requiring a labour-intensive and time-consuming
process of collecting training measurements to characterize
how wireless channel metrics - such as channel state infor-
mation (CSI) or received signal strength indicator (RSSI) -
are affected by different domains. While collecting such data
from each occupant of a home may be feasible, asking each
employee or visitor to provide training measurements in a
large organization is impractical.

We present CARING2, a novel cross-domain Wi-Fi sens-
ing approach. CARING is a federated learning (FL) frame-
work [10], designed to aggregate the information collected
from distributed users to reduce the labor and time cost
of collecting training measurements for learning a high-
quality sensing model, while achieving good performance
in cross-domain recognition. CARING also enables a service
provider to tailor the decision models of a Wi-Fi sensing
system to each domain during deployment. One example is
personalising and customising a local model for different
households and Wi-Fi device deployments. By doing so,
CARING thus improves the performance and reliability of a
deployed model. Furthermore, since all raw signal data re-
main on the user devices, CARING respects the user privacy
constraint when Wi-Fi sensing is used for sensitive tasks like
human activity monitoring in healthcare settings [11].

Fig. 1 gives a high-level workflow of CARING. Here, end-
users first download a global model from a service provider
to their devices such as a smartphone, wireless router or

2. CARING =Collaborative and Cross-domain Wi-Fi Sensing.
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DOWNLOAD GLOBAL MODELSEND UPDATE TO GLOBAL MODEL REFINE LOCAL MODEL

Fig. 1: The workflow of CARING. CARING enables a service provider
to use collaborative learning to improve Wi-Fi sensing performance
without compromising user privacy.

dedicated IoT systems for sensing. CARING then improves
the local model by performing on-device learning from a
handful of data samples collected from the target domain
in the deployment site. It summarizes the changes made to
the local model as a small set of focused weight updates.
It then only sends the local model’s update to the service
provider, which is used to update the global model with
data collected from other user models. The updated global
model can be later sent back to the user device to refine
the local model further, allowing the local model to quickly
adapt to domain changes using crowdsourced knowledge.
By doing so, CARING allows the service provider to leverage
knowledge learned from large-scale, diverse, and real-life
deployments to improve the generalization ability of the
global model and boost the learning process of a local
model. FL is demonstrated to be effective in improving the
generalization ability of a decision model while providing
personalized services in a number of industry-scale appli-
cations like speech recognition and online search [12]. This
computing paradigm is increasingly accepted by users as
the end-users benefit from improved service. However, few
works so far have attempted to develop an FL-based Wi-Fi
sensing framework.

To unlock the potential of FL for Wi-Fi sensing requires
finding ways to aggregate and utilize the heterogeneous and
uneven data distributions collected from different sources
to train a global model [13]. Furthermore, when collecting
data from different end-users and deployment sites, the
labels of the data samples are likely to be imbalanced.
This is because end-users may only perform a subset of
all activities, e.g., a user may only have {push, pull} while
another may only perform {throw, circle}. In the context of
WiFi sensing, these challenges can manifest when different
activity samples (e.g., gestures) are obtained from different
settings (e.g., offices and meeting rooms) and different users.
Although the global model can access many model updates
learned from different deployments and domains, care must
be taken to avoid model overfitting.

CARING overcomes the aforementioned challenges
through carefully designed signal processing methods and
learning strategies. We start by employing a simple yet
effective method to cancel the domain noise to extract
activity-related signal representation. We use this method to
minimize the impact of heterogeneous data resulting from
different domains. Using the activity-related but domain-
independent features also permits learning a local model

that is resilient to domain changes. Consequently, this max-
imizes the chance for the global model to reuse model
updates obtained from different domains. To overcome the
label imbalance issue, we learn a personalized local model
for each domain (e.g. a specific device set up in a room).
This strategy also boosts the learning process of local model
fine-tuning – as we will show later, we need a small number
of samples to retarget a global model to a new domain.

Our model for activity recognition is a stacked neural
network consisting of convolutional neural networks (CNN)
and recurrent neural networks (RNN). This architecture is
shown to be effective in recent work on human activity
recognition [14]. We use the same architecture for the local
and global models to facilitate weight sharing and model
fine-tuning. Our model takes as input the preprocessed sig-
nal measurements. It then extracts and integrates activity-
related representation from the frequency and time domain
to perform activity recognition. To avoid overfitting when
aggregating local model updates, we introduce a weight
adaption mechanism to train the global model. Our scheme
is designed to guide the global model to focus on model
updates obtained from new domains that are more likely to
improve the generalization ability of the resulting model.

We implemented a prototype of CARING and evaluated
it on three datasets for activity and gesture recognition
deployments, 31 users and 29 activities. Our evaluation rep-
resents the largest cross-domain evaluation seen in the liter-
ature [4], [15], [16]. The datasets contain CSI data collected
from 5 environments, 7 devices. Experimental results show
that CARING improves the alternative of using single-source
training data by up to 47%, with an accuracy of over 80% (up
to 100%) for various cross-domain scenarios. We show that
CARING is robust, delivering consistently good performance
in challenging situations where the global model has to be
trained with imbalanced data samples.

This paper makes the following contributions:

• It introduces an FL framework for collaborative and
cross-domain Wi-Fi sensing for human activity recog-
nition.

• It presents a set of new signal processing methods and
learning strategies to support collaborative machine
learning for Wi-Fi-based sensing tasks.

• It demonstrates how FL can be employed to support
cross-domain Wi-Fi sensing with a handful of training
samples.

2 RELATED WORK

Wi-Fi-based sensing system. Recent years have witnessed
many activity and gesture recognition systems based on
Wi-Fi devices [17], [18], [19], [20], [21], [22]. However, the
change of domain factors (e.g., users, environments, and
device deployments ) can lead to skewed signal charac-
teristics which can significantly decrease the recognition
system’s performance. To make Wi-Fi-based sensing sys-
tems practical in the real world, many innovations have
been developed to adapt the recognition system in various
domains. WiAG [7] can generate virtual samples of any
activity in any position and orientation. CrossSense [9] uses
a machine-learning model to generate training samples for
cross-site sensing. CrossGR [23] uses data augmentation
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to reduce the cost of collected training data and uses the
deep neural network to extract the user-agonistic activity
features from the Wi-Fi channel information. Fido [5] uses
Variational Autoencoders (VAEs) to generate synthetic fin-
gerprints and designs a joint classification-reconstruction
structure to predict the new users’ location. However, such
data augmentation approaches are unlikely to cover all
possible domain changes using a single set of training
data at design time. Other works attempt to find domain-
independent features to characterize signals. For example,
Widar3.0 [4] designs an environment-independent feature
that can generalize the ability of the system. EI [8] leverages
the adversarial network to remove environmental factors.
However, the complexity of wireless signals in large-scale
deployments makes it difficult to find universal features
that are friendly to all domains. In addition, the above-
mention systems require centralized obtaining sufficient and
high-quality sensing data across different domains. Meta-
learning-based systems [24], [25], [26] aim to improve the
robustness of human activity recognition systems. They all
train a model on a large number of raw signal measure-
ments. They require a labor-intensive and time-consuming
process of collecting training data. CARING is fundamen-
tally different from these prior meta-learning approaches.
It is designed to aggregate the model information (rather
than the raw data) to reduce the cost of data collection. Our
novelty lies in a crowdsourcing framework for aggregating
model information to learn and improve machine-learning
models for Wi-Fi-based activity recognition. We propose a
set of techniques to address the data imbalance and noise
canceling. As far as we know, CARING achieves the largest
cross-domain scale with high precision to date. For exam-
ple, cross datasets means that users, environments, devices,
and deployment domains change at the same time. Finally,
we can achieve aggregate between different label data to
establish a generalized global model, which advances the
application of Wi-Fi-based sensing systems in reality.

Human activity recognition with FL. Recently, FL has
been applied to human activity recognition [27], [28], [29].
Sozinov et al. [30] applied FedAvg to solve the problem of
human activity recognition. However, it does not solve the
new challenges brought by human activity recognition so
that it achieves slightly worse accuracy compared to the
traditional centralized models. ClusterFL [13] is a novel
FL system enabling collaborative learning among similar
nodes for human activity recognition. Hermers [31] is
an FL framework that achieves personalization under data
heterogeneity. They solve the heterogeneous data issue, high
communication costs and computation efficiency for mobile
devices. Compared with these systems, CARING aims to uti-
lize the FL to make the distributed end-users can collaborate
to reduce the labor-intensive and time-consuming process
of collecting training measurements for learning centralized
models. In a potentially concurrent work, WiFederated [32]
employs an FL framework for scalable deployment of multi-
location CSI-based WiFi sensing systems. CARING advances
WiFederated by addressing the label imbalance issue for
learning on crowdsourced WiFi model parameters. CARING

also leverages effective methods to cancel the domain infor-
mation from the original Wi-Fi signals.

The model aggregation in FL. Yang et al. [33] aims to
reduce communication costs and improve the learning per-
formance of FL by suggesting a synchronous model update
strategy and a temporally weighted aggregation method.
FedAMP [34] introduces a novel attentive message-passing
mechanism to significantly facilitate the collaboration ef-
fectiveness between clients without infringing their data
privacy. FedProx [35] is designed to tackle heterogeneity in
federated networks. These prior studies focus on improving
the communication efficiency of FL. They do not address the
problem of Wi-Fi-based human activity recognition through
crowdsourcing. Unlike the prior work, CARING addresses
the cross-domain and label imbalance issues by applying
FL to Wi-Fi-based human activity recognition.

3 BACKGROUND

3.1 Problem Definition

In this work, the term domain refers to a specific devel-
opment setup that is independent of the activity (e.g., ac-
tivities/ gestures). Here, a domain can include factors like
users, environments (e.g., the layout of a room) and wireless
device setup (like the position, location and distance of
two Wi-Fi routers). A new domain can emerge if one or
multiple domain factors change. For example, rearranging
the wireless device setup, adding new users, and changing
the room’s layout can result in a new domain. We consider a
task to be cross-domain sensing when the test domain differs
from the domain where the model training data is obtained.
Our work considers two types of cross-domain sensing
scenarios, cross single-domain-factor and cross multi-domain-
factors. The former refers to the evaluation setup where only
one domain factor changes between training and testing.
The latter refers to the scenario where multiple domain
factors change between training and testing.

In addition, CARING uses crowdsourced knowledge
from different data sources to improve the generalization
ability of the global model and boost the learning process of
a local model. However, the label imbalance issue usually
exists in the crowdsourcing scenario where different orga-
nizations may share different label information. In detail,
each organization may only identify a subset of the activities
associated with the global recognition model. As a result,
the label distribution in training datasets from different
institutions is unbalanced.

3.2 Motivation

3.2.1 Cross-domain issue

In this section, we take one example of cross single-domain
(i.e., cross-user domain) and one example of cross multi-
domain (i.e., cross-device and device-location domains) as
examples to explore the major limitations of Wi-Fi-based
sensing systems. We use the public Widar3.0 dataset to
quantify the differences between data samples from dif-
ferent domains by using dynamic time warping (DTW)
distances. For cross-user domains, the data is collected by
the different users. Only the user factor (i.e., the physical
somatotypes of participators) changes. We use data from
two users to calculate the cumulative distribution function
(CDF) diagram in the same user domain and cross-user
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TABLE 1: Statistics of participants of WiAR dataset [15]. G, H and W
stand for the gender, height (cm) and weight (kg).

G H W G H W G H W

Male 173 85 Male 180 75 Male 165 65
Female 160 60 Female 170 60 Female 155 65
Male 180 85 Male 175 70

(a) User domain. (b) Dev and dev-loc 
domain.

(c) The performance of 
DTW distance.

Fig. 2: DTW distance of CSI samples from the same or different
domains. Dev and Loc stand for devices and location.

domain. For cross-device and device-location domains, the
data is collected by the different devices and device loca-
tions at the same time. We use the data of two devices
(i.e., Rx1 and Rx2 in the Fig. 17) to calculate the CDF
diagram in the same or cross-device and device-location
domain. For this diagram (Fig. 2), “Same User” or “Same
device and device-location” means the data comes from
the measurement of a single user or a single device re-
spectively. “Different User” or “Different device and device-
location” means the data comes from the dataset of different
users or different devices, respectively. We use the CDF of
single/two users to show that CSI measurements have a
small DTW distance when they are collected from the same
domain. By comparison, those taken from different domains
will have a larger DTW distance.

To further evaluate the prediction accuracy when using
DTW distance as a feature, we use the data of user 1 as the
baseline, and use the data of user 2 to user 9 to calculate
the DTW distance and test prediction accuracy. Similarly,
for cross-device and device-location domains, we use the
data of user 1 collected by Rx1 as the baseline data, and
the data of Rx2 to Rx6 to calculate the DTW distance and
test prediction accuracy. From Fig. 2(c), we can see that the
results are disappointing. Because the DTW distance aims to
assess how close the data distribution is, it cannot separate
the domain information from the CSI data.

For quantified evaluation, we use the CNN-based neural
network depicted in Fig. 3 to train a classifier. We consider
two scenarios. The first is to train and test the system on
data collected from the same domains. The second is to train
the system on data collected from some domains but test
the system on data from other previously unseen domains.
For each case, we apply the grid-search method [36] to
find the optimal parameters. We use the WiAR dataset and
Widar3.0 dataset to evaluate the cross-user issue and the
cross-device and device-location issue, respectively. For the
cross user issue, we can obtain the statistics of participants
from WiAR [15] as shown in TABLE 1. We use the data of the
first 6 users as the training set. The data of the last 2 users
are used as testing data. For the cross-device and device-
location issue, as shown in Fig. 17, Wi-Fi signals collected in
Rx1 and Rx2 are used as the training and testing data. As
shown in Fig. 4, the bars are results from different evaluation
setups; hence, the numbers are different. Specifically, the left
purple bar is the accuracy when the testing data and training

Input
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C
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n
v

Label

C
o

n
v

Pooling layer Dropout layerFlatten layer Dense layer

Fig. 3: Architecture of CNN-based classifier.
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data are collected from the same user domain. For example,
we use the data of user 1 to train and test the model, and we
keep other domains (i.e., environment, device, and device
location, etc.) unchanged. By contrast, the right purple bar
is the accuracy when the testing data and training data are
collected from the same device and device-location domain.
For example, we use the data of Rx1 (Fig. 17) to train and test
the model, and we keep other domains (i.e., environment,
users etc.) unchanged. When the classifier is trained and
tested on the same domain, it achieves over 90% accuracy
for both two cases. However, the accuracy drops by at
least 55% in different domains since the learned models are
sensitive to data distribution changes, suggesting the model
gives poor performance when it is tested on data from a
different domain. In addition, we can infer that there is a
large accuracy drop in performance even if the differences
between domains are small (i.e., Rx1-Rx2 distance is only
0.9 m). The same conclusion is also proved by the RISE [37].

3.2.2 Label imbalanced issue

In this evaluation, we consider two public datasets collected
from different domains. The first (Widar 3.0) dataset in-
cludes 9 activities from 9 users in the classroom, and the
second dataset [16] includes 7 activities collected from 8
volunteers in the office. As the two datasets are gathered by
independent researchers from different environments, they
mimic a typical crowdsourcing setup. We use the combina-
tion of these two datasets to evaluate the recognition per-
formance under the label imbalance issue. Specifically, we
train a CNN model using the data of 7 users from Widar3.0
dataset and 6 users from the [16] dataset. Each dataset has
2 users uninvolved in training as the testing users to test the
system. The CNN model has the same structure and training
method presented in Section 3.2.1. The softmax function
output is the V -dimensional prediction distribution. We
set V = 16 in this experiment. The results are shown in
Fig. 5. The F1 Score is less than 40%. It indicates that the
imbalance label is an issue when training the model using
data aggregated from multiple organizations.

4 SYSTEM OVERVIEW

Fig. 6 gives an overview of CARING.

Noise Dispelling Scheme (NDS). We propose a simple but
effective method to dispel the domain information from
the original Wi-Fi signals before putting them into the
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Fig. 6: An overview of CARING.

deep learning framework to extract activity-related features.
More details are in Section 5.2.

Feature Extraction Scheme (FES). We present a hybrid deep
learning framework that automatically extracts effective fea-
tures from processed data by integrating CNN and RNN.
The framework is designed to study the frequency domain
inter-internal relationships between sub-carriers as well as
the time domain intra-internal features of a sub-carrier. It
works over the global model and local models as depicted
in Section 5.3.

Personalized Local Model. We consider each domain as a
subtask and train a unique local model for itself. To achieve
personalized predictions in new domains, we first down-
load and reuse the global model’s parameters, then collect
one or two samples to refine and retune the personalized
local model’s parameters (Section 5.4.1).

Weight Adaption Scheme (WAS). We apply a weight adap-
tion scheme to make the global model more generalized
to new domains. This approach focuses greater emphasis
on domains whose parameters contribute more to the new
domain. This will be discussed in detail in Section 5.4.2.

5 SYSTEM DESIGN

5.1 Data Formulation

We provide a general description of the data definition. For
simplicity in description, we define an overall dataset Do

with n + m domains, which is the union of the training
domain data Dt and the new domain data Dl, i.e., Do =
Dt⊔Dl. Specifically, the training data has n domains as Dt =
{D1

t , D
2
t , ..., D

n
t }, and the new data has m domains Dl =

{D1
l , D

2
l , ..., D

m
l }. Each domain has a different amount of

data and correspondingly different labels. The new domain
data Dl is divided into three categories, i.e., the personalized
data Dlp, the weight adaption data Dlw, and the testing data
Dlt. Both Dlp and Dlw contain a small amount of labeled
data (less than 2 samples) for local model personalizing and
global model generalization. Dlt contains a large amount of
unlabeled data to test the performance of CARING.

5.2 Noise Dispelling Scheme

The received Wi-Fi signals in reality are a mixture of multi-
ple signals that travel along different paths and are reflected
by a certain number of objects. Specifically, the signal prop-
agation paths reflected by users with different biometric

t2
t3

tQ-2
tQ-1

tQ-1
tQ

t1
t2

t1
t2

t2
t3

tQ-2
tQ-1

tQ-1
tQ

(a) The workflow of the zoom in gesture

(b) Reflection points that are not in the same position in adjacent time 

Fig. 7: A toy example of intuition underlying the noise dispelling
scheme. The activity from the previous moment is represented by
the grey 3D grid, while the activity from the following moment is
represented by the purple 3D grid.

characteristics in different environments are different, thus
affecting the basic signal properties such as amplitude and
phase. In addition, the fabrication diversity of transceiver
devices also induces signal bias. Consequently, certain noise
or errors are introduced to the received signals, yielding the
characteristic inconsistency in CSI patterns of even the same
activity. Traditional methods extract hand-crafted features
from the raw measurements to train the classifier. However,
these hand-crafted - such as statistical features (e.g., his-
tograms of signal amplitudes [17]) or physical features (e.g.,
power curves of Doppler frequency shifts [38]) - typically
carry domain information that is irrelevant to the activity.
This leads to significant degradation of system performance
in new domains.

To address this challenge posed by the domain changes,
we propose a noise-dispelling scheme (NDS) to remove the
domain information included in the original signals. The
key observation is that the impacts experienced by two
neighboring time series sample points are nearly identical
from a domain perspective because of oversampling (i.e.,
the sample rate is larger than 1,000 packets per second in
the activity and gesture recognition [9], [39]), with the pri-
mary variation being the dynamic travel path of the signal
owing to the motion vector. This setup leads to the adjacent
samples having similar characteristics after oversampling,
which can be used to dispel the domain information. Fig. 7
displays a toy example to illustrate the observation from the
user domain. We construct a 3D mesh of the user performing
the “zoom in” activity, which contains a significant number
of 3D points that describe the human body’s outer surface.
The activity from the previous moment is represented by the
grey 3D grid, while the activity from the following moment
is represented by the purple 3D grid. Wi-Fi signals bounce
off these points and reaches the receiver through multiple
paths. Fig. 7(a) depicts the workflow of the activity. We can
simply extract the motion reflection points (in Fig. 7(b)) by
subtracting the 3D mesh points at two consecutive moments
since most of the user’s body components stay constant.

Suppose the received signal is S = [s1, s2, s3, ..., sQ],
where Q is the number of samples. In theory, s at
each moment is comprised of four components, i.e., s =
{E,U,G,D}, where E is the environment noise, U is the
noise caused by the static body part of the user, G is the
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 (c) Raw signals on

dev and dev-locs domain.
 (a) Raw signals of different users.  (b) Raw signals on env domain.

 (d) After NDS on user 

domain.
 (e) After NDS on env domain.

 (f) After NDS on

dev and dev-locs domain.

Fig. 8: The performance of noise dispelling scheme. Env, Dev and Loc
stand for environment, devices and location.
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signal induced by the dynamic body part and corresponds
to the motion vector, and D is the total noise introduced
by all associated devices, including the transmitter and
receiver. Then the x-th and y-th samples are as follow,

sx = Dx + Ex + Ux +Gx

sy = Dy + Ey + Uy +Gy,
(1)

where x ∈ [2, Q] and y ∈ [1, Q− 1]. By calculating the dif-
ference between sx and sy to remove the common domain
factors in Eq. 1, we have

sx−sy = (Dx −Dy)+(Ex − Ey)+(Ux − Uy)+(Gx −Gy) . (2)

From the two sample points’ perspective, at any adjacent
time, the device for collecting Wi-Fi signals is identical. That
is, (Dx −Dy) ∼= 0. Furthermore, the environment noise
(Ex − Ey) ∼= 0 and the noise of user static body shape
(Ux − Uy) ∼= 0. The reason is that they are relatively static
between adjacent sample points because of oversampling.
Combining all the analysis above, we have:

diff (sx − sy) ≈ (Gx −Gy) . (3)

We conduct three sets of experiments to verify the
effectiveness of NDS. The first two deal with the user’s
body noise and environmental noise respectively. The third
one focuses on noise removal in multiple domains (i.e.,
devices and device locations). In detail, we compare CSI
measurements collected from two users who perform the
same activity of “zoom in” in the first experiment. And
in the second experiment, we collect CSI measurements in
two different environments (classroom and hall) when the
same user performs the “push & pull” activity with the
same device. In the third experiment, we utilize two off-the-
shelf mini-desktops equipped with an Intel 5300 wireless
NIC to collect measurements from different locations simul-
taneously. For each above-mentioned experiment, we first
interpolated or downsampled the CSI data to 1000 samples
to ensure that the testing and training data in each experi-
ment have the same dimension. The raw measurements of
three experiments are shown in Fig. 8(a)-(c), respectively.

After that, we apply the NDS to each experiment and exhibit
the corresponding results in Fig. 8(d)-(f). The raw measure-
ments for each experiment are inconsistent across domains,
however, the measurements after the dispelling procedure
are highly consistent with only minor deviations. The results
demonstrate that our method successfully eliminates the
domain’s effects and enables domain-independent sensing.

5.3 Feature Extraction Scheme

After the NDS, we were inspired by DeepSense’s frame-
work [14] to explore removing the domain-related features
and refining activity-related features via integrating CNN
and RNN (Fig. 9). The reason is that it is shown to be ef-
fective in modeling two types of data: information between
various mobile sensors and information between different
time segments of one sensor. For our problem, we also need
to model two types of information The first is the frequency
domain information (i.e., the relationship between various
subcarriers in a time segment). The second is the time
domain information (i.e., the relationship between different
time segments for one subcarrier). Note that all labeled and
unlabelled data will pass through these layers to generate
their feature vectors.

CNN layer. The COTS Intel 5300 Wi-Fi card with a publicly
available driver reports 30 OFDM sub-carriers for each
transmission [23], thus a large number of activity patterns
are usually generated between neighboring frequencies. To
efficiently extract subcarrier correlation in the frequency
domain, CARING employs two CNNs, where each CNN
includes a convolutional layer, a batch normalization layer,
and a dropout layer. The 2D filters in the convolutional
layers are used to learn the interaction between subcarriers.
In the first and second convolutional layers, the number
of filters is set to 128 and 64, respectively. The size of the
filters for each convolutional layer is 7×7. All the activation
functions are the ReLU. We apply batch normalization [40]
after the convolutional layer to decrease internal covariate
shift. Then we employ dropout to reduce overfitting and
make the network generalize better in practice. The dropout
rate is set to 0.3. The CNN can be denoted as Fc:

Fc= CNN (Do; θc) , (4)

where θc is the set of all parameters.

RNN layer. In addition to extracting inter-subcarrier char-
acteristics within the frequency domain from the CSI mea-
surements, we also can generate dynamic features of the
activity from subcarriers in the time domain. This is because
the trajectory of the activity is continuous in the space-time
domain. RNN [41] is a powerful architecture that can learn
meaningful features from complex dynamics temporal se-
quences. We choose long short-term memory (LSTM) [42], a
special type of RNN that is able to learn problems with long-
distance time dependency. Traditional LSTM can extract
forward features in time series. The activity information, on
the other hand, is reliant not only on the future (forward) but
also on the past (backward) moment. Therefore, only using
LSTM will inevitably lose some key features and degrade
the system’s performance.

To address this issue, we use the bidirectional LSTM
(Bi-LSTM), which contains two time flows from start to
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end and from end to start. We extract the future features
from subcarriers via forwarding states and past features
via backward states. Specifically, CARING adopts two Bi-
LSTMs to model the intra-subcarrier relationship. The first
Bi-LSTM has 32 units and the second has 16 units. After
CNNs, the inter-subcarriers representations Fc are fed into
the Bi-LSTMs Fr ,

Fr= BiLSTM (Fc; θr) , (5)

where θr is the set of all parameters.

The output layer. After flattening, two fully connected
layers are applied to extract features. To predict the activity
label, we use the softmax function to non-linearly map Fr

to the V -dimensional prediction distribution, which corre-
sponds to the V labels in our system:

yc = softmax(WcFr + bc), (6)

where Wc and bc are parameters. V various for different
datasets. For the labeled data, such as Dt, Dlp, and Dlw, the
predicted distribution ylc is compared to the ground truth y

via the cross-entropy loss as follow:

Lc =
∑V

i=1
−yilogylic . (7)

5.4 Federated Representation Learning

5.4.1 Personalized Local Model

When the training data follows independent and identi-
cal distributions, federated learning can approach central-
ized learning successfully and achieve good performance.
Due to the heterogeneity of labels and data distribution,
federated learning does not perform well for Wi-Fi-based
sensing. The diversity of users and devices, as well as
variations in furniture locations and device deployments,
are likely to add noise to the signal, leading the test and
training data distributions to diverge. Although the above
approach effectively separates domain-related information
from activity-related information, the label imbalance issue
persists because different institutions may upload different
activity labels to the global model, preventing the building
of a general sensing model through crowdsourcing.

To overcome the above challenge, each user is considered
as a subtask and a unique local model is trained, thereby
they can recognize different label data, respectively. Then,
the global model aggregate all the label information to
establish a universal model for all end-users. For n local
models, in each iteration, they download the parameters θg
from the global model and update θg to θi using its local
data during the training process which can help the local
model to achieve personalized recognition, then upload the
new parameters θi to the global model, where i ∈ [1, n]. In
the same way, m new domains download θg from the global
model to initialize their local models. But the parameters
can not be applied directly to the new domain due to the
uneven distribution of data among local domains. However,
although each domain has different labels and data distri-
bution, the local activity recognition tasks from different
domains are conceptually similar. This is highly similar to
the problem of optimization-based meta-learning [43]. So,
we can personalize the local model by using a small number

of labeled data Dlp (less than two samples) from the new
domain, and then upload these parameters to the global
model to further fine-tune the global model’s parameters.

5.4.2 Weight Adaption Scheme

Although the global model can access a large number of
model updates learned from different domains, making it
more generalizable to new domains, it needs to carefully use
the available data to avoid overfitting. This is because local
models are obtained from various data sources with hetero-
geneous and uneven data distributions, which collectively
can cause skewed training data distributions for the global
model. In fact, not all local models contribute equally to
the global model. Some local models have parameters that
contribute positively to new domains, and some negatively.

To cope with this problem, we propose a weight adap-
tion scheme to automatically assign weights for each local
model. We use Dlw (less than two labeled data) from the
new domain to test the m + n local models. The prediction
accuracy of Dlw via cross-entropy loss is:

Llwc
=

∑V

i=1
−yilwlogy

i
lwc

, (8)

where yilwc
is the predicted distribution of Dlw. We set the

weight values to 1 for m new domains to make the updating
tendency of θg more generalized for the new domain. The
initialized weight values are 1 for n local training domains.
If the prediction accuracy is improved compared to the
previous iteration, we keep the weight as 1. Otherwise, we
adjust the weight to 0.3. Note that 1 and 0.3 are the best
weight values respectively for the positive and negative
local model parameters evaluated in our experiment. By
doing so, the detrimental impact on the global model’s
generalization ability is significantly decreased. Then, the
weight adaptation parameters are uploaded to the global
model as:

θg ← θg +

∑m+n
k=1 λk (θi − θg)∑m+n

k=1 λk

(9)

where λk is the weight. Note that the evaluation is con-
ducted by using fine-tuned local models. The function of
the global model is that aggregate the parameters of local
models and use the WAS to automatically assign weights
for each local model’s parameters. The parameter θi of each
local domain after fine-tuning can be different.

5.5 The Algorithm of CARING

Assume that the overall dataset involves n + m domains,
i = 1, 2, ...,m + n, as shown in Algorithm 1. We first put
Do into the NDS to eliminate domain-related information.
Note that each domain has a local model. The global model
is initialized with the dataset from a selection of training
domains. Each of n training domains downloads the cur-
rent parameter θg from the global model and updates the
local model with its labeled training data. Each of m new
domains makes use of θg to establish the local model and re-
tune the parameters using a small amount of personalized
data. To determine the combination of the weights, Dlw

is applied to assess the current local models’ performance
before uploading the new parameters θi to the global model.
Then the global model updates θg through the WAS. Finally,
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Algorithm 1: The CARING Algorithm

Input: n + m domains with overall dataset
Do = {Di

o, i = 1, 2, ..., n + m}.
Output: a generalized global model and personalized local models for

each domain.
Initialization: Put Do into the NDS. Initialize the global model with a

subdataset of Dt to obtain initial network parameters θg ;
Training:
for round=1 to MaxRound do

for i=1 to n do
Download θg from the global model;
Train j (≥ 1) epochs on the local model with Di

t , get locally
updated θi;

Upload θi to the WAS;
end
for i=1 to m do

Download θg from the global model;
Fine-tune θg with Di

lp, get locally updated θi;
Upload θi to the WAS;

end

Update θg ← θg +

∑m+n
k=1

λk(θi−θg)
∑m+n

k=1
λk

, where λk is the weight;

Return θg to the global model;
end

TABLE 2: Signal features used in classical CSI analysis.

Domain Features

Time min, max, min/max 10th/90th, variance, mean, skewness
standard deviation, kurtosis, q-quantiles (q=0.25, 0.5, 0.75),
inter-quartile range, etc. over a time window.

Frequence domain-frequency ratio, energy, FFT Peaks, etc.

a personalization and generalization procedure is carried
out to produce personalized local models and a generalized
global model for all domains.

6 IMPLEMENTATION

6.1 Data Preparation

Widar3.0 dataset (Dataset 1) [44]. Zheng et al. collect thou-
sands of CSI measurements for 22 frequent daily activities.
There are 17 users, 3 environments, and 6 devices involved
in these measurements. The 22 activities include two cate-
gories, the first category is common to hand activities, such
as push&pull, sweep, clap, slide, draw-O, zigzag, and so on.
and the second category is complex and semantic activities
(i.e., drawing number 0∼9). The Wi-Fi packets are collected
at a rate of 1,000 packets per second using off-the-shelf mini-
desktops equipped with an Intel 5300 wireless NIC. The
transmitter activates one antenna and works in the monitor
mode, on channel 165 at 5.825 GHz. We use dataset of the
first category to evaluate our system.

WiAR dataset (Dataset 2) [15]. Guo et al. collect CSI mea-
surements of 16 activities from 10 volunteers in a 6 m ×
10 m meeting room with a small number of office tables
and chairs. The 16 activities include three categories: upper-
body, lower-body, and whole-body activities. The upper
body activities include horizontal arm waves, two hands
waves, tossing paper, draw tick, phone calls, draw-X, hand
claps, high arm waves, drinking water, and high throw. The
lower body activities include forward kick and side kick.
The whole-body activities include squatting, sitting down,
bending and walking. They use 20 MHz bandwidth with 30
subcarriers in 5 GHz.

[16] dataset (Dataset 3). Yousefi et al. collect Wi-Fi data in
an indoor office area. The dataset includes 8 persons and 7
activities (bed, fall, walk, run, sit down, stand up, and pick

up). The receiver is equipped with a commercial Intel 5300
NIC with a sampling rate of 1 KHz.

6.2 Implementation and Evaluation Platforms

We implement CARING using python 3.6.5. The model uses
Tensorflow v.1.10 as the back end and is implemented using
the deep learning library encoding of keras v.2.2.0 and keras-
contrib v.2.0.8. The hardware platform we used was a cloud
server equipped with 2.4 GHz Intel(R) Xeon(R) E5-2620
V3 CPU, 64GB RAM, and Titan XP GPU. Run Centos 7
operating system on this platform.

7 MICRO-BENCHMARK

To verify the effectiveness of the NDS, FSE, and WAS,
we take cross-user recognition as an example to run the
following three benchmark experiments.

Experiment Setup. For Dataset 1, we use the data (9 users
× 9 activities × 5 trails) collected in the classroom. The local
model is trained using the data of 7 users, and 3 of them
are utilized to initialize the global model. For Dataset 2, we
use the data of 16 activities (each with 10 trails) performed
by 8 users. The local model is trained using the data of 6
users, and the global model is initialized using the data of
3 of them. Dataset 3 (8 users × 7 activities × 10 trails) has
the same allocation as Dataset 2. For all datasets, we use the
data of 2 users who were not engaged in the training process
as new domains to test the system performance.

Verification of Noise Dispelling Scheme. We compared the
performance between the classical CSI analysis and NDS.
For classical CSI analysis, the input features from both the
time and the frequency domains are given in TABLE 2.
From Fig. 10, we can clearly see that the performance of
classical CSI analysis is disappointing (i.e., less than 31.7%)
because these features include domain factors. In addition,
compared with w/o NDS, w NDS can significantly improve
the system performance on three datasets, which are 22.2%,
44.7%, and 13.1%, respectively.

Verification of Feature Extraction Scheme. We compare
our deep-learning-based FES to 1) CNN method and 2)
the combination of CNN and forward LSTM (CNN+LSTM)
approach. Fig. 11 shows the recognition accuracy. The CNN
method has a disappointing result with less than 65% ac-
curacy on three datasets. CARING performs best with over
80% (up to 98%) accuracy. The reason is that CARING can
extract not only frequency-domain inter-subcarriers features
but also time-domain intra-subcarrier features.

Verification of Weight Adaption Scheme. We assess the
system performance in three scenarios: without the global
model, a global model with and without applying WAS,
i.e., w WAS and w/o WAS. In the absence of a global
model, we use new domain data to test each trained local
model, and then we get the average accuracy as the final
result. Note that we still use fine-tuning samples to refine
each local model’s parameters when using them to test the
new domain. Fig. 12 depicts the recognition accuracy. For
Dataset 1, the WAS increases accuracy by 2.5%. It means
that most training domains have a beneficial impact on the
new domains, resulting in little improvement of WAS. For
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TABLE 3: The experimental settings in evaluation. GN, LN, and TN stand for the number of users used to initialize the global model, trained by
the local model, tested by the testing domains, respectively. Env, Dev, Loc, and Ori stand for the number of environments, devices, torso locations,
and face orientations, respectively.

Task Dataset GN: LN: TN (All) Data (users×activities×trails) Env Dev Loc Ori

Cross
Single Domain

User
Widar3.0 3 : 7 : 2 (9) 9×9×5 1 1 1 1
WiAR 3 : 6 : 2 (8) 8×8×10 1 1 1 1
[16] 3 : 6 : 2 (8) 8×7×10 1 1 1 1

Loc Widar3.0 3 : 9 : 9 (18) 18×9×5 1 1 2 1
Ori Widar3.0 3 : 9 : 9 (18) 18×9×5 1 1 1 2

Cross
Multiple Domains

Dev and Dev-loc Widar3.0 3 : 9 : 9 (18) 18×7×5 1 2 1 1
User and Env Widar3.0 3 : 9 : 1∼4/6 (10∼13/15) (10∼13/15)×5×5 3 1 1 1
Dataset WiAR & [16] 3 : 8 : 1∼8 (9∼16) (9∼16)×2×10 2 2 2 2

Label Imbalance Issue
Widar3.0 & WiAR 6 : 13 : 4 (17) 17×24×(5/10/15) 2 2 2 2
Widar3.0 & [16] 6 : 13 : 4 (17) 17×16×(5/10) 2 2 2 2
Widar3.0 & WiAR & [16] 9 : 19 : 6 (25) 25×29×(5/10/15/20) 3 3 3 3

Testing User Diversity
Widar3.0 3 : 5 : 1∼4 (6∼9) (6∼9)×9×5 1 1 1 1
WiAR 3 : 4 : 1∼4 (5∼8) (5∼8)×16×10 1 1 1 1
[16] 3 : 4 : 1∼4 (5∼8) (5∼8)×7×10 1 1 1 1

Training User Diversity
Widar3.0 3 : 3∼6 : 2 (5∼8) (5∼8)×9×5 1 1 1 1
WiAR 3 : 3∼6 : 2 (5∼8) (5∼8)×16×10 1 1 1 1
[16] 3 : 3∼6 : 2 (5∼8) (5∼8)×7×10 1 1 1 1

Dev and Dev-loc Diversity Widar3.0
3 : 9 : 9/18/27/36
(18/27/36/45)

(18/27/36/45)×7×5 1 5 1 1

Activity Diversity WiAR 3 : 6 : 2 (8) 8×(4/8/12/16)×10 1 1 1 1

Fine-tuning sample Diversity [16] 3 : 6 : 2 (8) 8×7×10 1 1 1 1

Comparison to prior work widar3.0 3 : 7 : 1 (8) 8×6×5 1 1 1 1

Different Weight Values
Widar3.0 3 : 7 : 2 (9) 9×9×5 1 1 1 1
WiAR 3 : 6 : 2 (8) 8×16×10 1 1 1 1
[16] 3 : 6 : 2 (8) 8×7×10 1 1 1 1

Datasets 2 and 3, performance of w/o WAS is lower than
without the global model, this is because when we directly
aggregate the parameters using the global model, some local
models’ parameters may generate negative impacts so that
reducing the performance of the system. In addition, by
comparing w WAS and w/o WAS, we can see that accuracy
is improved by 11.5% and 27%, respectively. These results
imply that the WAS can effectively counteract the negative
impact of undesirable domains, allowing the system to be
more generalized to the new domain.

8 EVALUATION

We evaluate the performance of CARING with detailed
settings shown in TABLE 3.

8.1 The Performance on Cross Single Domain

Cross Users. We now evaluate the performance of CARING

in the cross-user scenario. We use the setting described in
Section 7 for Dataset 1 and 3. For Dataset 2, we use the
data of 8 activities performed by 6 users to train the system.
We then test CARING using two “unseen” users in each
dataset. Fig. 13 shows that CARING achieves high average
accuracies of over 85.42% (up to 98.15%), suggesting that
CARING works well for cross-user activity recognition.

Cross User-location. We use Dataset 1 to evaluate the
performance of CARING in cross user-location cases. The
device deployment is shown in Fig. 17. We use the data in
location 1 to train the system and test the system in location
2. Different locations have the same 9 activities with 5 trails
done by 9 users. Fig. 14 shows that the average accuracy is
over 96.3% for all activities. Therefore, CARING is robust to
cross-location activity recognition.

Cross User-orientation. We use Dataset 1 to evaluate the
performance of CARING in cross user-orientation cases. The
data of nine users at orientation 1 and orientation 2 are
used to train and test the model, respectively. The device
deployment and activity information are the same as above.
As shown in Fig. 15, the average accuracy for all activities
are all above 81.48%. It demonstrates that CARING can ef-
fectively recognize the activity across different orientations.

8.2 The Performance on Cross Multiple Domains

Cross Device and Device-location. To evaluate the system
performance in the cross-device and device-location scenar-
ios, we use Dataset 1, which contains Wi-Fi signals received
by two devices (i.e., Rx1 and Rx2). Note that the device
and its location changed simultaneously. Fig. 17 shows the
device setup, where all users are in location 1, facing orien-
tation 1. As can be seen from Fig. 16, CARING gives good
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performance for cross-device and device-location recogni-
tion, with an accuracy of over 95% for all activities.

Cross User and Environment. We use Dataset 1 to investi-
gate the efficacy of CARING in simultaneous cross-user and
environment cases. The system is trained using data col-
lected from 9 users in the classroom. And the data collected
from 2 users in the hall and 4 users in the office is utilized to
test the system’s performance. Note that each of the 15 users
has a distinct somatotype. We choose the same activities in
3 environments, such as push & pull, sweep, clap, draw-O,
and zigzag, each with 5 trails. In particular, we increase the
number of testing users in the hall from 1 to 2, and then
from 1 to 4 in the office. In Fig. 18, even when the number
of testing users rises from 1 to 4, the average accuracies
remain 100%. Furthermore, we evaluate the system using
the aggregated data from the hall and office (6 testing users),
resulting in an average accuracy reduction of only 1.2%.
Overall, CARING works efficiently cross multiple domains
and as the number of testing users grows.

Cross Dataset. CARING supports collaboration to improve
the quality of cross-domain sensing models. In other words,
CARING can leverage the shared knowledge from different
data sources to apply to many other new domains while
achieving high recognition accuracy. To illustrate the advan-
tage of CARING, we compare CARING against the traditional
centralized learning method, namely CNN. The structure
and training method of CNN are described in Section 3.2.1.
We choose two identical activities from Dataset 2 and 3:
walk and sit down. Except for the activity type, the two

datasets collect CSI data under entirely different domain
factors, such as the user, environment, device, and deploy-
ment. The training data consists of 8 users from Dataset 2,
whereas the test data consists of 1-8 various numbers of
users from Dataset 3. To make a fair comparison, we put the
labeled data used to fine-tune the model parameters into
the CNN for training. As shown in Fig. 19, among different
numbers of test users, CARING consistently performs well
with average prediction accuracy of more than 86.11% (up to
95.84%). When compared to CNN, the accuracy is improved
by more than 16.7% (up to 47.4%).

8.3 Evaluation on Label Imbalance Issue

To verify that CARING can overcome the label imbalance
issue, we aggregate three datasets to jointly train and test
our system. As the three datasets are gathered by indepen-
dent researchers from different environments, they mimic
a typical crowdsourcing setup. We take the data of 7 users
from Dataset 1, 6 users from Dataset 2, and 6 users from
Dataset 3 as training data. The data of 2 users from each
dataset are used as testing data. We set the prediction label
V = 29 for classification because there are two identical
activities in Dataset 2 and 3: walk and sit down, and one
identical activity in Dataset 1 and 2: clap. In addition, we
trained a centralized learning model CNN as a comparison
experiment. The structure and training method of CNN
is described in Section 3.2.1. For a fair comparison, the
personalized data used in CARING are also fed into CNN
for training. Fig. 20 shows that CNN has poor accuracy, but
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CARING has an average accuracy of over 80% (up to 96%)
for all cases. These results suggest that CARING is capable of
overcoming the label imbalance issue. Another interesting
finding is that the accuracy of the aggregated dataset by
three datasets is unexpectedly better than that of any two
datasets. While data and label heterogeneity degrade the
system’s performance, additional training domains increase
feature space coverage, resulting in a more generalized
global model and more personalized local models.

8.4 The Performance on Diversity

Impact of Testing User Diversity. This experiment studies
how the number of users in the testing dataset affects sys-
tem performance. We run cross-user experiments on three
datasets by varying the number of testing users from 1 to
4. The results are demonstrated in Fig. 21. On Dataset 1,
the system maintains high accuracy of 95% when there are
4 testing users. On Dataset 3, when the number of testing
users is raised to four, the performance drops by less than
10% compared to the best accuracy of over 90%. And on
Dataset 2, each additional testing user results in a higher
accuracy decline of 5%. This result is anticipated because
Dataset 2 is the one that contains the highest number of
activities of the three datasets. When more testing users
need to be differentiated, the ambiguity of the retrieved
features is highest in the three datasets, resulting in rather
considerable variances in accuracy. Overall, these results
demonstrate that CARING can achieve friendly results to the
growth of testing users number.

Impact of Training User Diversity. We take cross user
case as an example to evaluate the impact of the number
of training data on the system performance. We increase
the number of users in each dataset from 3 to 6 as the
training data. Fig. 22 depicts that Dataset 1 consistently
achieves good performance when the number of training
users increases. This manifests that a small number of train-
ing domains in Dataset 1 can also obtain a high-precision
prediction for new domains. The results of the other two
datasets show that the accuracy improves as the number of
training data grows. On Dataset 2 and 3, for example, when
the number of users increases from 3 to 6, the accuracy rises
by nearly 10% and 16%.

Impact of Device and Device-Location Diversity. We an-
alyze the impact of device and device-location diversity on
system performance with Dataset 1. To train the system, we
take data from nine users received by device 1 and increase
the number of testing devices from 1 to 4. Each device is
deployed in a unique way. The device deployment is shown
in Fig. 17. The results are shown in Fig. 23. When there is
only one test deployment, the system obtains the highest

accuracy of 98%. When the number of testing deployments
is increased to 4, the accuracy drops by around 6%. Overall,
CARING is robust to the deployment changes.

Impact of Activity Diversity. We adjust the number of
activities in the WiAR dataset from 4 to 16 to see how it
affects recognition accuracy. The results are shown in Fig. 24.
We can observe that the recognition accuracy decreases as
the number of differentiated activities grows. In particular,
when just 4 activities are to be distinguished, CARING

achieves a recognition accuracy of 93.75%. The accuracy
drops to 80.2% when there are 16 activities. This result
is reasonable because as more differentiated activities, the
average difference between activity features decreases. In
a word, these results show that CARING is resistant to the
growth of activities number.

8.5 Impact of the number of fine-tuning samples

We evaluate the CARING’s performance when the local
model is fine-tuned using a different number of samples.
We use Dataset 3 in this experiment. We use the data from
8 activities performed by 6 users to train the system. The
data of 2 “unseen” users are used as testing data. We run
cross-user experiments by varying the number of fine-tuned
samples (i.e., 0, 2, 4, 6, 8). We note that the number of
fine-tuning samples is the sum of samples in the person-
alized data and the weight adaption data. For example, a
fine-tuning dataset of four samples would have two data
points for the personalized and weight adaption datasets,
respectively. As can be seen from Fig. 25, when using 0 fine-
tuning samples, the accuracy of the model is less than 30%.
This is because, without the help of fine-tuning samples,
the model parameters of the training domain are difficult to
migrate to the new testing domain. In addition, the model
accuracy reaches a flat curve (above 96%) when using 4 fine-
tuning samples. Using more samples beyond this threshold
does not justify the cost of data collection. This experiment
also confirms that CARING can use a small number of
training samples for retargeting a global model to a new
domain. How to achieve “zero-shot” fine-tuning samples is
our future work.

8.6 Comparison with the state-of-the-art

We now compare CARING with Widar3.0 [4] and WiFed-
erated [32], the state-of-the-art Wi-Fi-based cross-domain
systems. In this experiment, we train each approach on
Dataset 1 for every combination of the 7 users provided
by the dataset. We then test with the data of the resting
person. Fig. 26 shows that CARING outperforms Widar3.0
and WiFederated by improving the accuracy of Widar3.0 by
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20% and WiFederated by 37%, respectively. Furthermore,
CARING gives a more robust performance whose accuracy
is over 89% across 7 users.

8.7 Effect of Different Weight Values

We use the WAS to avoid overfitting and weaken training
domains that do not contribute significantly to the new
domain while enhancing those that do. To determine the
optimal weight values, we run experiments on all three
datasets with various weight values from 0.1 to 0.7 for
negative domains. The weight value of the positive domain
is set to 1. The experiment setup is the same as Section 7.
Fig. 27(a) shows how the accuracy changes as the weight
value changes. It is worth noting that the weight does not
appear to have a major impact on the system performance
in Dataset 1. As we previously analyzed, this is due to the
training domain of the dataset being particularly favorable
to the new domain, resulting in a little improvement in
our scheme. In contrast, the other two datasets illustrate
the efficacy of our approach. We set the weight value as
0.3 in our system. The reasons are as follows. On the one
hand, when the weight is set to less than 0.3, our approach
performs best on all datasets. Using a smaller weight value
as the model parameter, on the other hand, requires a longer
training epoch since the mode needs more iterations to con-
verge (Fig. 27(b)). Hence, we choose 0.3 as the weight value
since it provides a reasonable balance of model accuracy and
training overhead.

9 DISCUSSION

CARING is among the first attempts to tackle cross-domain
and label imbalance issues via federated learning in Wi-
Fi-based activity recognition. Naturally, there is space for
improvement and further effort in the future. We go over a
couple of topics here.

Environmental robustness. The proposed noise dispelling
scheme is mainly to remove relatively static environment
noise, such as the static multipath profiles generated by the
user’s main body and furniture. In fact, our system is tested

in a relatively static environment with nearly no interference
like the signal changes caused by different domain factors.
However, interference is ubiquitous and inevitable in real
life, and how to resolve it is a well-known challenging
problem [17], [45] for Wi-Fi-based sensing. Therefore, one
of the most promising research fields is figuring out how
to improve the robustness of wireless sensing in a dynamic
environment [46]. In future work, we will try to incorporate
some of the most advancements and look for breakthroughs
in more complicated and dynamic scenarios.

Deep learning-based feature interpretability. Deep neural
networks [14], [47] are shown to be powerful in extracting
feature representation. However, these techniques have the
drawback of relying on black boxes. The mapping corre-
lation between the input and output is quite complicated.
Although providing theoretical proof of the underlying
working mechanism can obtain insight into why the model
performs well, it is beyond the scope of this work. Recently,
there are numerous strategies to remedy this issue [48], [49].
Adopting these methods to explain CARING from the black-
box model is our future work.

Other sensing platforms. Although we focus mainly on Wi-
Fi-based activity recognition to illustrate the performance
of CARING, we believe CARING can be applied to radio
frequency (RF) based sensing [3], acoustic sensing [50], [51],
mmWave sensing [52], [53] and so on. We need further
study on applying CARING to explore new applications
based on commercial IoT devices. It would be interesting
to see whether CARING can be used in conjunction with
specialized sensing devices to improve performance.

10 CONCLUSION

We have presented CARING, a federated learning-based
framework to support low-cost and high-accurate cross-
domain Wi-Fi activity recognition. CARING enables a ser-
vice provider to learn a shared global model using model
weights obtained from large-scale deployments. The global
model can then speed up the learning process when training
a personalized local model at individual deployments. Be-
cause CARING does not require the exchange of raw Wi-Fi
signal data, it enables collaborative machine learning while
preserving user privacy. CARING implements a set of signal
processing methods and learning strategies to develop a
practical and robust federated learning system. Extensive
evaluation performed on three public datasets shows that
CARING delivers good and robust performance for cross-
domain Wi-Fi sensing, especially in challenging situations
where the global model is trained with imbalanced data
samples.
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