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ABSTRACT 

 

BACKGROUND: Accurate preoperative risk assessment in emergency laparotomy (EL) is 

valuable for informed decision-making and rational use of resources. Available risk prediction 

tools have not been validated adequately across diverse healthcare settings. Herein, we report a 

comparative external validation of 4 widely cited prognostic models. 

METHODS: A multicenter cohort was prospectively composed of consecutive patients 

undergoing EL in 11 Greek hospitals from January 2020 to May 2021 using the National 

Emergency Laparotomy (NELA) audit inclusion criteria. 30-day mortality risk predictions were 

calculated using the American College of Surgeons National Surgical Quality Improvement 

Program (ACS-NSQIP), NELA, Physiological and Operative Severity Score for the enUmeration 

of Mortality and morbidity (P-POSSUM) and Predictive Optimal Trees in Emergency Surgery 

Risk (POTTER) tools. Surgeons’ assessment of postoperative mortality using pre-defined cutoffs 

was recorded, and a surgeon-adjusted ACS-NSQIP prediction was calculated when the original 

model’s prediction was relatively low. Predictive performances were compared using scaled Brier 

scores, discrimination and calibration measures and plots, and decision curve analysis. 

Heterogeneity across hospitals was assessed by random-effects meta-analysis. 

RESULTS: 631 patients were included and 30-day mortality was 16.3%. The ACS-NSQIP and 

its surgeon-adjusted version had the highest scaled Brier scores. All models presented high 

discriminative ability, with concordance statistics ranging from 0.79 for P-POSSUM to 0.85 for 

NELA. However, except the surgeon-adjusted ACS-NSQIP (Hosmer-Lemeshow test p=0.742), all 

other models were poorly calibrated (p <0.001). Decision curve analysis revealed superior clinical 

utility of the ACS-NSQIP. Following recalibrations, predictive accuracy improved for all models 
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but ACS-NSQIP retained the lead. Between-hospital heterogeneity was minimum for the ACS-

NSQIP model and maximum for P-POSSUM.  

CONCLUSION:  The ACS-NSQIP tool was most accurate for mortality predictions after EL in 

a broad external validation cohort, demonstrating utility for facilitating preoperative risk 

management in the Greek healthcare system. Subjective surgeon assessments of patient prognosis 

may optimise ACS-NSQIP predictions. 

Level of Evidence: Level II, Diagnostic test/criteria 

 

Keywords: Laparotomy; prediction rule; mortality; risk; validation; clinical decision support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

BACKGROUND 

 

Emergency laparotomy (EL) is a common procedure performed worldwide for a wide variety of 

abdominal pathologies. Despite documented advances in the modern era,1 mortality following EL 

remains substantial worldwide, affecting up to 1 of every 5 patients in the first 30 postoperative 

days in high-quality health care systems.2–5  Efforts to standardise perioperative care of EL patients 

through implementation of predetermined pathways have led to reduction in postoperative 

mortality.6 Standardisation in contemporary practice requires calculation and consideration of the 

risks associated with EL before entering the operating room.7 Preoperative risk stratification may 

result in rational utilisation of escalated levels of care postoperatively, higher level of consultant 

involvement in high-risk patients, improvement of communication between surgical disciplines 

and optimal shared decision-making.8,9 For patients undergoing EL, factors such as age, 

comorbidity and waiting time from admission to operation have been associated with worse 

outcomes,10 and have been subsequently combined in multivariable risk prediction models. Their 

use is embraced by modern guidelines but no specific recommendation on the best model has been 

made.11  

There are few external validation studies directly comparing between risk prediction 

models in EL.12,13 In a recent review of the applicability of risk stratification tools to emergency 

general surgery, the authors identified the American College of Surgeons National Surgical 

Quality Improvement Program (ACS-NSQIP) tool as best fitting their definition of the ideal 

scoring tool.14 Several other risk prediction tools have been variably proposed and widely cited, 

including the National Emergency Laparotomy Audit (NELA) tool, the Portsmouth-Physiologic 

and Operative Severity Score for the enUmeration of Mortality and morbidity (P-POSSUM) and 
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the Predictive OpTimal Trees in Emergency Surgery Risk (POTTER). These tools have 

demonstrated excellent predictive performance in the populations in which they were developed 

(mainly in the UK and USA) but their broader transportability in diverse external settings has not 

been adequately validated. Previous reports have revealed significant differences in the 

management of EL in this population compared to the UK.15,16  

The present study performed comparative external validation of 4 common risk prediction tools 

(ACS-NSQIP, NELA, P-POSSUM and POTTER), in a multicenter prospective cohort design, to 

identify the best tool for predicting 30-day mortality in Greek patients undergoing EL. 

 

METHODS 

 

Ethics and reporting 

The study was approved by the Institutional Review Board and the Bioethics Committee of the 

participating institutions and is reported according to the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement (SDC Table S5).17 

The study was registered in ClinicalTrials.gov (identifier NCT04615520). 

 

Study design and participants 

A multicenter cohort was prospectively assembled by enrolling consecutive patients undergoing 

EL in 10 hospitals in Greece and 1 hospital in Cyprus (1 secondary-care, 2 tertiary-care and 8 

university-affiliated hospitals), from January 2020 to May 2021. All participating centers 

submitted prospectively collected anonymised data on patients undergoing EL. Each patient was 

followed up until the 30th postoperative day. Patient inclusion and exclusion criteria were similar 
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to those used in the NELA audit (SDC Table S1). Briefly, all patients who had EL were eligible 

for this study except for appendectomy, cholecystectomy, negative diagnostic laparotomy or 

laparoscopy, biopsy, non-gastrointestinal surgery and elective gastrointestinal surgery. Only adults 

(>=18 years) were enrolled.  

 

Outcomes and predictors 

The primary endpoint was 30-day postoperative mortality. Demographic data, preoperative 

variables required for each prediction model (NELA, P-POSSUM, ACS-NSQIP and POTTER), 

type of operation and postoperative outcomes were prospectively recorded for each patient. The 

data were then entered into respective online calculators to make predictions for the risk of 30-day 

postoperative death for each patient from each model. Before surgery, attending surgeons 

answered the following question for each patient: “In your clinical judgement, what is the risk of 

death within 30 days?” with 4 ordered response options, namely <5%, 5-10%, 10-20% or >20%. 

The ACS-NSQIP online calculator allows clinicians to adjust for underestimation by increasing 

the estimated risks based on their subjective impression of the patient. We independently simulated 

this process by opting for adjustment on the ACS-NSQIP calculator whenever the 30-day mortality 

risk prediction was lower than the surgeon’s preoperative assessment as shown in SDC Table S2 

(we refer to this as surgeon-adjusted ACS-NSQIP). We calculated the ACS-NSQIP predicted risk 

both with and without incorporating the subjective surgeon’s assessment. For patients discharged 

prior to the 30-day mark, we scheduled office visits and follow-up calls from study personnel, in 

which relevant outcomes were documented. 
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Sample size 

For external validation of prognostic models, a minimum of 100 outcome events is recommended 

to ensure adequate power to detect changes in predictive performance metrics in external 

datasets.18,19 We therefore recruited patients for this study over 17 months until about 100 

postoperative deaths occurred in our cohort.  

 

Missing data 

Data were readily available to calculate risk predictions for at least 98% of the patients using the 

NELA, P-POSSUM, and ACS-NSQIP models, but only for 486 (77%) patients based on POTTER. 

More than half of the missing data for POTTER originated from 2 hospitals, where POTTER 

predictions could not be calculated for 48% and 98% of their patients, respectively. This was 

because variables necessary for the POTTER tool, such as pre-operative albumin, were not 

routinely available preoperatively in those hospitals. As the prognostic models are aimed at being 

applied in clinic, we opted for complete case analysis for each model. Moreover, there was no 

evidence of association between missing POTTER prediction and mortality rate (15.3% in patients 

with missing POTTER vs 20% in those with non-missing POTTER, p=0.172), suggesting that 

complete case analysis may not bias our results. 

 

Statistical methods 

The analysis aimed to estimate and compare metrics of predictive performance and utility for 

decision-making of the selected prediction models of 30-day mortality, when applied to our 

independent cohort of patients undergoing EL. The subjective preoperative assessment of patient’s 

prognosis by their surgeon was considered as a minimum benchmark that any useful prediction 
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tool should outperform. In addition, we examined the possibility of improving predictive 

performance by recalibrating the models and assessed the heterogeneity of predictive accuracy 

between hospitals.  

 The Brier score (mean squared error between observed and predicted probabilities) was 

used as a comparative measure of overall model performance, which we scaled by its maximum 

value under a non-informative null model to let it range up to a theoretical maximum of 100%. 

The scaled Brier score represents the amount of prediction error in a null model that is explained 

by the model under validation. Higher values of the scaled Brier score indicate better prediction 

accuracy (negative values indicate a potentially harmful model).20 Bootstrap resampling (500 

replications) was applied to compute 95% confidence intervals (CI) for the scaled Brier scores. 

The discriminatory ability of each model (to rank patients according to risk) was quantified by 

calculating the concordance c-statistic as the area under the receiver operating characteristic curve 

(AUC) with exact binomial 95% CI. The DeLong test for correlated data was employed to compare 

each model’s AUC with the minimum benchmark.21  

We emphasised on the calibration of the models (agreement between the predicted and observed 

numbers of outcome events), because adequate calibration ensures an accurate absolute risk is 

communicated to patients and physicians.22,23 The Hosmer–Lemeshow goodness-of-fit test was 

used to broadly assess calibration in deciles of predicted risks (a small p-value indicates poor 

calibration). The ratio of expected to observed outcome events (E:O ratio) was calculated, which 

ideally should be 1 (E:O < 1 indicates underestimation and E:O > 1 indicates overestimation of the 

total number of deaths). In addition, a calibration regression line was made (plotting predicted 

against observed risks). The intercept and slope of the calibration regression line and their Wald-

type 95% Cis were estimated using logistic regression.22,23 The calibration intercept, also known 
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as calibration-in-the-large (CITL), compares the average predicted risk with the overall event rate 

and, ideally, should be 0 (CITL < 0 indicates the predictions are systematically too high, whereas 

CITL > 0 indicates the predictions are systematically too low). The calibration slope evaluates the 

spread of the predicted risks and has a target value of 1. When CITL is close to 0, a slope close to 

1 indicates that good calibration is also maintained across the range of individuals.23,24 

Additionally, lowess-smoothed calibration curves were constructed to allow for visual inspection 

of calibration.25 

 Decision-curve analysis (DCA) was employed to provide insight into the range of decision 

thresholds to label a patient as ‘high risk for postoperative death’ that would have highest net 

benefit (NB) for decision-making when using each risk prediction model for this purpose.26 NB is 

defined as the difference between the proportion of true positives (labelled as high risk pre-

operatively and then going on to die within 30-days of EL) and the proportion of false positives 

(labelled as high risk but not going on to die within 30-days) weighted by the odds of the selected 

threshold for the high-risk label. At any given threshold, the model with higher NB is the preferred 

model.26 We examined risk thresholds between 5% and 50%.  

As there was different case-mix between our cohort and the cohorts on which the risk 

prediction tools were originally developed, we examined whether adjusting (recalibrating) each 

model’s intercept and slope would result in better calibrated predictions.22,23 Finally, we examined 

the variability in performance across hospitals (heterogeneity) using random effects meta-analysis 

of hospital-specific scaled Brier scores. Heterogeneity was quantified using 95% prediction 

intervals, which indicate the dispersion in performance metrics that can be expected when applying 

the model in a new centre. 27 
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 All statistical analyses were performed using STATA v.17 (StataCorp, College Station, 

TX, USA). 

 

Development vs Validation  

The clinical setting and eligibility criteria in this study were similar to those of the NELA model, 

to allow for a reasonable comparison of outcomes.28 NELA was initiated in 2014 in the UK as a 

specific tool for emergency laparotomies, focusing on 30-day postoperative mortality as main 

outcome.28 The ACS-NSQIP was developed in a broader setting that included both elective and 

emergency procedures from a variety of surgical subspecialties in the USA between 2009 and 

2012.29 Only 59% of the development cohort for ACS-NSQIP were general surgery patients. 

Outcomes of interest in ACS-NSQIP were 30-day mortality, common postoperative 

complications, and procedure specific complications such as anastomotic leak.29 The POTTER 

model was developed on a subset of the data from the ACS-NSQIP database, conditioning on 

patients who underwent emergency surgery between 2007 and 2013, to predict outcomes similar 

those targeted by the ACS-NSQIP model.30 P-POSSUM was a modification to correct for over 

prediction of mortality from the initial POSSUM equation that was developed based on patients 

who underwent both elective and emergency surgery between 1993 and 1995, excluding day-

surgery and pediatric cases.31  

 

  



13 

 

RESULTS 

 

Patient characteristics 

Over the 17-month recruitment period, 633 patients underwent EL in the 11 participating hospitals 

and were enrolled in the study. 2 patients were lost to follow-up and were excluded from analysis. 

The remaining 631 were included in the final analysis. Case ascertainment rate was high and it has 

been described in detail in the report of the Hellenic Emergency Laparotomy Study (HELAS).15 

The patients had a mean age of 66 years (range 19-99 years), 54% were male and 43% were 

classified as ASA status III/IV. The most common indication for EL was gastrointestinal 

obstruction (39%), followed by perforation (36%) and ischemia (15%). Demographic and clinical 

characteristics are detailed in Table 1. 

 

Observed and predicted mortality rates 

There were 103 deaths within 30-days of EL, an overall 30-day mortality rate of 16.3% (95%CI 

13.5% to 19.4%). The surgeons provided subjective preoperative risk assessment for all but 21 

(3.3%) patients. Compared to the actual mortality rate, the average predicted risks were lower for 

the POTTER (8.9%), NELA (10.5%) and ACS-NSQIP (12.2%) models, much higher than 

observed mortality for P-POSSUM (19.9%) and about similar to observed mortality (within CI 

limits) for the surgeon’s subjective assessment (14.9%) and the surgeon-adjusted ACS-NSQIP 

model (18.1%). All models assigned a significantly higher mean predicted risk to the group of 

patients who eventually died within 30-days of EL than those who survived (Table 2).  
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Case mix 

SDC Table S3 compares the distribution of context-important clinical characteristics and 

outcomes between the present study cohort and the cohorts of patients on which the development 

of the NELA and ACS-NSQIP models were based. The current cohort appears to represent a 

different case-mix of patients with higher mortality compared to the original model development 

cohorts of NELA and ACS-NSQIP. 

 

Predictive performance 

Predictive performance metrics are shown in Table 3. The overall Brier scaled score was highest 

for ACS-NSQIP (22.4%, 95% CI 14.5% to 30.3%) and surgeon-adjusted ACS-NSQIP (20.6%, 

95% CI 13.4% to 27.2%), and lowest for surgeon’s assessment (10.6%, 95% CI 1.3% to 18.7%) 

and P-POSSUM (1.5%, 95% CI 0.0% to 13.1%). Discrimination was excellent for all models 

(SDC Figure S1), with AUC point estimates ranging from 0.79 (surgeon and P-POSSUM) to 0.85 

(NELA). DeLong’s tests showed that NELA and ACS-NSQIP had significantly higher AUCs than 

the minimum benchmark of the surgeon’s preoperative assessment, whereas no statistically 

significant difference from the minimum benchmark was observed for P-POSSUM (p=0.868) and 

POTTER (p=0.081). The Hosmer-Lemeshow test indicated poor agreement of observed and 

predicted risks in decile groups for all models (all p<0.001), except the surgeon-adjusted ACS-

NSQIP model (p=0.742; SDC Figure S2). As seen in Table 3, the CITL statistic indicated that 

POTTER, NELA and ACS-NSQIP produced (in this order of magnitude) predictions that were 

systematically too low (CILT CI limits above zero), whereas P-POSSUM systematically 

overestimated mortality (CILT CI limits below zero). In contrast, no significant deviation from the 

ideal CILT was seen for the surgeon-adjusted ACS-NSQIP model, which was the only model with 
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an acceptable calibration slope (slope CI limits spanning 1). Figure 1 shows smoothed calibration 

plots for each model confirming visually the superior calibration of the ACS-NSQIP model, 

especially its surgeon-adjusted version.  

 

Decision curve analysis 

Figure 2 shows that all models had positive NB for decision thresholds up to about 40% mortality 

risk, but best overall utility on wider ranges of thresholds was maintained for the ACS-NSQIP and 

surgeon-adjusted ACS-NSQIP models. 

 

Model recalibration 

After intercept and slope adjustments, scaled Brier scores and calibration metrics improved 

substantially for all models, with ACS-NSQIP retaining lead performance (SDC Table S4). As 

seen in SDC Figure S3, the flexible calibration curves of all updated models were much closer to 

the diagonal reference line of perfect calibration compared to the original unadjusted models. 

There was evident underestimation of mortality risks in very high-risk patients from the 

recalibrated NELA and P-POSSUM models. DCA on recalibrated models is shown on SDC 

Figure S4 and confirmed that ACS-NSQIP had best overall clinical utility to select high-risk 

patients. 

 

Heterogeneity 

Random-effects meta-analysis revealed substantial and statistically significant heterogeneity of 

hospital-specific Brier scores for NELA, P-POSSUM and POTTER, whereas heterogeneity was 

low and non-significant for ACS-NSQIP and the surgeon-adjusted ACS-NSQIP (SDC figures S5-
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S10). As seen from the 95% prediction intervals in Figure 3, future new studies would maintain 

their scaled Brier score within acceptable limits only for ACS-NSQIP and its surgeon-adjusted 

version.  

 

DISCUSSION 

We presented the results of a comprehensive external validation of 4 commonly cited prognostic 

models when applied on a large multicentre cohort of Greek patients who underwent EL over 17 

months at 11 hospitals. Discordant case-mix between this cohort and cohorts where the models 

were originally developed implies that this study assesses broader transportability of the models 

in a different setting rather than mere reproducibility on patients similar to those in the original 

model development cohorts. The results of this assessment favor the use of the ACS-NSQIP 

model, including its surgeon-adjusted version, when assessing the prognosis of EL patients. ACS-

NSQIP was seen to outperform all other models with respect to several metrics of predictive 

performance, demonstrated clinical utility on a wider range of risk thresholds for decision-making, 

and exhibited minimum heterogeneity across hospitals.  

This is the first study to perform comparative external validation of different risk prediction 

tools for EL patients in a prospective design in Greece. In contrast to our findings, previously 

performed comparative external validations for emergency abdominal surgery in other countries 

have mostly favoured the NELA risk prediction tool.12,13,32,33 In a cohort of 758 EL patients in New 

Zealand, NELA presented superior discrimination and calibration, compared to ACS-NSQIP, P-

POSSUM and APACHE II.13 Lai et al compared NELA to P-POSSUM in an Asian population 

and concluded that NELA predicts 30-day mortality more accurately.32 A multicentre Australian 

study concluded that the NELA was highly sensitive and comparable with the P-POSSUM and 
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ACS-NSQIP models in EL patients.33 A recent analysis of 650 EL patients of the NELA database 

favoured the discriminative power of the NELA compared to that of the P-POSSUM.12 

Aforementioned studies were all retrospective in nature, and 30-day mortality was reported in no 

more than 60 patients (range 47-60), implying external validation statistics may have been 

relatively imprecise. Only 2 of those studies involved comparisons with the ACS-NSQIP 

model.13,33 A recent meta-analysis of the accuracy of ACS-NSQIP in emergency abdominal 

surgery also pointed out that the existing literature consists of exclusively retrospective studies 

that are mostly underpowered.34 

 The predictive ability of ACS-NSQIP in emergency surgical patients has been seen to be 

inferior to that in elective cases, with reported underestimation of the mortality risk of patients 

undergoing emergency surgery.35 Use of subjective surgeon assessment and subsequent utilisation 

of surgeon-adjusted risk scores has been reported in geriatric patients undergoing lumbar surgery36. 

For patients judged to have “somewhat higher than estimated” risks according to the Surgeon 

Adjustment Score (SAS), the ACS-NSQIP prediction of postoperative mortality was accurate, 

while in patients with “significantly higher than estimated” risks, the model accurately predicted 

the risks of surgical site infection and reoperation.36 The importance of combining subjective 

assessment with an objective risk prediction tool was emphasized in a recent study validating 

prediction models for surgical patients, which reported that the combination of the best predictive 

model with the surgeon’s subjective assessment was superior than any predictive model alone.37 

Similarly we found that calibrating the ACS-NSQIP prediction of 30-day mortality on the basis of 

preoperative subjective assessment improved predictive performance in our cohort of patients 

undergoing EL. 
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External validations should use standardised performance metrics and adhere to guidelines 

for reporting model performance to allow for comprehensive and informative comparisons of 

prognostic models in different patient populations. Reporting of multivariable prediction models 

has been shown to be insufficient before the implementation of the TRIPOD statement.38 A recent 

systematic review emphasized the lack of prospective cohorts in external validation studies and 

revealed that reporting of key performance measures was largely incomplete with median 

completeness of the TRIPOD checklist at only 61%.39 Methodological issues, such as poor 

assessment of calibration, have also been pointed out in a systematic review of risk assessment 

tools for EL40. Therefore, we strictly followed the TRIPOD guidelines and utilised multiple metrics 

of predictive performance to thoroughly compare the prediction models in this study. 

 Good discrimination and calibration metrics do not necessarily warrant that use of a model 

will aid decision-making.26 We therefore performed DCA to identify the model that demonstrates 

superiority in selecting a “high-risk” patient with highest net benefit upon use in clinical practice.26 

The results of the DCA are to be interpreted with caution. Superiority of the ACS-NSQIP implies 

that it should be used in everyday practice as part of a shared decision-making in our setting, 

without choosing a specific threshold.41 In a cohort of patients undergoing 

hepatopancreaticobiliary surgery, DCA performed on ACS-NSQIP and POTTER favored their use 

for guiding interventions on important outcomes, such as readmission and venous 

thromboembolism.42 In that cohort, ACS-NSQIP had superior discrimination, but POTTER 

demonstrated net benefit for a wider range of risk thresholds for venous thromboembolism risk, 

and the authors pointed out the importance of not relying solely on metrics, such as the 

concordance statistic (or AUC).42 Assessing the performance of prediction models solely on the 

basis of concordance statistics may lead to mislead conclusions, because a model’s discriminatory 
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performance is bound to be lower in a homogenous sample with restricted case-mix and does not 

provide information about the calibration of predicted risks with observed events.43,44 The results 

of DCA in this study indicate that using the ACS-NSQIP model and its surgeon-adjusted version 

may guide the surgeon to modify interventions and the net benefit is maintained over a wider range 

of thresholds for defining a “high-risk” patient compared to the other models assessed here. 

 Our study has a number of limitations. First, it is important to acknowledge that this study 

represents a self-selected group of hospitals, mostly university or tertiary-care hospitals, and our 

patient cohort might not be a true population-based or nationally representative sample of EL 

patients. Second, while missing data were minimal for the NELA, P-POSSUM, and ACS-NSQIP 

models, risk calculations from POTTER were not possible for most patients in 2 participating 

centres, where data necessary for applying this tool are not part of the routine preoperative workup 

of EL patients. Multiple imputation has been suggested as the preferred approach for handling 

missing predictor data,45 but we opted for complete case analysis so that our results come from a 

pragmatic cohort of patients for whom risks can be readily estimated from preoperative data. 

Fourth, our analysis showed that recalibrating the models resulted in improved predictive accuracy 

for all models in our cohort. However, full model revision (re-estimation) from our dataset was 

not possible, as the selected risk prediction tools are proprietary and have their equations 

undisclosed. Finally, not all available risk prediction tools could be possibly validated in a single 

study, and we chose to examine 4 well-known and commonly cited models for which comparative 

validation studies are lacking for EL patients.  

The findings of this study are promising for the use of the ACS-NSQIP model in the Greek 

healthcare system, demonstrating its broad transportability in a system different from the USA 

where the model was developed. More comparative validations of different risk prediction tools 



20 

 

should be performed at national levels to determine which model might best fit each healthcare 

setting. Our results imply that combining the subjective assessment of the attending surgeon with 

a proper tool yields the most accurate prediction, therefore future validations could focus on such 

combinations. Complete model re-estimation with adjustment of key variables and re-validation 

in a new sample of patients may generate adjusted versions of existing models, which best fit 

specific patient populations. 

 

CONCLUSIONS 

The ACS-NSQIP tool was most accurate for mortality predictions after EL in a broad external 

validation cohort, outperforming the surgeon’s preoperative risk assessment and the NELA, P-

POSSUM and POTTER tools in several comparative prediction metrics and demonstrating utility 

for facilitating preoperative risk management in the Greek healthcare system. The surgeon’s 

subjective risk assessment may help optimise ACS-NSQIP predictions. 

 

Supplementary digital content (SDC): Supplementary material is available at 

supplement_JTACS_R1 file. 
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TABLES 

 

Table 1. Demographics and clinical characteristics in 631 patients undergoing emergency 

laparotomy in 11 Greek Hospitals 

  Total Survived Died p-value 

Characteristic (n=631) (n=528) (n=103)  

Age (years) 66.2 ± 16.7 64.3 ± 16.8 75.8 ± 12.4 <0.001 

Male sex 340 (53.9) 287 (54.4) 53 (51.5)  0.59 

Body mass index (kg/m2) 26.5 ± 5.3 26.5 ± 5.1 26.6 ± 6.3  0.97 

ASA class    <0.001 

   I 150 (23.8) 145 (27.5) 5 (4.9)  

   II 200 (31.7) 188 (35.6) 12 (11.7)  

   III 171 (27.1) 141 (26.7) 30 (29.1)  

   IV 103 (16.3) 52 (9.8) 51 (49.5)  

   V 6 (1.0) 1 (0.2) 5 (4.9)  

   Missing 1 (0.2) 1 (0.2) 0 (0.0)  

Preoperative functional status    <0.001 

   Independent 443 (70.2) 402 (76.1) 41 (39.8)  

   Partially dependent 154 (24.4) 105 (19.9) 49 (47.6)  

   Fully dependent 32 (5.1) 20 (3.8) 12 (11.7)  

   Missing 2 (0.3) 1 (0.2) 1 (1.0)  

Anticipated severity of malignancy     0.19 

   None 461 (73.1) 394 (74.6) 67 (65.0)  

   Primary 78 (12.4) 63 (11.9) 15 (14.6)  

   Nodal metastasis 19 (3.0) 14 (2.7) 5 (4.9)  

   Distant metastasis 72 (11.4) 56 (10.6) 16 (15.5)  

   Missing 1 (0.2) 1 (0.2) 0 (0.0)  

Diabetes mellitus 103 (16.3) 72 (13.6) 31 (30.4) <0.001 

Cardiac comorbidity 264 (42.0) 204 (38.7) 60 (58.8) <0.001 

Chronic steroid use 54 (8.7) 38 (7.3) 16 (15.7)  0.006 

Ascites 81 (12.9) 54 (10.2) 27 (26.2) <0.001 

Borderline cardiomegaly chest x-ray 38 (6.0) 33 (6.3) 5 (4.9)  0.59 

Respiratory History     0.005 

   No dyspnoea 569 (90.2) 485 (91.9) 84 (81.6)  

   Dyspnoea on exertion or limiting 36 (5.7) 24 (4.5) 12 (11.7)  

   Dyspnoea at rest or long-term oxygen 18 (2.9) 13 (2.5) 5 (4.9)  

   Missing 8 (1.3) 6 (1.1) 2 (1.9)  

Smoking 185 (29.3) 165 (31.3) 20 (19.4)  0.016 

Haemodialysis or CVVH 10 (1.6) 6 (1.1) 4 (3.9)  0.042 

Preoperative acute renal failure 77 (12.2) 50 (9.5) 27 (26.5) <0.001 

Sepsis within 48h prior to surgery    <0.001 

   None 308 (48.8) 284 (53.8) 24 (23.3)  

   Two SIRS criteria 218 (34.5) 186 (35.2) 32 (31.1)  
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   Severe sepsis 80 (12.7) 48 (9.1) 32 (31.1)  

   Septic shock 25 (4.0) 10 (1.9) 15 (14.6)  

Preoperative diagnosis     0.032 

   Perforation 225 (35.7) 187 (35.4) 38 (36.9)  

   Obstruction 247 (39.1) 218 (41.3) 29 (28.2)  

   Ischemia 94 (14.9) 74 (14.0) 20 (19.4)  

   Other 65 (10.3) 49 (9.3) 16 (15.5)  

Operation type     0.080 

   Adhesiolysis 75 (11.9) 72 (13.6) 3 (2.9)  

   Small bowel resection 130 (20.6) 106 (20.1) 24 (23.3)  

   Colectomy right 58 (9.2) 48 (9.1) 10 (9.7)  

   Hartmann's procedure 73 (11.6) 59 (11.2) 14 (13.6)  

   Strangulated hernia with bowel resection 38 (6.0) 35 (6.6) 3 (2.9)  

   Peptic ulcer repair 75 (11.9) 63 (11.9) 12 (11.7)  

   Colectomy other 50 (7.9) 38 (7.2) 12 (11.7)  

   Stoma formation 41 (6.5) 33 (6.3) 8 (7.8)  

   Other 91 (14.4) 74 (14.0) 17 (16.5)  

 

Data are presented as mean ± SD for continuous measures, and n (%) for categorical measures. 

ASA, American Society of Anesthesiologists; SIRS, systemic inflammatory response syndrome; 

CVVH, continuous veno-venous hemofiltration. 
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Table 2. Distributions of mortality risk predictions in patients undergoing emergency laparotomy 

in 11 Greek Hospitals 

  Total Survived Died p-value 

30-day mortality predictions (n=631) (n=528) (n=103)  

Surgeon's preoperative assessment, n (%)    <0.001 

   <5% 172 (27.3) 166 (31.4) 6 (5.8)  

   5 - 10% 220 (34.9) 205 (38.8) 15 (14.6)  

   11 - 20% 137 (21.7) 94 (17.8) 43 (41.7)  

   >20% 81 (12.8) 45 (8.5) 36 (35.0)  

   Unable to assess 21 (3.3) 18 (3.4) 3 (2.9)  

Mean predicted risk  ± SD, %     

Surgeon * 14.9 ± 18.3 12.0 ± 15.6 29.5 ± 23.3 <0.001 

NELA  10.5 ± 15.2 7.6 ± 12.2 25.8 ± 19.3 <0.001 

P-POSSUM  19.9 ± 25.1 16.0 ± 22.3 40.3 ± 28.4 <0.001 

POTTER  8.9 ± 11.4 6.7 ± 9.3 21.0 ± 14.4 <0.001 

ACS-NSQIP  12.2 ± 17.6 8.4 ± 13.6 31.6 ± 22.3 <0.001 

ACS-NSQIP surgeon-adjusted  18.1 ± 16.8 14.8 ± 14.0 35.5 ± 19.0 <0.001 

 

 * Point estimates of risk prediction provided by clinicians were taken as the midpoint of the 

predicted risk intervals (i.e., 2.5% for the interval <5%, 7.5% for the interval 5%-10%, and so 

on).  
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Table 3. Predictive performance measures of prognostic models for 30-day postoperative death 

Prognostic 

model 

N Overall fit Discrimination Calibration Clinical utility 
Brier scaled % 

(95% CI) 

AUC (95% CI) DeLon

g p-

value 

E:O 

ratio 

CITL (95% CI) Slope (95% CI) HL-

GOF p-

value 

NB, 

5% 

NB, 

10% 

NB, 

20% 

Surgeon 610 10.6 ( 1.3, 18.7) 0.79 (0.75, 0.82) Ref. 0.91 0.16 (-0.09, 0.41) 0.74 (0.57, 0.91) <0.001 0.12 0.10 0.04 

NELA 623 17.2 (10.2, 

23.9) 

0.85 (0.82, 0.88) 0.005 0.65 0.68 (0.43, 0.93) 0.86 (0.68, 1.05) <0.001 0.13 0.11 0.07 

P-POSSUM 622  1.5 (-13.1, 

13.1) 

0.79 (0.75, 0.82) 0.868 1.23 -0.41 (-0.68, -0.13) 0.48 (0.37, 0.60) <0.001 0.13 0.10 0.06 

POTTER 486 15.4 ( 9.3, 21.8) 0.84 (0.81, 0.87) 0.081 0.55 0.75 (0.47, 1.03) 0.98 (0.73, 1.23) <0.001 0.12 0.09 0.05 

ACS-

NSQIP 

618 22.4 (14.5, 

30.3) 

0.84 (0.81, 0.87) 0.030 0.75 0.49 (0.23, 0.75) 0.75 (0.59, 0.91) <0.001 0.12 0.10 0.07 

ACS-

NSQIP 

adjusted  

618 20.6 (13.4, 

27.2) 

0.83 (0.79, 0.86) 0.057 1.12 -0.16 (-0.39, 0.08) 1.12 (0.85, 1.40) 0.742 0.13 0.10 0.07 

 

N, number of patients in the analysis; CI, confidence interval; AUC, area under the curve; E:O, ratio of expected and observed events; 

CITL, calibration-in-the-large; Slope, calibration slope; HL-GOF, Hosmer-Lemeshow goodness-of-fit test; NB, net benefit (calculated at 

decision thresholds 5%, 10% and 20%). 
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Figure legends 

 

Figure 1. Calibration of prognostic models when predicting 30-day postoperative death. The 

blue line is a smoothed locally weighted regression (lowess) line that shows the agreement 

between predicted probabilities and observed proportions of 30-day mortality. The dashed 

diagonal line indicates perfect calibration. The circled points represent mean risks in decile 

groups of predicted probabilities, with vertical lines representing 95% confidence intervals. 

The spike plot on the x-axis summarises the density of patients in the range of predicted risks 

of 30-day death. E:O, ratio of expected and observed deaths; CITL, calibration-in-the-large; 

Slope, calibration slope; AUC, area under the curve; GOF goodness-of-fit. 

 

Figure 2. Decision curves showing the net benefit in clinical decision-making of using each 

prognostic model of 30-day postoperative mortality. 

 

Figure 3. Summary forest plot with overall scaled Brier score for each prognostic model based 

on the results of random-effects meta-analysis of hospital-specific data. The confidence 

interval quantifies the precision in estimating the average Brier score in this study whereas the 

prediction interval quantifies the dispersion of the Brier score value in future single-center 

studies by accounting for between-hospitals heterogeneity. 
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Table S1: Inclusion and Exclusion criteria 

Inclusion criteria: 

 Age >18yrs 

 Emergency laparotomy (operation simultaneously with resuscitation usually within one hour) or 

 urgent (operation as soon as possible after resuscitation, within 24hrs) 

 Operation in the gastrointestinal tract: 

 Open or laparoscopic, or laparoscopically assisted procedures. 

  Procedures involving the stomach, small or large bowel, or rectum for conditions such as 

 perforation, ischaemia, abdominal abscess, bleeding or obstruction 

 Wash out/evacuation of intraperitoneal abscess or haematoma 

 Bowel resection/repair due to incarcerated/incisional hernias 

 Bowel resection or repair due to incarcerated umbilical, inguinal or femoral hernias 

 Open or laparoscopic adhesiolysis 

 Laparotomy/laparoscopy with inoperable pathology 

 Return to theatre for repair of a substantial dehiscence of major abdominal wound 

(i.e.“burst abdomen”) 

 Return to theatre after any operation (including vascular, gynaecology, urology, cardiac) 

meeting the criteria above 

 In the case of multiple procedures in the abdominopelvic cavity the patient is included if 

the main procedure is a general surgical one (i.e. if bowel resection happens during an 

open aneurysm repair it should not be included) 

 Any intra-abdominal procedure not identifiable within exclusion criteria should be 

included. 

 

Exclusion criteria: 

 Patients under 18 

 Elective operation 

 Diagnostic laparoscopy or laparotomy where no other procedure is performed (NB, if no 

procedure is performed due to inoperable pathology, then include) 

 Appendicectomy with or without drainage of localized abscess 

 Cholecystectomy with or without drainage of localized abscess 

 Hernia repair without bowel resection 

 Minor abdominal wound revision 

 Vascular surgery 

 Gynaecological surgery – c-section – ruptured ectopic pregnancy 

 Surgery relating to organ transplantation 
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Table S2: Adjustment of the ACS-NSQIP calculator according to the surgeon’s preoperative 

assessment 

 

 

ACS-NSQIP predicted 

probability of 30-day 

mortality 

Surgeon’s preoperative 

assessment of mortality 

risk 

Chosen option of adjustment (for 

underestimation) on the ACS-NSQIP 

online calculation 

<0.05 <5% 1 – No adjustment necessary 

<0.05 5 - 10% 2 – Risk somewhat higher then estimate 

<0.05 11 - 20% 3 – Risk significantly higher than estimate 

<0.05 >20% 3 – Risk significantly higher than estimate 

0.05 – 0.10 <5% 1 – No adjustment necessary 

0.05 – 0.10 5 - 10% 1 – No adjustment necessary 

0.05 – 0.10 11 - 20% 2 – Risk somewhat higher then estimate 

0.05 – 0.10 >20% 3 – Risk significantly higher than estimate 

0.10 – 0.20 <5% 1 – No adjustment necessary 

0.10 – 0.20 5 - 10% 1 – No adjustment necessary 

0.10 – 0.20 11 - 20% 1 – No adjustment necessary 

0.10 – 0.20 >20% 2 – Risk somewhat higher then estimate 

>0.20 Any 1 – No adjustment necessary 
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Table S3. Comparison of the distribution of important variables of 631 patients undergoing 

emergency laparotomy in 11 Greek Hospitals with development data of the NELA and ACS-NSQIP 

risk prediction models.  

Characteristic Greek cohort, n(%) NELA, n(%) ACS-NSQIP, n(%) 

Age group    

≤60 201 (32) 13121 (34) - 

>60 430 (68) 25709 (66) - 

Male Sex 341 (54) 18 740 (48) 604016 (43) 

ASA class    

1-2 351 (56) 17190 (44) 777115 (55) 

3 171 (27) 13706 (35) 541404 (38) 

4-5 110 (17) 7934 (21) 95487 (7) 

Steroid use (1) 55 (9) - 43296 (3) 

Ascites (2) 81 (13) - 8697 (1) 

Preoperative functional status    

Independent 444 (70) - 1344929 (95) 

Partially dependent 154 (25) - 52500 (4) 

Totally dependent 33 (5) - 16577 (1) 

Sepsis (3)    

SIRS 218 (34) - 55090 (4) 

Sepsis 81 (13) - 33725 (2) 

Septic shock 25 (4) - 8546 (1) 

Ventilator dependent 16 (3) - 10119 (1) 

Smoking (4) 186 (29) - 272322 (19) 

Dyspnoea    

Moderate exertion 36 (6) 6210 (16) 110720 (8) 

At rest 19 (3) 4632 (12) 15571 (1) 

Haemodialysis or CVVH 10 (2) - 22829 (2) 

Acute renal failure 77 (12) - 7103 (1) 

Anticipated severity of 

malignancy 

   

None 462 (73) 29774 (77) - 

Primary 78 (12) 4496 (12) - 

Nodal metastasis 19 (3) 1655 (4) - 

Distant metastasis 73 (12) 2905 (7)  28173 (2) (5) 

Diabetes mellitus 103 (16) - 215180 (15) 

Urgency of operation    

Expedited (>18 hours) 71 (11) 6405 (17) - 

Urgent (6-18 hours) 179 (28) 11735 (30) - 

Urgent (2-6 hours) 206 (33) 15051 (39) - 

Immediate (<2 hours) 177 (28) 5639 (14) - 

Operative severity    

Major 388 (62) 24453 (63) - 

Major+ 243 (38) 14377 (37) - 

Peritoneal soiling    

None 171 (27) 14537 (37) - 
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Serous fluid 234 (37) 9992 (26) - 

Localised pus 54 (9) 4183 (11) - 

Free bowel content, pus, or 

blood 

172 (27) 10118 (26) - 

Intraoperative blood loss    

<100ml 357 (56) 18380 (47) - 

101-500ml 237 (38) 17463 (45) - 

501-999 ml 25 (4) 2001 (5) - 

>1000ml 12 (2) 986 (3) - 

30-day mortality 103 (16) 4458 (12) 18,909 (1) 

 

NA, not applicable; ASA, American Society of Anesthesiologists; CVVH, continuous veno-venous 

hemofiltration; BMI, body mass index. Dashes (-) imply that data for these variables were not available 

in the original model development publications. 

Notes. 

(1) Steroid use for chronic condition 

(2) Ascites within 30 days prior to surgery 

(3) Systemic sepsis within 48h from surgery 

(4) Smoking within 12 months from surgery 

(5) Disseminated cancer 
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Figure S1. Receiver Operating Characteristic (ROC) Curve showing the discriminating 

performance of the models when predicting 30-day post-operative death in emergency 

laparotomies 

 

 

Note: For NELA, P-POSSUM, POTTER, ACS-NSQIP and ACS-NSQIP-adjusted, the ROC curves were plotted by 

calculating the sensitivity and specificity for all values ranging from 0 to 1, to construct a curve, and for the surgeon’s 

prediction, they were calculated for each of the four categories, and the points were combined to form the curve. 
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Figure S2. Calibration of prognostic models when predicting 30-day postoperative death.  
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Table S4. Predictive performance measures of prognostic models for 30-day postoperative death after updating of calibration 

intercept and slope 

Prognostic 

model 

N Overall fit Discrimination Calibration Clinical utility 

Brier scaled % 

(95% CI) 

AUC (95% CI) DeLong 

p-value 

E:O 

ratio 

CITL (95% CI) Slope (95% CI) HL-GOF 

p-value 

NB, 

5% 

NB, 

10% 

NB, 

20% 

Surgeon 610 10.6 ( 1.3, 18.7) 0.79 (0.75, 0.82) Ref. 0.91 0.16 (-0.09, 0.41) 0.74 (0.57, 0.91) <0.001 0.12 0.10 0.04 

NELA RCM 623 22.2 (13.4, 29.5) 0.85 (0.82, 0.88) 0.005 1.00 -0.00 (-0.24, 0.24) 1.00 (0.79, 1.21) 0.560 0.13 0.11 0.08 

P-POSSUM RCM 622 10.9 ( 4.5, 16.8) 0.79 (0.75, 0.82) 0.868 1.00 -0.00 (-0.23, 0.23) 1.00 (0.75, 1.25) 0.199 0.12 0.10 0.06 

POTTER RCM 486 20.9 (10.9, 29.1) 0.84 (0.81, 0.87) 0.081 0.93 -0.00 (-0.28, 0.28) 1.00 (0.74, 1.26) 0.853 0.12 0.10 0.06 

ACS-NSQIP RCM 618 24.3 (16.4, 31.6) 0.84 (0.81, 0.87) 0.030 1.01 0.00 (-0.24, 0.24) 1.00 (0.79, 1.21) 0.806 0.13 0.10 0.08 

 

Note. RCM, re-calibrated model; N, number of patients in the analysis; CI, confidence interval; AUC, area under the curve; E:O, ratio of expected 

and observed events; CITL, calibration-in-the-large; Slope, calibration slope; HL-GOF, Hosmer-Lemeshow goodness-of-fit test; NB, net benefit 

(calculated at decision thresholds 5%, 10% and 20%). 
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Figure S3. Calibration of prognostic models when predicting 30-day postoperative death after 

updating of intercept and slope (recalibration). The blue line is a smoothed locally weighted 

regression (lowess) line that shows the agreement between predicted probabilities and observed 

proportions of 30-day mortality. The dashed diagonal line indicates perfect calibration. The circled 

points represent mean risks in decile groups of predicted probabilities, with vertical lines 

representing 95% confidence intervals. The spike plot on the x-axis summarises the density of 

patients in the range of predicted risks of 30-day death. RCM, re-calibrated model; E:O, ratio of 

expected and observed deaths; CITL, calibration-in-the-large; Slope, calibration slope; AUC, area 

under the curve; GOF goodness-of-fit. 
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Figure S4. Decision curves showing the net benefit in clinical decision-making of using each 

prognostic model of 30-day postoperative mortality after updating of intercept and slope 

(recalibration).  
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Figure S5. Forest plot with hospital-specific Brier scores of the Surgeon's assessment prognostic 

model and overall pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Figure S6. Forest plot with hospital-specific Brier scores of the NELA prognostic model and overall 

pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Figure S7. Forest plot with hospital-specific Brier scores of the P-POSSUM prognostic model and 

overall pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Figure S8. Forest plot with hospital-specific Brier scores of the POTTER prognostic model and 

overall pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Figure S9. Forest plot with hospital-specific Brier scores of the ACS-NSQIP prognostic model and 

overall pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Figure S10. Forest plot with hospital-specific Brier scores of the ACS-NSQIP adjusted prognostic 

model and overall pooled Brier score based on random-effects meta-analysis. 

 

Note. The overall meta-analyzed scaled Brier score is represented by the diamond centered on its 

estimated value with the diamond width corresponding to the length of the confidence interval. The 

green whiskers extending from the overall diamond represent the prediction interval, which provides a 

plausible range for the scaled Brier score in a future, new study. 
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Table S5: Checklist for transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD)  

 

Section/Topic Item Checklist Item Page 

Title and abstract 

Title 1 
Identify the study as developing and/or validating a multivariable prediction 

model, the target population, and the outcome to be predicted. 
Title Page file, 1 

Abstract 2 
Provide a summary of objectives, study design, setting, participants, sample 

size, predictors, outcome, statistical analysis, results, and conclusions. 
Abstract file, 1-2 

Introduction 

Background 

and 

objectives 

3a 

Explain the medical context (including whether diagnostic or prognostic) and 

rationale for developing or validating the multivariable prediction model, 

including references to existing models. 

Manuscript file, 

1-2 

3b 
Specify the objectives, including whether the study describes the development 

or validation of the model or both. 
2 

Methods 

Source of 

data 

4a 

Describe the study design or source of data (e.g., randomized trial, cohort, or 

registry data), separately for the development and validation data sets, if 

applicable. 

2, 6-7 

4b 
Specify the key study dates, including start of accrual; end of accrual; and, if 

applicable, end of follow-up.  
2 

Participants 

5a 
Specify key elements of the study setting (e.g., primary care, secondary care, 

general population) including number and location of centres. 
2 

5b Describe eligibility criteria for participants.  

3, and 

Supplementary 

Table S1 

5c Give details of treatments received, if relevant.  2-3 

Outcome 
6a 

Clearly define the outcome that is predicted by the prediction model, including 
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Comparison of multiple 

performance metrics
o Scaled Brier score

o Discrimination

o Calibration

o Decision Curve Analysis

o Heterogeneity across hospitals

Superiority of the ACS-NSQIP

and the surgeon-adjusted ACS-

NSQIP for prediction of 30-day 

mortality 


	revised
	The study was approved by the Institutional Review Board and the Bioethics Committee of the participating institutions and is reported according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TR...
	The primary endpoint was 30-day postoperative mortality. Demographic data, preoperative variables required for each prediction model (NELA, P-POSSUM, ACS-NSQIP and POTTER), type of operation and postoperative outcomes were prospectively recorded for e...
	Development vs Validation
	The clinical setting and eligibility criteria in this study were similar to those of the NELA model, to allow for a reasonable comparison of outcomes.28 NELA was initiated in 2014 in the UK as a specific tool for emergency laparotomies, focusing on 30...

	fig_1_CalibrLowess_mortality1200
	fig_2_DCA_mortality1200_cmyk
	fig_3_forestplot_BRIER_summary1200
	supplement_revised
	Table S1: Inclusion and Exclusion criteria
	Table S2: Adjustment of the ACS-NSQIP calculator according to the surgeon’s preoperative assessment
	Table S4. Predictive performance measures of prognostic models for 30-day postoperative death after updating of calibration intercept and slope
	Figure S4. Decision curves showing the net benefit in clinical decision-making of using each prognostic model of 30-day postoperative mortality after updating of intercept and slope (recalibration).
	Figure S5. Forest plot with hospital-specific Brier scores of the Surgeon's assessment prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Figure S6. Forest plot with hospital-specific Brier scores of the NELA prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Figure S7. Forest plot with hospital-specific Brier scores of the P-POSSUM prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Figure S8. Forest plot with hospital-specific Brier scores of the POTTER prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Figure S9. Forest plot with hospital-specific Brier scores of the ACS-NSQIP prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Figure S10. Forest plot with hospital-specific Brier scores of the ACS-NSQIP adjusted prognostic model and overall pooled Brier score based on random-effects meta-analysis.
	Table S5: Checklist for transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)

	JTACS_visual_abstract_final
	Prospective multicenter external validation of postoperative mortality prediction tools in patients undergoing emergency laparotomy�


