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A B S T R A C T

This paper assesses the influence of land development patterns on intra-urban thermal variation in a densely-
developed subtropical city, considering joint effect from greenspace pattern and built-up geometry. Despite
growing research on urban climates, research at a scale that can support urban planning with scientifi-
callyinformed strategies is still not as well documented for warm climate cities as for temperate cities. In re-
sponse, this paper uses land surface temperature and geoinformation to assess the subtropical city of Taipei,
Taiwan. Results show cooler environments are not only associated with natural surfaces, but also their inter-
relation with different spatial arrangement of buildings. An open layout tends to have lower temperature at low-
to mid-rise buildings, whereas a compact layout is the coolest form for high-rise buildings. Cooling benefit from
open layouts is, however, related to an increase in greenery. Clustering distribution of greenspaces produces
more notable cooling. Accordingly, this paper proposes four heat mitigation strategies for Taipei: 1) increasing
the amount of water bodies and vegetation, with greater coverage and coherence; 2) taking building height and
shadow into account during regeneration/development; 3) increasing spacing and greenery between low- to
midrise buildings; and 4) avoiding construction of compact low-rise buildings with corrugated iron steel.

1. Introduction

Extreme high temperatures as a result of climate change have in-
creased in frequency, duration, and intensity, increasing the heat-vul-
nerable population and economic losses (Mora et al., 2017; Watts et al.,
2018). The acute increase in heat exposure and vulnerability found in
populated areas (Watts et al., 2018) illustrates the additional impact
from the urban heat island effect (UHI), which amplifies both thermal
intensity and economic losses (Estrada, Botzen, & Tol, 2017). Cities
located in intertropical regions may be at higher risk of excess heat due
to both global climate patterns and local development features
(Giridharan & Emmanuel, 2018; Mora et al., 2017). A higher number of
lethal hot days are predicted to occur in lower-latitude areas, because
the combination of high humidity and warmer temperature reduces the
chance of evaporative cooling (Mora et al., 2017) and the efficiency of
heat convection (Zhao, Lee, Smith, & Oleson, 2014). Furthermore, in-
tertropical cities in Asian countries face radical urbanisation (Oke,
1986); dense and compact development; and pronounced social-

environmental problems such as air pollution, energy consumption,
water security and public health which are related to and exacerbated
by heat (e.g. Blanco, McCarney, Parnell, Schmidt, & Seto, 2011; Fan
et al., 2019; Watts et al., 2018).

The characteristics of UHI are, however, not universal and vary with
geographical regions (Zhao et al., 2014). Recent urban climate studies
have revealed the unique pattern of UHI in warm climates (Alavipanah,
Schreyer, Haase, Lakes, & Qureshi, 2018; Giridharan & Emmanuel,
2018). Yet for research at a scale that can support urban planning with
scientifically informed strategies, cities in warm climates are still not as
well documented as temperate cities (Giridharan & Emmanuel, 2018;
Ramakreshnan et al., 2018; Shafaghat et al., 2016). Given the strong
implications for urban planning and design, there are calls for greater
enquiry into place-specific development patterns which shape intra-
urban microclimate and heterogeneity in heat exposure within cities
(Alavipanah et al., 2018; Bechtel et al., 2019; Emmanuel, 1993;
Hebbert & Webb, 2012). In response, through empirical assessment of
the thermal influence from urban development pattern in a specific
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warm climate context - Taipei - this paper provides evidence for plan-
ning cooler cities and proposes recommendations for urban planning
research and practice elsewhere in response to urbanisation and
warming impacts.

2. Background

Regardless of climate context, spatial variation of heat intensity
amongst urban neighbourhoods is closely related to the proportion and
spatial pattern of different land cover (Connors, Galletti, & Chow, 2013;
Kong, Yin, James, Hutyra, & He, 2014; Li, Zhou, & Ouyang, 2013; Zhou,
Huang, & Cadenasso, 2011; Zhou, Wang, & Cadenasso, 2017); land use
(Bechtel et al., 2019; Myint et al., 2015); built-up geometry (Bechtel
et al., 2019; Giridharan & Emmanuel, 2018); radiative properties of
objects, and anthropogenic heat release (Bechtel et al., 2019; Oke,
1986) in both the horizontal and vertical dimensions of cities
(Alavipanah et al., 2018; Tian, Zhou, Qian, Zheng, & Yan, 2019; Zheng
et al., 2019).

Amongst these factors, the urban-rural temperature difference in
warm climates has a closer magnitude to intra-urban temperature dif-
ference, which is mainly attributable to the distribution of vegetation
(Giridharan & Emmanuel, 2018). This emphasises the vital role of
greenspace planning in mitigating urban heat island effects in warm
climates (Fan et al., 2019). There is limited agreement on how the ef-
ficiency of greenspace cooling effect may vary in cities depending on
climate type (Zhou et al., 2017). However, greenspace cooling effect is
often influenced by types of vegetation through the difference in
shading and evapotranspiration rate (Skelhorn, Lindley, & Levermore,
2014); spatial configuration of greenspaces (Du et al., 2017; Shih,
2017a; Yu, Xu, Zhang, Jørgensen, & Vejre, 2018; Zhou et al., 2017); and
interrelation with surrounding built environments (Li et al., 2013; Shih,
2017b; Zhao, Sailor, & Wentz, 2018; Zheng et al., 2019). Spatially,

greater tree coverage, larger greenery area and higher coherence of
greenspaces are a preferable structure for delivering cooling to a local
scale (Li et al., 2013; Maimaitiyiming et al., 2014; Zhang, Murray, &
Turner Ii, 2017). Nevertheless, both greenspace cooling intensity and
extension are modifiable by the thermal state of the adjacent non-green
areas (Li et al., 2013; Middel, Häb, Brazel, Martin, & Guhathakurta,
2014) and the relative location of greenery to buildings (Zhao et al.,
2018). A more comprehensive cooling strategy should consider the
interplay between grey and green environments (2017b, Shih, 2017b;
Zhao et al., 2018; Zheng et al., 2019).

Urban climate research has provided insights into temperature in-
fluence from development characteristics of built environments. Factors
related to planning decisions include building height to street width
ratio (aspect ratio); building height to floor area ratio; building cov-
erage ratio in relation to density/compactness, street/building or-
ientation, and relative location within a building block (Ali-Toudert &
Mayer, 2006; Middel et al., 2014; Pacifici, de Castro Marins, de Mello
Catto, Rama, & Lamour, 2017; Shafaghat et al., 2016; Tian et al., 2019;
Unger, 2006). Among these attributes, the thermal effect from building
height and density may be particularly sensitive to the climate differ-
ence of cities (Alavipanah et al., 2018; Ali-Toudert & Mayer, 2006).
Although greater development intensity might impede ventilation and
trap long-wave radiation in narrow street canyons (Yang et al., 2019;
Unger, 2006), densely distributed tall buildings do not necessarily re-
sult in greater heat intensity (Emmanuel, 1993; Zheng et al., 2019) as
building shade cooling adjacent areas is particularly important for
warm- to hot climate cities (Alavipanah et al., 2018; Emmanuel, 1993).
In addition, development intensity determines the level of solar radia-
tion, overshadowing (Chow & Roth, 2006; Lindberg & Grimmond,
2011), surface albedo (Giridharan, Lau, Ganesan, & Givoni, 2007), and
ventilation/air flow (Gago, Roldan, Pacheco-Torres, & Ordóñez, 2013;
He, Ding, & Prasad, 2019); and also closely relates to the distribution of

Fig. 1. Study area – Taipei Basin (Base map from Esri Imagery).
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open space and greenery, which are critical to moderate UHI.
Researchers increasingly advocate a holistic consideration of

greenspaces and built environments when proposing strategies for mi-
tigating urban heat (Shih, 2017b; Zheng et al., 2019). However, parti-
cularly in a warm climate context, the number of studies explicitly
considering the integration between ‘green’ and ‘grey’ infrastructure is
limited. This study responds to this gap by focusing on the spatial ar-
rangement of buildings and green spaces, with a view to generating
insights which can inform planning decisions.

3. Data and analytical methods

This study takes the urbanised area in Taipei Basin (25°’N, 121°’E),
which encompasses parts of Taipei City and New Taipei City, as an
empirical study area (Fig. 1). Taipei Basin is about 10 km from the sea
and is surrounded by forested mountains. Given its flat topography,
urban expansion and densification in the past decades mainly occurred
in the basin area and resulted in a compact development pattern. The
boundary of the urbanised area in this study is defined by the admin-
istrative boundaries of neighbourhoods which are situated in the basin.
The study area covers approximately 232.2 km2 and has a population
estimated at 6.67 million in 2014 (Department of Household
Registration, 2015). Most areas are tightly packed with three- to nine-
storey buildings. High rise buildings above ten stories are generally
located in new development areas at the outskirts or inside the city in
urban regeneration sites. Factories, generally less than three stories
high, are mainly distributed to the west of the basin in New Taipei City.
The largest unbuilt land of the basin is the Quandu Plain to the North,
including farmlands and wetlands. Although there is limited space for
new construction, the current aim to facilitate urban regeneration in
both Taipei City and New Taipei City provides an opportunity to con-
sider how land use may be adjusted to attain better thermal environ-
ments within urban development.

The climate in northern Taiwan is humid subtropical, with an an-
nual average temperature of about 23℃ (CWB, n.d.). The warming
trend has been distinct in the urbanised basin areas. Both the intensity
and frequency of hot summer days have increased significantly in the
last four decades (Bai, Juang, & Kondoh, 2011; CWB, 2014; Lin, Chien,
Su, Kueh, & Lung, 2017). This warming tendency places pressure on
electricity networks due to rising cooling demands and may increase
heat-related health problems, especially given Taiwan’s increasingly
elderly population (Chen, Wu, Pan, Chen, & Lung, 2016). It is hence
vital to understand how spatial variations in heat exposure arise, and
how risk may be reduced through built environment planning.

3.1. Main sources of spatial data

This study assesses the influence of land development patterns on
heat heterogeneity, employing land surface temperature and

geoinformation interpreted mainly from satellite imagery. Remote
sensing techniques of this nature enable citywide observation on the
relationship of urban morphology and thermal distribution (e.g. Kong
et al., 2014; Myint et al., 2015) and are particularly valuable for cities
that are short of available meteorological data and inventory of land
development patterns (e.g. Stewart & Oke, 2012; Zhou et al., 2011).

This study utilised LANDSAT 8 satellite imagery from the United
States Geological Survey as principal spatial data (USGS). LANDSAT 8
visits Taiwan at 10:20 am with a 16-day interval, providing regular
observations of land development patterns and daytime surface tem-
perature. This study used multispectral data (bands 1–7) for inter-
preting land cover, and thermal data from Band 10 for retrieving land
surface temperature as it has higher accuracy (U.S. Geological Survey
(USGS), 2016). All multispectral images have a spatial resolution at
30m. Thermal images were resampled from 100m to 30m. This spatial
resolution allows the city-wide land-use/land-cover and thermal re-
lationship to be observed.

Level 1 T data was applied on 6 April 2015 (spring), 29 July 2016
(summer), and 16 November 2015 (autumn). Imagery selection was
based on three criteria: minimal cloud effect; high air temperature on
the ground (around 30 degrees Celsius) in the Taipei region; and for the
sampled days to be as close to each other as possible to avoid change in
land development patterns between the images. The summer data was
adopted from July 2016 instead of 2015, as the study area was mostly
affected by clouds in the 2015 imagery. The image on 6 April 2015 was
chosen for interpreting land development pattern, as it has the least
cloud effect of all the selected images. To avoid misinterpretation of
land development settings and LST from the effect of clouds, the images
of Quality Band showing the location of both visible and invisible
clouds were overlapped with multispectral and thermal images.
Accordingly, pixels containing clouds and shadows were treated as
missing values and eliminated manually through QGIS for the following
analyses.

3.2. Deriving land surface temperature

According to the weather station of Taipei, the weather conditions
on the three studied dates were warm, humid and calm (Table 1). No
precipitation was recorded for each date or the day before. The mean
hourly air temperature at 10 a.m. was 30.4℃, 35℃ and 29.6℃ re-
spectively on 6 April 2015, 29 July 2016, and 16 Nov 2015. The
weather condition was relatively calm, with wind speed below 1m/s on
each day. Due to minimal influence from wind on the ground, these are
considered optimal conditions to assess the effect from land develop-
ment patterns on LST.

Following Congedo (2016), atmospheric correction was conducted
using the Dark Object Subtraction method, spectral radiance and at-
satellite brightness temperature were calculated, and degrees Kelvin
were converted into degrees Celsius by means of the Semi-Automatic
Classification plugin on QGIS 2.18. Table 1 shows the minimum,
maximum and mean LST of each date at the study areas. The LST
variation was significant, reaching at least 10℃ difference on each date.
To reduce potential bias deriving from the specific weather or ground
conditions of one specific day, the mean value of LST data from three
thermal images was used to define dependent variables at the pixel
level. At neighbourhood levels, both mean and mode values of LST were
applied to detect possible influence from extreme values caused by
different land cover types. While some studies found a close relation-
ship between surface and air temperature (Coppernoll-Houston &
Potter, 2018; Middel et al., 2014), others suggest a more complicated
relationship and variations between surface and air temperature
(Shiflett et al., 2017). This difference may be caused by oversampling
horizontal areas, such as rooftops, treetops, roads, and open grounds,
and neglecting vertical surfaces and areas below canopy (Arnfield,
2003). We hence pay cognisance to this characteristic and its potential
influence in the interpretation and discussion of our findings.

Table 1

Meteorological conditions on the satellite acquisition date.

Dates Meteorological record from
Taipei Station

Landscape Surface
Temperature

Mean Min. Max.

6 April 2015 Air temperature (℃) 30.4 29.38 21.7 34.0
Relative humidity (%) 68 – – –

Wind speed (m/s) 0.9 – – –

29 July 2016 Air temperature (℃) 35 32.0 24.0 36.4
Relative humidity (%) 57 – – –

Wind speed (m/s) 0.6 – – –

16 Nov 2015 Air temperature (℃) 29.6 25.1 20.3 30.4
Relative humidity (%) 70 – – –

Wind speed (m/s) 0.7 – – –

*LST was retrieved from Band 10 of Landsat 8 satellite image on each date.
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3.3. Interpreting development patterns

Several factors developed to assess land development pattern rely
on detailed site survey and are often not comprehensive. To address this
drawback, this study prioritises factors that can be interpreted from
satellite images. Six factors are chosen to describe land development
characteristics, including land cover, degree of greenness, greenspace
proportion, greenspace coherence, built-up geometry, and primary
building height (Table 2).

3.3.1. Mapping greenspaces
To define the degree of greenness and the location of greenspaces,

this study applies the Normalised Difference Vegetation Index (NDVI)
for detecting vegetated areas. The satellite image of 16 April 2015 was
selected for calculation because it provides clear images with the least
cloud coverage. The equation used for counting NDVI is:

NDVI=(NIR-R)/(NIR+R), (1)

where NIR represents near-infrared (Band 5) and R represents the red
band reflectance in visible radiation (Band 4). This vegetation fraction
produces a linear scale of measurement between 1 and minus 1, in
which a value closer to 1 reflects greater greenness (Gandhi, Parthiban,
Thummalu, & Christy, 2015). Dense vegetation such as forests and trees
at a peak growth stage generally correspond to high NDVI values (ap-
proximately 0.6 to 0.9); sparse vegetation such as grasslands and
scattering shrubs tend to result in moderate NDVI values (approxi-
mately 0.2 to 0.5) (Simonetti, Simonetti, & Preatoni, 2014). Barren
areas, rock, and impervious surface in urban areas often result in lower
value (close to 0.1) in NDVI; and water bodies are generally shown with
a negative value (Gandhi et al., 2015). Because of this characteristic,
NDVI is commonly used for mapping vegetation and detecting land
cover (e.g. Deng et al., 2018; Thanapura et al., 2007).

Because the threshold value of NDVI for different land cover types is
locally specific and the condition of vegetation varies with climate and
seasonal conditions, the value used to differentiate vegetated and non-
vegetated areas was determined with guides by evidence from the lead
author’s previous site survey and remote-sensing based research in
Taipei (reference add later). We computed NDVI with thresholds ran-
ging from 0.2 to 0.5 and compared the result with high-resolution aerial
photos from Google Earth taken in 2015. On this basis, an NDVI value
of 0.4 was determined to be most representative of greenspace areas,
and hence set as a threshold value to map the location of greenspaces.
For validation, we randomly sampled 100 sites for accuracy assessment
with aerial photos, which resulted in an accuracy rate at 76 %. Small
areas of greenery, particularly street trees, often failed to be interpreted
due to the lower resolution of LANDSAT satellite imagery (30m).
Greenspaces with dried lands and short plants also tended to be ignored
in our mapping (see Section 5.4).

Greenspace proportion (GS_ratio) was defined by the ratio of the
surface area of greenspaces to the size of a given neighbourhood.
Greenspace coherence (GS_ch) was calculated on the basis of nearest
neighbour distance. Using the proximity calculator function in QGIS, a
proximity map was generated from the NDVI map, which subsequently
assigned each pixel with a value of the shortest distance to the nearest
greenspace. Using zonal statistic method, the mean proximity value of

greenspace coherence of each neighbourhood was computed and ex-
tracted.

3.3.2. Defining local climate zones
For interpreting built-up geometry, this study adopted the Local

Climate Zones (LCZs) scheme. The LCZ scheme is a standardized and
automatic method to classify the urban fabric according to climate-re-
lated properties - including sky view factor, aspect ratio, building sur-
face fraction, impervious surface fraction, and height of roughness
elements - from satellite images (Stewart & Oke, 2012; Rodler & Leduc,
2019). A Local Climate Zone is defined as a region of uniform surface
cover, structure, material, and human activity that spans hundreds of
meters and reflects the most prominent screen-height temperature in
dry, calm, and clear weather conditions (Stewart & Oke, 2012).

As shown in Table 3, LCZs are composed of 10 “built types” (1–10)
and 7 “land cover types” (A to G). Within the built types, LCZs 1–3
represent a compact layout with narrow street canyons, paved grounds
and limited vegetation; LCZs 4–6 represent open layout with open street
canyons, paved ground, and scattered vegetation. To reflect the local
context, LCZ7 was redefined for this study as an area dominated by
compact low-rise buildings, hard paved grounds, and lightweight
building materials. This reflects the specific built-up fabric of light in-
dustrial areas, which are often constructed by steel huts, in the Taipei
study area.

Following the World Urban Database and Access Portal Tools
(WUDAPT) protocol, we firstly defined training areas for each LCZ type
from northern Taiwan (to encompass LCZ types with characteristics of
rural areas which may not be found in Taipei) through Google Earth Pro
(7.1.5.1557) software. These training areas were then utilised as the
basis for supervised classification of LCZs in the study area using SAGA
GIS software (2.2.0) and the LANDSAT 8 satellite image acquired on 16
November 2015. The spatial resolution used for the LCZ classification
was tested between 200m, 100m and 30m. Because of significant
heterogeneity in the development pattern across a relatively short dis-
tance found in Taipei, a lower spatial resolution was not deemed able to
adequately reflect the nature of spatial variation found in Taipei.
Considering that notable thermal variations may occur in an LCZ type
when it contains greater heterogeneity (Leconte, Bouyer, Claverie, &
Pétrissans, 2015; Wang, Ren, Xu, Lau, & Shi, 2018) and that the LCZ
map with 30m resolution was able to interpret more detailed spatial
information, the 30m resolution map was applied for the purposes of
this study.

The accuracy of LCZ mapping relies on local knowledge from the
user and the suitability of training areas. Existing research suggests
LCZs provide a good indication of thermal environments with ob-
servational and numerical modelling data, but that the method itself
does not provide a measure to assess mapping accuracy (Stewart & Oke,
2012). A recent accuracy assessment of the LCZ method from Ren et al.
(2019) into 20 cities suggests mean accuracy can reach 76 %. To en-
hance the reliability of mapping, this study repeated the mapping
processes and compared the results with indicative locations from aerial
photos until the classification adequately reflected the development
pattern. Using multiple spatial information, including the NDVI map
and the Global Digital Surface Model, this study provided data trian-
gulation for assessing building height and greenness and gave

Table 2

Variables used to describe land development patterns.

Variables Spatial Scale Description (unit)

Land cover Pixel Mean NDVI of pixels
Degree of greenness (NDVI) Neighbourhood Mean NDVI of a given neighbourhood
Greenspace proportion (GS_ratio) Neighbourhood The proportion of vegetated areas of a given neighbourhood (%)
Greenspace coherence (GS_ch) Neighbourhood Mean shortest distance to the nearest greenspaces of a given neighbourhood (m)
Built-up geometry Pixel The types of Local Climate Zones
Primary building height (Pbh) Neighbourhood The mode value of Digital Surface Model (DSM) of a given neighbourhood (m)

W.-Y. Shih, et al. Sustainable Cities and Society 62 (2020) 102415
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Table 3

The LCZ classification scheme adopted and revised from Stewart and Oke (2012)*.

* Note that LCZ7 was redefined by this study as compact low-rise areas which are hard paved and consist of light-weight building materials.
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Fig. 2. Thermal distribution in the study area.
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additional sources for confirming the findings from the LCZ analyses.

3.3.3. Building height
As above, the second data source from the Global Digital Surface

Model (DSM) dataset - ALOS World 3D-30m (version 2.1) produced by
Japan Aerospace Exploration Agency (Japan Aerospace Exploration
Agency (JAXA), 2018) was applied to provide additional information
for interpreting building height (Pbh). The DSM data has a horizontal
resolution of approximately 30m that was converted from the 5m
AW3D DSM dataset with a good accuracy level (< 5m) (JAXA). As the
study area is covered by two images, N025E121 on the north and
N024E121 on the south, from different acquisition dates, this study
selected N025E121 data, which was acquired on March 2012 and
covered most of the study area, for analyses. Primary building height of
each neighbourhood was determined by the mode value of DSM using
zonal statistic method for calculation.

3.4. Spatial and statistical analysis

This study used two spatial levels for analysis - pixel level and
neighbourhood level. For pixel-level analysis, raster images recording
the value of LST, LCZ, NDVI, and building height were exported from
the QGIS software as comma-separated values (CSV) files for statistical
analysis in IBM SPSS Statistics (Version 25) software. After eliminating
areas containing clouds and shadows, 246,282 pixels were exported for
statistical analysis. To observe the relationship between LST and
greenness, a scatterplot was applied between the average LST value of
three study dates and NDVI value. For examining temperature varia-
tions amongst different development types, descriptive statistics and
boxplots were used to describe mean LST against LCZ types. A one-way
ANOVA was conducted to compare the mean temperature of LCZ types.
Further examination on the influence from building density was per-
formed by Tukey Honestly Significant Difference (HSD) Test for post
hoc comparisons amongst LCZ types. To provide further insight into the
effect from greenery on built-up areas with open layout, a one-way
ANOVA was measured between NDVI value (using 0.4 as threshold)
and the mean temperature of three building types, namely low-rise,
mid-rise, and high-rise buildings.

At the neighbourhood level, this study focuses on urbanised areas in
the basin and excludes neighbourhoods that are affected by clouds. This
resulted in 991 neighbourhoods across Taipei and New Taipei jur-
isdictions of Taipei Basin for further analysis. Utilising the zonal sta-
tistic method in QGIS, this study uses the administrative boundary of
neighbourhoods to extract LST, principal LCZ types, degree of green-
ness, greenspace proportion, greenspace coherence, and building height
for statistical analysis (Table 2). A Pearson correlation coefficient was
firstly conducted to assess the strength and the direction of bivariate
relationship between LST and all continuous variables of degree of
greenness, greenspace proportion, greenspace coherence, and building
height.

Secondly, we computed Ordinary Least Squares (OLS) regressions
for examining strength and significance in temperature difference re-
sulting from built-up geometry described by the principal LCZ types and
greenspace coherence. Principal LCZ type was designed as an in-
dependent variable in a categorical form. Greenspace coherence was
held constant in the regression analysis while examining temperature
influence from LCZs. Conversely, LCZ type was held constant while
analysing the influence from greenspace coherence, which was mea-
sured by average distance between greenspaces. In the OLS regression
model, both LST and greenspace coherence were logarithmically
transformed, because we found a better descriptive power for LST as the
equation below:

yi = α + β*xi + εi (2)

where y (dependent variable) is the Land Surface Temperature in ˚C

(log) in observation i, which is determined by two explanatory variables
(x1 = greenspace coherence (log), and x2 = principal LCZ type) in
observation i, α represents intercept and β represents coefficients of the
model. ε represents error in observation i. In this model, LCZ type is
taken as categorical variable, where LCZ2 (compact mid-rise) is taken
as a reference category for comparison, because it is the commonest
type in the study area and is often associated with residential areas and
residential and commercial mixed-use areas that are subject to warmer
temperatures. To avoid possible collinearity of predictors undermining
the robustness of the model, a Variance Inflation Factor (VIF) was ap-
plied between independent variables. A VIF value smaller than 5 is
considered to represent no collinearity problem between independent
variables (Rogerson, 2010).

4. Results

Fig. 2a–c provide a high-level overview of thermal distribution in
the Taipei study area. The average LST in the study area ranged from
22.52℃ to 32.98℃, with a standard deviation of 1.96℃ (Fig. 2a). Hot
spots were interpreted as areas one standard deviation warmer than the
mean LST (Fig. 2b). Most hot spots were distributed within New Taipei
City and many of them were associated with industrial areas. Cool
spots, meanwhile, were interpreted as areas one standard deviation
lower than the mean LST (Fig. 2c). These areas overlapped with water
bodies, large parks, wetlands, farms and woodlands. Interestingly, some
rooftops were also identified as cool spots, suggesting some roofing
materials emit lower temperatures. As shown in Fig. 2c, although most
areas cooler than the mean LST are related to waters and greenspaces,
some of them are built up areas. In particular, newly developed areas in
districts such as Neihu and Xinyi (Taipei City) and Banqiao (New Taipei
City) were found to be cooler than the other built-up types. To under-
stand these findings and their significance in more depth, this study
further evaluated (a) influence from land cover on LST, (b) thermal
influence from development intensity and built-up typology, and (c)
cooling effect of greenspace configuration (Fig. 3).

4.1. Influence of land cover on LST

LCZ analysis reflects the spatial pattern of thermal distribution, in-
dicating that LST varies with both land cover type and built-up geo-
metry. Areas dominated by water and vegetation show lower tem-
peratures than those dominated by buildings and paved grounds
(Table 4). The cooling magnitude of water (LCZ G) was stronger than
vegetation (LCZs A, B, C, and D), of which trees (LCZs A and B) perform
greater cooling intensity than shrubs (LCZ C) and grass (LCZ D). Areas
containing greater tree coverage (LCZs A and B) have lower standard
deviation than those of low plant areas (LCZ D), indicating a more
consistent or stable cooling effect from trees.

This finding is consistent with the analysis of scatter plot between
LST and NDVI at a pixel level. The lowest temperature was found at the
area with negative NDVI values, which mostly corresponds to water
areas. The temperature variation found with NDVI value above 0.4 is
further described by the findings in vegetation types between LCZs A to
D, where densely planted trees can be 2.6℃ cooler than areas covered
with low plants. Conversely, the highest LSTs were measured in areas
recording between 0 to 0.2 in NDVI, which are mostly associated with
areas dominated by buildings and hard paved grounds. However,
within this range of NDVI, the variation of LST was large, suggesting
factors other than the degree of greenness also affect temperature.

4.2. Thermal influences from development intensity and built-up typology

The temperature variation caused by development intensity and
built-up types was further explained by analysis with LCZs. A one-way
ANOVA shows a significant effect of LCZ type on LST (F(16,
246265)= 35446.603, p < 0.001) (Table 5).
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The model suggests that a 10 % increase in distance amongst
greenspaces will lead to the increase of LST by 0.26 % when LCZ types
were held constant. As mentioned earlier, LCZ 2 (compact mid-rise) was
taken as a reference temperature to compare with other LCZ types at
the neighbourhood level by OLS regression analysis. Within built-up
neighbourhoods, areas dominated by compact high-rise buildings (LCZ
1) can be 4.3 % cooler than compact mid-rise areas; whereas open high-
rise and open mid-rise have 4.0 % and 1.2 % respectively lower tem-
perature in comparison to compact mid-rise (LCZ 2), when greenspace

Fig. 3. Local Climate Zones of Taipei and indicative samples of satellite image used for validation.

Table 4

Mean LST by types of Local Climate Zones (pixel level analysis).

LCZ types Typical land use types in Taipei Mean LST N Std. Deviation Std. Error Mean NDVI

1: Compact high-rise Commercial areas 26.615 11162 0.843 0.008 0.222
2: Compact mid-rise Residential and commercial areas 28.637 51833 0.720 0.003 0.157
3: Compact low-rise Old development areas, burial grounds 28.312 1293 0.596 0.017 0.149
4: Open high-rise New development areas 26.732 24023 0.911 0.006 0.224
5: Open mid-rise Institutional grounds, school grounds 27.701 40900 0.865 0.004 0.379
6: Open low-rise Institutional grounds, school grounds, burial grounds 26.013 1304 0.786 0.022 0.601
7: Lightweight low-rise (redefined) Factories, industrial areas 30.223 11050 0.704 0.007 0.186
8: Large low-rise Heavy industrial areas 27.523 1597 0.588 0.015 0.536
9: Sparsely built Agricultural lands 26.954 40358 1.260 0.006 0.468
10: Heavy Industry Industrial areas 28.696 16609 1.034 0.008 0.226
A: Dense trees Woodlands, gardens, mangroves 24.298 5370 0.574 0.008 0.810
B: Scattered trees Parks, school grounds 25.826 5649 0.581 0.008 0.719
C: Bush, scrub Parks, burial grounds 25.065 1778 0.689 0.016 0.700
D: Low plants Parks, riverside greenspaces, agricultural lands 26.912 3760 1.093 0.018 0.600
E: Bare rock / paved Parking lots, airport, plaza 28.343 15665 1.045 0.008 0.157
F: Bare soil / sand Sport grounds, shoal 27.727 614 0.730 0.029 0.217
G: Water River, canals, lakes, ponds 23.631 13317 1.192 0.010 −0.301
Total 27.478 246282 1.717 0.003 0.276

Table 5

Result from one-way ANOVA between mean LST and all LCZ types.

Sum of Squares df Mean Square F Sig.

Between Groups 506017.32 16 31626.08 35446.60 0.000
Within Groups 219721.96 246265 0.89
Total 725739.28 246281
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coherence is held constant (Table 6). In other words, although reducing
building density (e.g. LCZ 5: open mid-rise and LCZ 9: sparely built)
shows significant temperature reduction, the increase in development
intensity in the vertical dimension can also lead to lower temperature
(LCZ 1 and LCZ 4). Our model does not find multicollinearity between
predictors, as the variance inflation factor (VIF) values were below 2
(Table 6).

4.2.1. Development density
The influence of building density on temperature was further ob-

served at pixel level through the post-hoc Tukey HSD Test. The sig-
nificant difference between the mean LST of LCZs 1 and 4; LCZs 2 and 5;
and LCZs 3 and 6 indicates that greater openness between buildings
leads to lower temperature amongst low- to mid- rise buildings
(Table 7; Fig. 4). The temperature difference was particularly distinct at
areas with low-rise buildings, where open layout (LCZ 6) is on average
2.3℃ cooler than a compact layout (LCZ 3). Amongst high-rise build-
ings, however, open high-rise (LCZ 4) was marginally warmer (0.12℃)
than its compact counterpart (LCZ 1). This suggests an interactive effect
from building height and spacing on temperature. Hence, reducing
building density without considering other factors is unlikely to pro-
duce cooler environments for all building types.

Likewise, the lower temperature found with an open layout is not
only caused by the increase of spacing, but also by greater greenery in
the surroundings. As Table 4 shows, both LCZs 5 and 6 have greater
greenness than their compact counterparts. To compare the effect from
greenness, a one-way ANOVA and boxplots were applied to the mean
temperature of LCZs 4, 5, and 6. The results show significant lower
temperature for all building types when the NDVI value was greater
than 0.4 (Fig. 5). The temperature difference between areas with and
without greenery reached 0.91℃ in LCZ4 (F(1, 24021)= 2890.55,
p < 0.001); 0.38℃ in LCZ5 (F(1, 40898)=2001.02, p < 0.001); and
0.78℃ in LCZ6 (F(1, 1302)=223.02, p < 0.001). The lower cooling
intensity found with open mid-rise buildings reflects the findings at
neighbourhood level (Table 7), suggesting that greenspace cooling ef-
fect may be particularly constrained in areas surrounded by buildings
with 3–10 storeys.

4.2.2. Building height
The comparison between the mean LST of LCZs 1–6 with post-hoc

Tukey HSD Test at pixel level demonstrated significant temperature
difference between compact built-up type from LCZs 1–3, as well as

Table 6

Result of OLS regression on LST with principal LCZ types and greenspace co-
herence at neighbourhood level (Dependent variable is log LST in ˚C).

Variables Coefficient Standard Errors VIF

Log (greenspace coherence) 0.026*** (0.002) 1.92
LCZ 1: Compact high-riseα −0.043*** (0.004) 1.08
LCZ 4: Open high-riseα −0.040*** (0.003) 1.11
LCZ 5: Open mid-riseα −0.012*** (0.003) 1.46
LCZ 6: Open low-riseα −0.014 (0.023) 1.01
LCZ 7: Lightweight low-riseα 0.029*** (0.005) 1.03
LCZ 9: Sparsely builtα −0.033*** (0.003) 1.54
LCZ 10: Heavy Industryα 0.020*** (0.007) 1.02
LCZ A: Dense treeα −0.066*** (0.008) 1.14
LCZ B: Scattered treeα −0.056*** (0.017) 1.03
LCZ E: Bare rock / pavedα −0.004 (0.017) 1.00
LCZ G: Waterα −0.127*** (0.005) 1.02

Constant 3.274*** (0.009)
Observations 984
R2 0.670
Adjusted R2 0.660
Residual Std. Error 0.023 (df= 971)
F Statistic 164.150*** (df= 12; 971)

Note: α reference: compact mid-rise (LCZ2); *p < 0.1; **p < 0.05;
***p < 0.01.

Table 7

Multiple comparisons with Tukey HSD test between 1 to 6 LCZ types.

LCZ Types Mean
Difference

Std. Error Sig. 95 % Confidence
Interval

Lower
Bound

Upper
Bound

1: compact
high-rise

2 −2.021* .009 < 0.001 −2.046 −1.997
3 −1.696* .024 < 0.001 −1.765 −1.628
4 −.117* .009 < 0.001 −.144 −.091
5 −1.085* .009 < 0.001 −1.110 −1.061
6 .602* .024 < 0.001 .534 .670

2: compact mid-
rise

1 2.021* .009 < 0.001 1.997 2.046
3 .325* .023 < 0.001 .260 .391
4 1.904* .006 < 0.001 1.886 1.923
5 .936* .005 < 0.001 .921 .952
6 2.624* .023 < 0.001 2.559 2.689

3: compact low-
rise

1 1.696* .024 < 0.001 1.628 1.765
2 −.325* .023 < 0.001 −.391 −.260
4 1.579* .023 < 0.001 1.513 1.646
5 .611* .023 < 0.001 .545 .677
6 2.299* .032 < 0.001 2.208 2.390

4: open high-
rise

1 .117* .009 < 0.001 .091 .144
2 −1.904* .006 < 0.001 −1.923 −1.886
3 −1.579* .023 < 0.001 −1.646 −1.513
5 −.968* .007 < 0.001 −.987 −.949
6 .719* .023 < 0.001 .653 .785

5: open mid-rise 1 1.085* .009 < 0.001 1.061 1.110
2 −.936* .005 < 0.001 −.952 −.921
3 −.611* .023 < 0.001 −.677 −.545
4 .968* .007 < 0.001 .949 .987
6 1.688* .023 < 0.001 1.622 1.753

6: open low-rise 1 −.602* .024 < 0.001 −.670 −.534
2 −2.624* .023 < 0.001 −2.689 −2.559
3 −2.299* .032 < 0.001 −2.390 −2.208
4 −.719* .0232 <0.001 −.785 −.654
5 −1.688* .023 < 0.001 −1.753 −1.622

Notes: * The mean difference is significant at the 0.05 level.

Fig. 4. Thermal distribution between LCZ 1 to LCZ 6 at a pixel level.
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Fig. 5. Mean LST of three types of buildings located in an open layout against NDVI value.
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between open built-up types from LCZs 4–6. Yet regardless of compact
or open layout, high-rise buildings (LCZ 1 and LCZ 4) tend to result in
lower temperature, whereas mid-rise buildings (LCZ 2 and LCZ 5) tend
to result in higher temperature. To triangulate data and enhance the
reliability of our results, the relationship between mean LST and the
majority of building height within a neighbourhood level was further
examined using Digital Surface Model data. A significant quadratic
relationship (R2=0.33, F(2, 709)= 174.37, p < 0.001) was found,
confirming neighbourhoods dominated by mid-rise buildings tend to be
warmer than those dominated by either low-rise or high-rise buildings
(Fig. 6).

4.3. Effect from greenspace pattern

At the neighbourhood level, greenspace pattern in addition to
overall degree of greenness plays an important role in determining LST
difference. The Pearson Correlation Coefficient analyses show that both
mean and mode value of LSTs decrease with greenspace proportion
(r=−0.632, p < 0.01; r=−0.203, p < 0.01) and increase with
greenspace coherence (defined as shortest distance to nearby green-
spaces) (r=0.518, p < 0.01; r=0.200, p < 0.01), at a significant level
(Table 8). Greater greenspace coverage and coherence result in cooler
environments within a neighbourhood. A simple linear relationship was
found between mean LST and greenspace proportion of neighbourhoods
(F(1, 982)= 653.126, -p < 0.001) with an R2 of 0.399. For every 1 %
of greenspace increase in a neighbourhood, mean LST decreased by
0.05℃. Similarly, a significant logarithmic relationship was observed

with greenspace coherence (F(1, 982)= 581.855, p < 0.001) with an
R2 of 0.372. This suggests every metre increase in inter-greenspace
distance is associated with a 1.18℃ rise in mean LST in a neighbour-
hood. As displayed in Fig. 7, the most notable cooling effect occurs in
neighbourhoods where average distance between greenspaces is esti-
mated to below 170m. Greenspaces distributed at greater distance than
this might result in little cooling effect to a neighbourhood.

5. Discussion and implications

Overall, the results of this study reaffirm that significant thermal
variation can exist within the same urbanised area. Some neighbour-
hoods are subject to higher heat intensity than others, due to joint effect
from the layout of buildings and greenspaces. Our findings show that
cooler environments are not only associated with natural surfaces, but
also their interrelation with different forms and spatial arrangements of
buildings (Middel et al., 2014). Accordingly, we draw out conceptual
insights in three areas - development intensity; greenspace configura-
tion; and building materials and land use. Given the need for more in-
depth knowledge of urban thermal environments in dense subtropical
Asian cities, attention is paid to comparison with existing Asian studies.

5.1. Implications for development intensity: density, height, and greenness

Existing research into development intensity and thermal environ-
ments has produced varying results, even within similar climate con-
texts (e.g. Guo, Zhou, Wu, Xiao, & Chen, 2016; Yang et al., 2019). Our

Fig. 6. Thermal distribution against building height.

Table 8

Pearson correlation between temperatures and greenspace features.

Greenspace features Temperature Degree of greenness (NDVI) Greenspace proportion Greenspace coherence

Mean LST Pearson Correlation −.486** −.632** .518**
Sig. (2-tailed) .000 .000 .000
N 984 984 984

Mode LST Pearson Correlation −.120** −.203** .200**
Sig. (2-tailed) .000 .000 .000
N 991 991 991

** Correlation is significant at the 0.01 level (2-tailed).
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results show that an open layout tends to reduce temperature at low- to
mid-rise building areas, whereas a compact layout is the coolest de-
velopment form for high-rise buildings. This finding is partly incon-
sistent with previous studies, which have indicated an increase in
temperature with building density (e.g. Chen, Lin, & Lin, 2017; Shi,
Lau, Ren, & Ng, 2018; Wong & Yu, 2005), building height (Yang et al.,
2019) and street openness (Ali-Toudert & Mayer, 2006) in hot to warm
climates. Previous research has also observed higher temperature at
densely developed high-rise buildings owing to lower ventilation effi-
ciency (Yang et al., 2019); or at openly distributed low-rise buildings
due to increase of incoming solar radiation heating up street canyons
(Ali-Toudert & Mayer, 2006; Shi et al., 2018; Thorsson, Lindberg,
Björklund, Holmer, & Rayner, 2011). In our study, increasing spacing
was an important factor for lower temperature amongst low to mid rise
buildings. This may be due to greater abundance of greenery in an open
layout. As greenery (particularly tree canopy in a tropical climate) often
increases with available open space in Taipei, it is likely to provide
better shading and ventilation to an area.

The bell-shaped relationship found with building height and LST
supports findings from Beijing, China (Feng & Myint, 2016),
Guangzhou, China (Guo et al., 2016) and Phoenix, USA (Middel et al.,
2014), indicating that regardless of density, high-rise buildings were
the coolest type during daytime in a warm climate. The average tem-
perature of high-rise buildings is nearly as low as sparely-built agri-
cultural lands in Taipei, suggesting a weak intensity of urban heat is-
land effect. As cooler environments of high-rise buildings are likely
attributable to shade from surrounding buildings (Middel et al., 2014;
Pacifici et al., 2017; Zheng et al., 2019), the higher solar altitude in
subtropical regions - which reduces the shading efficacy of lower
buildings - may explain the higher temperature found at low- to mid-
rise buildings in Taipei (Oke, 1986).

Although our results regarding lower daytime temperature at high-
rise building areas are consistent with previous studies, the potential
difference of diurnal temperature requires further attention (Tian et al.,
2019). In some cases, previous research into both daytime and night-

time urban heat island effect has observed higher nocturnal tempera-
ture at compact high-rise neighbourhoods (e.g. Chow & Roth, 2006; Shi
et al., 2018). Other studies based on air temperature in Taipei (Chen,
Lo, Shih, & Lin, 2019) or surface temperature in Shanghai (Yang et al.,
2019) have however suggested temperature increase with both building
density and height. These differences in findings may be influenced by
rooftop characteristics, such as size, aspect, and materials (Zhao, Myint,
Wentz, & Fan, 2015); building orientation and height affecting shading
and ventilation (e.g. Peng et al., 2018); dynamic traffic conditions in-
fluencing air temperature on the ground (Cardoso & Amorim, 2018); or
the definition of building height taken in a particular study. Hence, a
comparative study would be of value to rule out potential variables
derived from the difference in methods. Further examination in relation
to the time at which thermal data was collected, and the methods
through which the data was collected, is therefore necessary to provide
a more comprehensive overview.

5.2. Cooling variation from vegetation

The multiple methods of NDVI value, LCZ types, and greenspace
configuration utilised in this study provide further insights into the
argument that vegetated grounds are cooler than hard-paved and
building areas. As per previous research in Nanjing, China (Kong et al.,
2014) and Arizona, USA (Myint et al., 2015), cooling intensity in Taipei
was stronger with trees yet weaker with low plants such as grass, turf
and crops. Both average temperature and variation was greater at low
plant areas (LCZ D). This may be explained by weak transpiration
cooling from vegetation and greater openness, which subject the area to
greater influence from solar exposure and shading from surroundings.
Notably, some low plant areas were even warmer than some building
areas. Increasing greenery without considering this characteristic may
therefore undermine the effectiveness of heat reduction strategies.

Spatial distribution of greenspaces also plays an important role in
determining cooling performance. This study confirms the findings of
previous research suggesting greater greenspace proportion/coverage

Fig. 7. Relationship between greenspaces and LST at neighbourhoods.
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can result in lower temperature (e.g. Yu, Guo, Zeng, Koga, and Vejre
(2018)) on Fuzhou, China). We further suggest that the cooling effect
from increasing greenspace proportion might be limited, such that
every 1% of greenspace increase within a neighbourhood leads to
average temperature decrease of only 0.05℃. However, this finding
does not discourage the increase of greenery. Instead, what our findings
indicate is that planning greenery for cooling should consider spatial
pattern as well as increasing quantity. Although previous studies have
varying opinions regarding the effect from greenspace configuration on
cooling (Kong et al., 2014; Shih, 2017a), our results support the
viewpoint of Myint et al. (2015) and Shih (2017a) suggesting the
clustering pattern is superior to scattering pattern in reducing average
temperature. Greater temperature reduction was found when green-
spaces were allocated close together within an estimated threshold
distance around 170m, reflecting the phenomenon of cooling decay
highlighted in recent research (e.g. Lin, Yu, Chang, Wu, & Zhang, 2015;
Shih, 2017b).

In addition, as Shih and Mabon (2018) argue, the intensity of
cooling effect is influenced by surrounding development characteristics.
Although increasing greenery with open space leads to lower tem-
perature across all building types, the relatively small cooling intensity
amongst mid-rise buildings (three to ten storeys) needs further atten-
tion. It is likely that this building height benefits less from shading but
accumulates more anthropogenic heat which offsets the cooling effect
from vegetation. Considering that greenery cooling effect varies with
the interrelation between greenspace pattern and built-up geometry,
greening strategies focusing on cooling should be tailored according to
different development typologies.

5.3. Associations with building materials and land use

LCZ analysis suggests an association between land use type and
thermal characteristics. The warmest areas were mostly related to fac-
tories and industrial areas, consistent with observations in Singapore
(Chow & Roth, 2006; Jusuf, Wong, Hagen, Anggoro, & Hong, 2007).
Whilst greater impervious surface is one explanation for higher tem-
perature in industrial areas, building materials commonly used for
constructing factories in Taipei have a notable influence on this thermal
property (Oke, 1986). Given its lower price, many small factories in
Taipei are constructed with corrugated iron sheets, which tends to
absorb heat and exacerbate urban heat island effects (Wang, Chang, &
Chu, 2007). This thermal characteristic is reflected by LCZ7, which is
2.7℃ above average temperature in this study.

Similarly, the common use of these iron sheets in Taiwan as roofing
materials in low- to mid-rise buildings when constructing an additional
room on the rooftop might to some extent contribute to heat absorp-
tion. As this rooftop construction is observed less on high-rise buildings,
the higher temperature found with low- to mid-rise building areas in
our study should be viewed in light of this characteristic, which is
specific to Taipei and Taiwan. This is particularly important when
comparing the outcomes from this study to other subtropical to tropical
Asian cities. Methodologically, this insight illustrates the value of local
contextual knowledge in interpreting and explaining outcomes from
LCZ analysis of this nature.

5.4. Research limitations

Although satellite imagery enables simultaneous analyses of
thermal and landscape relationship throughout a city, it has some in-
herent restrictions. LANDSAT 8 satellite visits study areas during day-
time with a 16-day interval, so it only allows an observation in specific
time of a day (10:20 a.m. in case study area) and is not able to address
diurnal change. Caution should thus be exercised in generalising our
results to other times of the day. In addition, the use of LANDSAT 8
imagery for interpreting greenspaces will inevitably exclude vegetation
with a small surface area, due to the limit in spatial resolution of 30m.

The NDVI value used to map vegetated areas in this study also tends to
mis-classify greenspaces which have dried grounds and short plants as
non-green areas. Although these types of greenspaces have been de-
monstrated in previous research to deliver limited cooling effect due to
the lack of evapotranspiration cooling (REF), it is important to ac-
knowledge these potential influences on our classification schemes.

6. Conclusions

This paper broadly reinforces extant empirical research in sub-
tropical to tropical climate contexts, indicating that land surface tem-
perature is jointly affected by vegetation and built-up geometry. A
notable finding is that high-rise buildings, regardless of open or com-
pact layout, display lower temperatures than agricultural lands. This
implies that intensive development in the vertical dimension does not
necessarily lead to strong urban heat island effect and could be a de-
velopment solution for reducing daytime tropical heat.

Moreover, fitting with much research to date, mid-rise building
areas appear to be the warmest types within residential and commercial
areas, whilst both increasing spacing or changing building height can
have significant temperature reduction. The Taipei results illustrate,
however, that any cooling benefits from open layouts must be balanced
with greenery – especially given that close distribution of greenspaces is
needed to maximise cooling benefits. It is therefore important to take
both open space and vegetation into account when considering cooling
strategies for reducing heat accumulation amongst low- to mid- rise
buildings. This is especially significant in Taipei, where compact mid-
rise buildings are the dominant development type and have resulted in
highest temperatures.

Furthermore, the Taipei study shows the importance of bearing in
mind local, context-specific factors when understanding thermal dis-
tribution. For instance, areas dominated by compact low-rise and
lightweight factories display the highest surface temperature. This is
likely attributable to not only the lack of greenery, but also the common
building materials of corrugated iron steel used in Taiwan. This study
also indicates a need for further empirical research across a breadth of
contexts to more fully understand diurnal difference in relation to
shading benefit.

Based on the findings of this paper, we suggest prioritising heat
mitigation interventions to industrial areas and mid-rise building areas.
Four strategies are proposed for cooling Taipei at daytime in summer:
1) increasing the amount of water bodies and vegetation, with greater
coverage and coherence; 2) taking building height and shadow into
account during regeneration/development; 3) increasing spacing and
greenery between low- to mid-rise buildings; and 4) avoiding con-
struction of compact low-rise buildings with corrugated iron steel.
These actions could be realised by integrating findings and subsequent
guidance on built environment characteristics for lower temperatures
into urban regeneration plans, building codes, and urban/landscape
design. Whilst context specific, further research may wish to assess the
value of such strategies at night time and compare with other Asian city
contexts. Caution should be also paid to other environmental impacts,
such as energy use, air pollution and ventilation, derived from these
cooling strategies, so as to gain a more comprehensive understanding of
how to enhance the climate resilience of subtropical cities.
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