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In this paper, we employ negative binomial and quasi-natural experimental methods (i.e., Difference-in-
Differences and Propensity Score Matching), whereby we examine the joint impact of environmental and
digital policies (for designing smart cities) upon the generation of eco-innovations in China. Using longi-
tudinal data for the period 2006–2018, we examine the changes in green patents granted: (i) due to the
implementation of various levels of stringency of environmental policies across all cities; and (ii) after the
introduction of smart city policies in 2012 in China. The prior literature stresses the importance of envi-
ronmental policies, yet less attention has been paid to digital policies required to drive eco-innovation
and their spatial dimension in the context of a developing economy. Our results show that, when digital
policies (artificial intelligence and internet of things) are implemented in cities that have adopted strict
environmental policies, the production of green patents increases. We contribute to debates in the liter-
ature of policy mix for sustainability transitions in the context of a developing economy by illustrating
the importance of both types of policy for eco-innovation, as they correct two market failures and, more
importantly, address the systemic coordination problems that occur during the production of green
patents.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

This paper argues that policies related to the implementation of
digital technologies enhance eco-innovations over and above the
impact of introducing environmental policy in smart cities in China.
It contributes to debates in Development Studies by exploring the
drivers of the spatial differences in eco-innovations, to the literatures
on policy mix for sustainability transitions, and more broadly, to
innovation economics by exploring the effect of digital policies in
the context of developing economies. Indeed, recent reviews inWorld
Development stress the need for empirical research on diverse envi-
ronmental policies in generating economic opportunities in develop-
ing country contexts (Pegels & Altenburg, 2020).

Eco-innovation refers to innovations in products, processes, mar-
keting practices, and organisational procedures, as well as systemic
innovations in social and institutional structures, that lead to a
reduced environmental impact (Kemp, 2009; OECD, 2009). An attrac-
tive feature of eco-innovation is that firms may reduce pollution
without harming their competitiveness: the so-called ‘win-win’
hypothesis (Kesidou & Wu, 2020; Popp, 2005; Porter & Linde,
1995). Over the last decade, policy makers, academics and business
leaders have been seeking to understand the drivers of eco-
innovation in general (Cainelli & Mazzanti, 2013; Costantini, Crespi,
& Palma, 2015; Horbach et al., 2012), and to identify the most effec-
tive policy tools for boosting eco-innovation in particular. With very
few exceptions (Daniels et al., 2019; Fabrizi et al., 2018; Ulph & Ulph,
2013), most of the policy instruments that have been studied in the
literature are environmental policies (Bergek & Berggren, 2014;
Ghisetti & Pontoni, 2015), yet the sustainability transitions literature
suggests that more than one type of policy is necessary in order to
drive the economy towards eco-innovation (Cantner et al., 2016;
Costantini et al., 2017; Edmondson et al., 2019; Uyarra et al.,
2016). Also, with few exceptions, the spatial dimension of environ-
mental policy, especially at the city level has been largely overlooked
(Balland et al., 2018; Horbach, 2014; Montresor & Quatraro, 2019;
Santoalha & Boschma, 2021). It is fundamental to understand the role
of policy in supporting eco-innovation particularly in cities in devel-
oping and emerging economies as ‘‘growing first and cleaning up
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1 The PSM method implies that both the smart cities and non-smart cities groups
have no statistically significant inter-group difference based on the matching
variables.

2 Negative refers to the fact that industrial pollution imposes a burden upon society
and the environment, whilst externality to the fact that firms do not compensate
society for their harmful environmental impact.

3 Technology standards refer to direct regulation that is mandatory and non-
compliance is penalized.

4 Flexible policies refer largely to price policies that provide incentives to firms so
that their private choice coincides with society’s low-carbon aim. Examples of flexible
policies are tradable permits, Pigouvian taxes, deposit/refund systems, and subsidies.
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later” can augment environmental impact and risk locking-in their
trajectory of development to ‘‘brown” technologies (see Pegels &
Altenburg, 2020).

Therefore, this paper explores how cities in China that experi-
ence increasing urbanisation, environmental pollution and degra-
dation, can be supported by the use of policies to build
indigenous capacity for eco-innovation which can act as a mecha-
nism for maintaining competitiveness and sustainability without
jeopardising city growth. Here, we examine the role of digital poli-
cies in the production of green patents within the spatial context of
smart cities, capturing digital technology implementation in the
presence of environmental policies of various stringency levels.

Digital technologies include artificial intelligence (AI), the inter-
net of things (IoT), blockchains, additive manufacturing, cloud
computing, and augmented and virtual reality (Ciarli et al., 2021;
Rindfleisch et al., 2017). Here, we focus on the application of AI
and IoT in the context of smart city policies. We propose that gen-
eration of data and information by IoT and its intelligent analysis
by AI can have profound effects on eco-innovation. AI is based on
using big, rich and real-time data for a range of applications
(Cockburn et al., 2018; Prem, 2019). It includes automation and
augmentation techniques in improving operational and time effi-
ciencies in manufacturing and services. IoT refers to an intercon-
nected network, where physical devices are wirelessly connected
via smart sensors used to collect and exchange data (Rejeb et al.,
2022; Whitmore et al., 2015). AI implementation is still at pilot
stage in a range of sectors, as it requires interconnectivity via IoT
across actors, stakeholders and users. Bearing the costs of invest-
ments in digital infrastructure entails market failures, such as fail-
ures of coordination due to indivisibilities and economies of scale
and knowledge externalities (Economist, 2020).

Digital policies as implemented in smart cities are a means of
developing public digital infrastructure, generating rich, mass data
on transport, air pollution, energy and resource use, waste man-
agement and citizens’ opinions about environmental objectives,
supporting sustainable growth and environmental sustainability
(Albino et al., 2015). The spatial level of analysis is not only impor-
tant because cities are responsible for up to 70 % of global GHG
emissions (World Economic Forum, 2018) but also because it can
offer a fruitful context for bringing about changes within the regu-
lations, institutions and actors’ behaviour, leading to transitions to
greater sustainability. This gains additional importance if one con-
siders that the previous literature on smart cities has yet to include
a systematic exploration of the role of digital policies in eco-
innovations. For instance, prior research shows that smart cities
are developed using a techno-centric approach, oftentimes over-
looking environmental sustainability (Liu & Peng, 2014; Shen
et al., 2018). Also, research on whether digital technologies drive
inclusive or environmental innovation is scarce in developing
country contexts (Paunov & Pollo, 2016; Pegels & Altenburg, 2020).

The contribution of this paper is threefold. First, we extend
debates related to environmental policies in development studies
(Gupta et al., 2019; Pegels & Altenburg, 2020) by focusing on the
spatial dimension of environmental regulation and its implementa-
tion in the context of cities in emerging economies. We demon-
strate that more stringent levels of environmental policies across
cities lead to higher production of green patents. This is important
because it highlights the systemic nature of eco-innovations, as
captured by the spatial differences in green patents. We establish
that addressing grand challenges associated with climate change
requires strong environmental policy intervention at the spatial
level, which could steer cities towards the path of eco-innovation.

Second, we contribute to the eco-innovation literature (Demirel &
Kesidou, 2011; Horbach et al., 2012; Constantini et al., 2017), by con-
sidering the effects of digital policies on the generation of eco-
innovations in the context of cities in developing economies (Dang
2

& Motohashi, 2015). This focus is original as there is an emerging lit-
erature exploring the role of digital technologies in enabling the adop-
tion of sustainable practices (Beltrami et al., 2021; Rejeb et al., 2022).
Digital policies embedded in smart cities can facilitate long-term sus-
tainable development, as the combination of AI and IoT can provide
the starting point for further innovations in the form of process, pro-
duct or supply chain eco-innovations (e.g., smart manufacturing).

Third, we contribute to the policy mix literature on sustainabil-
ity transitions (Edmondson et al., 2019; Flanagan et al., 2011;
Rogge & Reichardt, 2016) by examining the joint impact of digital
and environmental policies on eco-innovation in cities in China.
The existing literature on policy-mix examines the role of narrow
policy instruments, applicable to specific sectors, while our
approach explores the role of policies with a cross-sectoral impact.
We contend that digital policies complement environmental poli-
cies by reinforcing government monitoring, which facilitates the
implementation of environmental regulations. Crucially, digital
policies in the context of smart cities, enable stringent environ-
mental policies to direct innovation activity towards eco-
innovations that reduces environmental impact.

To pursue its aims, the paper analyses longitudinal data on 167
cities in China for the period 2006–2018. 32 cities implemented
smart city applications after the introduction of the policy in China
in 2012, while the remainder did not. The environmental policy
instruments implemented across these cities are of varied stringency.
The paper explores the causal impact of such policies upon green
patents granted at the city level: (a) by examining both the changes
in these cities over time, after implementing the smart city policies,
and (b) by comparing the smart cities with cities that did not imple-
ment such policies. We do this by employing a negative binomial and
quasi-natural experiment methods (i.e. Difference-in-Differences).
This is a novel, robust methodological approach, which accounts
for endogeneity. The focus is particularly on the differential impact
of smart city policy over and above the impact of the environmental
policy instruments by employing the Difference-in-Differences
method. Finally, Propensity Score Matching (PSM) analysis,1 which
does not make assumptions of random treatment or exogeneity, con-
firms the robustness of our results.
2. Theory and hypotheses

2.1. Environmental policy for eco-innovation

The rationale for environmental policy is based on the notion of
negative environmental externalities.2 Environmental economists
contend that environmental policy addresses this market failure by
forcing firms to internalise the costs of their operations
(Christainsen & Haveman, 1981; Gray, 1987). Whilst environmental
economists tend to perceive environmental policies as a burden
imposed upon firms, Porter and Linde (1995, p. 98) contested this
orthodox view, arguing that ‘‘properly designed environmental stan-
dards can trigger innovation that may partially or more than fully
offset the costs of complying with them.” Subsequently, the debate
in the field of environmental economics focused on whether technol-
ogy standards3 or flexible policies4 are the most appropriate envi-
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ronmental policy tool for combating pollution, and reached a con-
sensus that the latter are more cost-effective in terms not only of
combating pollution but also of inducing the diffusion and/or devel-
opment of green technology (Milliman & Prince, 1989). Such innova-
tions could be profitable for firms due to efficiency gains (Rexhäuser
& Rammer, 2014) or new market opportunities.

The eco-innovation literature, with a few exceptions (Coenen
et al., 2012; Cooke, 2011, 2012; Horbach, 2014), has overlooked
‘space’ (Gibbs & O’Neill, 2017). Recently, the debate has shifted
towards the geographical dimension of green innovation, whereby
the locus of policy and eco-innovations is the city or region
(Barbieri & Consoli, 2019). This body of literature acknowledges
that ‘‘the new institutional fix for environmental problems may
vary across space” (Gibbs, 2006, p. 207), whereby the latter refers
to spaces within a nation or state. One strand of this literature
explains the differences in green technology across space as a
result of regional capability (Balland et al., 2018; Montresor &
Quatraro, 2019) and regional spillovers (Antonioli et al., 2016;
Corradini, 2019). Others emphasize the role of political support
at the regional level in strengthening a region’s capability, leading
to even greater green specialisation (Santoalha & Boschma, 2021).

Here, we shift our attention towards the geographical dimen-
sion of environmental policy for eco-innovations. This is because
transitioning to such radical or disruptive technology often
requires the adoption of a systems co-evolutionary approach, dri-
ven by strong political support (Geels, 2002, 2006; Kemp, 2009).
In line with this, Cooke (2012) contends that green regional inno-
vation systems are frequently driven by regional policy-makers,
who coordinate the transition to new sustainable regional paths.
We argue that more attention needs to be paid to the systemic nat-
ure of eco-innovation, as captured by spatial differences in the pro-
duction of green patents. Specifically, such system transformations,
that address huge climate challenges, require strong policy inter-
vention as the incumbent actors are slow or relatively reluctant
to undertake these (Haddad et al., 2022; Schot & Steinmueller,
2018). In this paper, we hypothesise that the stringency of the
environmental policy adopted at the city level plays a crucial role
in steering their path towards eco-innovation.

Hypothesis 1 Cities with stricter environmental policies are
generating more green patents compared to cities with lax
environmental policies.

2.2. Digital policies for eco-innovation

Eco-innovation is characterised by positive technological exter-
nalities as firms might not fully appropriate the returns on their
investments due to knowledge spilling over to other firms (Wang
et al., 2017). This double externality calls for government regula-
tion that is not limited to the domain of environmental policy.
For instance, Costantini et al. (2017) consider innovation policies
across OECD countries and show that a more comprehensive policy
is more likely to generate new, energy-efficient inventions.

Positive technological externalities suggest that organisations
in the same sector and in interconnected sectors, such as those
connected vertically or with input–output relationships, experi-
ence strategic complementarity. This implies that the optimal
strategy of one organisation, with regards to investment in eco-
innovations, is positively affected by the respective strategies of
other inter-connected organisations. This gives rise to problems
related to coordination, as the mutual/group-level benefits depend
on decisions taken unilaterally, with a tendency among the indi-
vidual actors to underinvest.

Next, we discuss how digital policies address these
coordination-related problems. We focus on the role of invest-
ments of public digital infrastructure such as AI and IoT for eco-
3

innovations in the context of smart cities. AI can have profound
effects on eco-innovation as it resembles the characteristics of
general-purpose-technologies (GPT) with many applications,
which can stimulate systemic sustainable transformations in the
context of cities. IoT allows the collection and sharing of locally sit-
uated data. AI enables the sophisticated analysis of such data,
which could generate insights that address local environmental
problems. We argue that investments in public digital infrastructure
in cities can facilitate the adoption and development of environ-
mentally friendly technologies and generate positive technological
externalities through the following mechanism, as discussed
below.

The provision of a reliable public digital infrastructure in cities
can lead to process eco-innovations, as smart production entails
improved efficiencies around resource use and reduction of pro-
duction times with beneficial energy savings (Alcayaga et al.,
2019). In the context of smart cities, the embedded AI and IoT tech-
nology infrastructure, can facilitate firms to monitor resource use
and waste/emissions management. This in turn, can stimulate pro-
cess eco-innovations as firms in these cities are able to improve
production or distribution efficiency in terms of energy or
resources. Smart cities can embed the development of distributed
energy grids, to integrate, aggregate and optimise the use of
renewable energy, thereby expanding its use, improving energy
efficiency, and reducing emissions. Smart meters and IoT devices
can help to optimise meeting energy and water demand, facilitat-
ing their efficient use while reducing the need to build additional
infrastructure, which could increase pollution (see Beltrami et al.,
2021).

Overall, smart cities can form the loci for a favourable selection
environment (Gibbs & O’Neill, 2017), whereby the provision of a
public digital infrastructure for AI and IoT applications can enable
firms to adopt process eco-innovations, thereby supporting the
upgrading of the traditional sectors (Bag et al., 2021). In sum, the
application of AI and IoT in cities can lead to systemic eco-
innovations that solve complex problems, as embedded public dig-
ital technology infrastructure of interconnected systems in smart
cities helps firms to make their production processes greener.
The following hypothesis states our expectations of the role of dig-
ital policies in eco-innovations in smart cities in China.

Hypothesis 2 Smart cities constructed based on digital policies
are generating more green patents compared to non-smart
cities.

2.3. Policy mix for eco-innovations: environmental and digital policies

A further aim of this study is to explore the impact of digital
policies on eco-innovation in the presence of environmental poli-
cies, which allows us to test whether the two complement each
other, leading to superior outcomes compared to those potentially
achievable by either of these policies used independently. For this
purpose, we build on the literature of policy mix, which refers to
the role of specific combinations of environmental policy instru-
ments and their interactions in facilitating eco-innovations and
sustainability transition (Edmondson et al., 2019; Rogge &
Reichardt, 2016; Rogge & Schleich, 2018; Uyarra et al., 2016). This
literature has focused on specific demand-pull and technology-
push environmental policy instruments and identifying the most
‘‘effective” combination within specific contexts (regions, coun-
tries) and for specific types of environmental technology (e.g.,
green energy) (Constantini et al., 2017; Magro & Wilson, 2019).
The role of broader policies supporting general purpose technolo-
gies with a cross-sectoral impact has been largely overlooked, so
it is explored here.



6 We exclude pilot cities, as digital policies were piloted only in smaller districts,
such as in the case of Zhangzhou, where smart policies were implemented only in the
district of Pinglu. There are 135 non-smart cities and 32 smart cities. The latter
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We build on the arguments found within Eco-innovation Studies,
which suggest that policies are enacted by a variety of actors and sys-
tems, which challenges the notion of an ‘‘optimal” policymix in a gen-
eral sense (e.g., Flanagan et al., 2011; Kern et al., 2017). For instance,
Fabrizi et al. (2018) show that participation in green research net-
works facilitates knowledge combination across countries and com-
plements the impact of EU environmental policies on the
generation of new green knowledge (patents) at the national level.

Mixing environmental and digital policies in smart cities can
alleviate reinforcing market failures associated with eco-
innovations, namely, negative environmental externalities and sys-
temic coordination failures. Indeed, the effectiveness of policy mix,
is influenced by the comprehensiveness and consistency of the
combined policies which should also be void of contradictory ele-
ments: when aimed at the same overall purpose (here sustainabil-
ity transitions) the combined policies need to address
complementing and not similar goals (Flanagan et al., 2011; Con-
stantini et al., 2017). Even when the combined policy instruments
are theoretically complementing, in practice, they may prove to
have no significant or synergistic effect, or to have a different
impact across different contexts (e.g. Rogge & Reichardt, 2016;
Constantini et al., 2017). We posit that digital policies complement
environmental policies by strengthening government monitoring
and in turn they facilitate the implementation of environmental
regulations. In doing so, digital and environmental policies jointly
encourage firms in smart cities to invest in eco-innovations and to
ultimately achieve the dual target of economic competitiveness
and sustainability as follows.

First, digital policies embedded in smart cities can enable envi-
ronmental regulators to measure and monitor pollution levels
more accurately and efficiently. For instance, Brauer’s et al.
(2019) study in India shows that dense sensor networks cost less
than establishing networks of ground monitoring stations5 for
ambient air pollution. Smart cities can use an interconnected net-
work of sensors (IoT) to measure atmospheric pollution.

Second, once AI technologies receive the information from the
interconnected sensors in smart cities, they can perform precise
data analysis - optimisation, predictive, prescriptive studies- that
facilitate regulators in their decision making. For instance, AI appli-
cations can be programmed to send alerts to environmental regu-
lators when pollution levels exceed the guideline limits. Liu’s et al.
(2021) study in Beijing shows that AI applications (i.e. combined
weight prediction model) provide more accurate analysis of data
and improves the forecasting levels of Nitrogen dioxide (NO2).

Third, regulatory bodies using AI knowledge (generated based on
data from IoT) can make faster and better decisions when imple-
menting environmental policies, which in turn steer the behaviour
of firms towards eco-innovation. Typically, non-compliance to envi-
ronmental polices is due to the lack of monitoring and enforcement.
For example, Gupta et al. (2019) using a sample of 117 water pollut-
ing plants and 109 air polluting plants in India found that the prob-
ability of inspection increases plant-level compliance. Digital
technologies embedded in smart cities allow environmental regula-
tors to detect air, water, or waste polluters, and impose penalties
to non-compliant firms. Firms seeking to avoid the costs of environ-
mental fines and penalties will be ‘‘pushed” to invest on green tech-
nologies stimulating green patents (Popp, 2005).

Based on the above discussion, we posit that the probability of
generating eco-innovations is higher in smart cities with stricter
environmental regulations, whereby regulators are able to monitor
and enforce environmental policies and firms have a higher incen-
tive to implement environmentally sustainable practices. Digital
5 The cost of an individual station is estimated $135,000 U.S. Dollars (Brauer et al.,
2019).
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and environmental policies can create a reinforcing cycle that
spawns further innovation, thereby enlarging the scope of eco-
innovation for organisations within the system at the context of
cities. Therefore, we expect that digital policies will complement
the impact of environmental policies.

Hypothesis 3. Cities with digital policies and strict environmen-
tal policies are generating more green patents compared to
cities with a single policy [either digital or strict environmental
policy].

3. Data and methodology

3.1. Digital policies and smart cities

Smart cities are an example of a combination of AI and IoT appli-
cations to specific geographical contexts and are used here as a
way to capture the implementation of digital policies. Smart cities
have been defined in numerous ways, reflecting their different
dimensions (Albino et al., 2015; Komninos, 2002; Wu et al.,
2018). They refer to automated, assisted intelligence that uses
large, unstructured, real-time datasets in various domains, such
as smart urban mobility systems, smart urban energy systems,
and smart homesystems (Yigitcanlar et al., 2019). At the core of
the smart city lies the technical infrastructure, with sensory
devices and software, which enables the capturing of data about
people and their use of services and resources (such as energy con-
sumption, mobility, and transport), the streaming of data to inter-
connected platforms, the sharing of data among the stakeholders
and, finally, the use of data analytics (modelling, forecasting, opti-
misation) on which to base better operational decisions (Harrison
et al., 2010). These wider applications of AI and IoT have the poten-
tial to stimulate eco-innovations within systems and to upgrade
existing technologies and processes.

3.2. Data

We create an original dataset by merging three different data-
sets as follows. Firstly, we capture the impact of digital policies
by focusing on smart-city policies in China. China has undergone
rapid industrialisation, urbanisation and economic growth, and
has increasingly invested in smart-city policies. The country is a
late-adopter of digital policies, which allows it to benefit from
the experience of other cities and steer the construction of smart
city policies to support the long-term potential for sustainable
growth by building indigenous innovation and a capacity for eco-
innovations. China launched a smart city pilot policy in 2012, so
we use city-level panel data on 167 cities for the period 2006–
2018.6 This dataset includes a combination of 32 cities that transi-
tioned to smart cities post-2012 and 135 that did not. This allows
us to undertake a systematic exploration of the role of digital policies
in eco-innovation by examining the changes within the cities that
transitioned to smart-cities over time and to compare them with
other cities where digital policies have not been used. We not only
apply the Difference-in-Differences (DiD) approach, based on the
overall Chinese city-level data, but also employ the Propensity Score
Matching method (PSM) to select the control group. Furthermore,
these cities vary in terms of the stringency of their environmental
launched a pilot policy of smart city construction in 2012, and include: Shijiazhuang,
Qinghuangdao, Handan, Langfang, Tdigitalyuan, Changzhi, Wuhdigital, Liaoyuan,
Wuxi, Changzhou, Zhenjiang, Tdigitalzhou, Wenzhou, Jinhua, Wuhu, Bengbu, Hudig-
italnan, TongLing, Nanping, Pingxiang, Dongying, Weihdigital, Dezhou, Zhengzhou,
Hebi, Luohe, Wuhan, Ya’an, Liupanshui, Lhasa, Hsienyang, and Wuzhong.
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policy implementation, which offers ample variation to explore
whether such policies are reinforced by digital policies.

Secondly, we measure eco-innovations at the city level for all
167 cities for the period 2006–2018 using data on green patents
granted by the China National Intellectual Property Administration
(CNIPA). China formally enacted the Patent Law in 1984, which
came into effect in 1985. Until the end of the 1990 s, the number
of patent applications by local residents and organisations grew
modestly, with an average annual growth rate of 11 %. However,
since the turn of the century, this figure has surged dramatically,
with an average growth rate of 30 %, to reach 4,380,468 in 2019,
according to the World Intellectual Property Organization (WIPO).
CNIPA provides detailed information on patents (Dang &
Motohashi, 2015), including their application number, application
date, IPC classification, the applicant’s name and address, the
inventor’s name and the patent attorney’s name and address.
Thirdly, city-level variables were obtained from the China Urban
Statistical Yearbook and China Environmental Statistical Yearbook,
as detailed in Table 1.

3.3. Variables

3.3.1. Eco-innovation (green patents granted)
Eco-innovation is measured by patent data, in line with previ-

ous studies (Brunnermeier & Cohen, 2003; Johnstone et al., 2010;
Lanjouw & Mody, 1996; Oltra et al., 2010; Popp, 2002). Green
patents refer to inventions, utility models and design patents that
use green technologies. To identify green patents granted (gpc), we
use a detailed patent search strategy, developed by the OECD
(Haščič & Migotto, 2015), combined with the ‘‘IPC Green Inventory”
provided by the World Intellectual Property Organization.7 We
acknowledge the limitations of using the number of green patents
to measure eco-innovation, as patents are highly sector-specific
and may not reflect the outcomes of investments in innovation activ-
ities aimed at sustainability (see Constantini et al., 2017).

3.3.2. Digital polices (Smart-city treatment variable)
To capture the impact of digital policies on changes in eco-

innovations within smart cities, we use the variable:
Smart � cityi � postt , where Smart � cityi equals 1 if a city is a
smart city, and otherwise equals 0. postt is a time dummy variable,
which equals 1 in 2012 and after, and 0 before 2012. Smart city
implementation utilises digital technologies to gather and analyse
relevant data to inform government and business decisions and
actions (Albino et al., 2015; Komninos, 2002; Wu et al., 2018;
Yigitcanlar et al., 2019). The broader aspects of China’s pilot smart
cities are detailed in Appendix B.

3.3.3. Environmental policy variables
In line with previous studies, we use two indicators to measure

the stringency of the environmental regulations. First, we proxy8

the stringency of environmental policy with the sulfur dioxide
removal rate (soqccs) (see Table 1 row 2). This indicator measures
the reduction in pollutant emissions, whereby a larger percentage
of sulfur dioxide removed from the atmosphere reflects a stringent
environmental regulation (Feng et al., 2019). Second, we proxy the
stringency of environmental policy with sewage discharge income
(spwsr) (see Table 1 row 3). This indicator captures the industrial
pollution control compliance rate, whereby a higher rate points to
a stricter environmental policy (Yang et al., 2018).9
7 https://www.wipo.int/classifications/ipc/en/green_inventory/.
8 Our measures are proxies that seek to capture the stringency of environmental

policy.
9 Due to the data availability, environmental regulation variables are based on

provincial-level data.

5

3.3.4. Control variables
We control for a series of city-level factors that might affect eco-

innovation. First, we control for inward foreign direct investment
(FDI) weighted by GDP (fgdp), as FDI is an important driver of tech-
nological innovation. Second, we use the city population (pop) and
GDP per capital (agdp), to control for the size of the city and its
growth potential. Third, the variations across the cities in terms
of their industrial structure are captured by the output value of
manufacturing sectors, weighted by GDP (sgdp). Fourth, govern-
ment support is measured by government expenditure, weighted
by GDP (gov) (in the negative binomial analysis we use govern-
ment science and technology expenditure, weighted by GDP, gov-
sci). Fifth, we use the sum of savings and loans, weighted by GDP
(allfin), to reflect the financial development of cities and use invest-
ment in pollution control (iiepc) to capture the environmental per-
formance of cities. Finally, we expect cities with a higher
urbanisation rate (urban population divided by total population,
urban) to have higher capital investment and a large pool of skilled
human resources.

Table 1 presents descriptive statistics for all of the variables.
The correlation coefficients are at low acceptable levels, with the
variance inflation factors (VIF) ranging from 1.13 to 2.89, well
below the threshold level of 10.

3.4. Empirical models

We test hypotheses 1–3, by employing two empirical
approaches: a negative binomial and a Difference-in-Differences
estimation method.

3.4.1. Negative binomial approach
We use a version of the Negative Binomial method (Cameron &

Trivedi, 2013; Fabrizi et al., 2018) to estimate Eq. (1), that allows
for correlated fixed effects:

gpcit ¼ b0 ln ERit�1 þ b1Smart � cityþ b2 ln ERit�1 � Smart

� cityþ b3 ln govcsiit�1 þ b4popit þ Fi þ Tt þ eit ð1Þ
where gpcit is the number of green patents granted in city i in year t,
the main explanatory variables are ER (Environmental Regulations:
soqccs and spwsr) (H1) and the Smart-city dummy (H2). The interac-
tion effect of ERit-1*Smart-city tests (H3). The variable govsci mea-
sures the government’s science and technology expenditure as a
percentage of GDP, pop captures the size of population, Fi is the
city-fixed-effect, Tt is the year-fixed-effect, and eit is the error term.

We address any unobserved heterogeneity by using the ‘‘pre-
sample mean scaling” (PSM) method (2002; Blundell et al.,
1995). As stated by Bloom et al. (2013), the pre-sample averages
can then be used as an initial condition to proxy for unobserved
heterogeneity under the assumption that the first moments of all
the observables are stationary. Although there will be some finite
sample bias, Monte Carlo evidence shows that ‘‘this pre-sample
mean scaling estimator performs well compared to alternative
econometric estimators (like quasi-differenced Generalized
Method of Moments estimator) for dynamic panel data models
with weakly endogenous variables‘‘ (Bloom et al., 2013, p. 1367).
In order to reduce problems with endogeneity, following Wang
and Hagedoorn (2014) and Costantini et al. (2015), we use one-
year lagged values of all regressors (except for population size).

3.4.2. Difference-in-Differences (DiD) approach
Firstly, we apply DiD in a natural experiment setting based on

the overall Chinese city-level data. This method allows us to test
the causal effect of digital policies on eco-innovation, as captured
by smart city construction (H2). The DiD approach is frequently
used in applied economics to check for causal effects. In our set-

https://www.wipo.int/classifications/ipc/en/green_inventory/


Table 1
Descriptive statistics.

Variables Code Mean Std. Dev. Data source

Green Patents Granted (log) gpc 3.369 1.557 China National Intellectual Property Administration (CNIPA)
Sulfur Dioxide Removal Rate soqccs 0.457 0.254 China Environmental Statistical Yearbook
Sewage Discharge Income(log) spwsr 11.100 0.714 China Environmental Statistical Yearbook
FDI/GDP fgdp 0.019 0.018 China Urban Statistical Yearbook
Population (log) pop 8.150 0.651 China Urban Statistical Yearbook
GDP per Capita (log) agdp 10.339 0.661 China Urban Statistical Yearbook
Output Value of Manufacturing Sectors/GDP sgdp 0.489 0.106 China Urban Statistical Yearbook
Government Expenditure/GDP gov 0.172 0.095 China Urban Statistical Yearbook
Government Science and Technology Expenditure/GDP govsci 0.002 0.002 China Urban Statistical Yearbook
(Savings + Loans)/GDP allfin 1.409 0.564 China Urban Statistical Yearbook
Investment in Pollution Control (log) iiepc 9.881 0.885 China Environmental Statistical Yearbook
Urbanisation rate urb 0.340 0.166 China Urban Statistical Yearbook
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ting, as the digital policy change does not affect each individual
city, we can use DiD to estimate the effects of the smart-city policy.
The key notion underlying this method is that, if the treated and
the non-treated groups are exposed to the same exogenous time
trends, then an estimate of the ‘‘effect” of the treatment during
the pre-treatment period (when we know that the treatment has
had no effect) can be used to eradicate the effect of any confound-
ing factors when comparing the post-treatment outcomes for both
the treated and non-treated groups. DiD is effective empirically
when it is impossible to control the confounding variables and
instruments are unavailable, while pre-treatment information is
available.

Secondly, we employ the Propensity Score Matching method
(PSM) to select the control group. The propensity scores are calcu-
lated according to observed characteristics influencing the policy
operation, for the purpose of controlling selection bias (Lechner,
2002; Rosenbaum & Rubin, 1984). The empirical model in Eq. (2)
is as follows:

gpcitþ1 ¼ bSmart � cityi � postt þ dTControlit þ Fi þ Tt þ eit ð2Þ

Where i and t indicate the city and time respectively, the depen-
dent variable, gpcit , represents the number of green patents granted.
Smart � cityi � postt is the key independent variable used to test H2.

Thirdly, we employ the DDD (Difference-in-Differences-in-Dif
ferences) method to test the policy mix effect (H3): whether digital
policies (i.e., smart cities) and stringent environmental policies are
jointly generating more green patents compared to a single policy.

gpcitþ1 ¼ bSmart � cityi � postt � lnERit þ dTControlit þ Fi þ Tt þ eit
ð3Þ

We include in Eq. (3) the interaction term
Smart � cityi � postt � ERit . Where Fi indicates the city fixed effect,
Tt indicates the year fixed effect, and eit is the error term.
4. Empirical results

4.1. Negative binomial regression results

The results of the Negative Binomial regression are shown in
Table 2. This estimation method appears to fit the data well, as
shown by the results of the Wald test. Specifically, the parameter
of the over-dispersion lnalpha is always significant, leading us to
reject the null hypothesis regarding the absence of dispersion. In
all specifications, the pre-sample variable has a highly significant
coefficient, thereby confirming the presence of unobservable
heterogeneity across the cities.

We use the sulfur dioxide removal rate (soqccs) and sewage dis-
charge income (spwsr) to measure the stringency of the environ-
mental regulations across the cities. The empirical results in
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column (1) and (2), with coefficients of 0.166 and 0.066, are all sta-
tistically significant at the 1 % level, and provide support for H1.
Cities with stricter environmental policies are generating more
green patents compared to cities with lax environmental policies.

In column (3), we introduce a smart city dummy variable that
takes the value of 1 for smart cities, and 0 otherwise. The smart city
coefficient is 0.397, with statistical significance at the 1 % level,
which supports H2. Digital policies in smart cities can generate
more green patents compared to non-smart cities.

In columns (4) and (5), we further include the interaction term
between the smart city dummy and environmental policy vari-
ables, with coefficients of 0.322 and 0.045 at a 1 % significance
level. The results support H3.

4.2. The Difference-in-Differences regression results

4.2.1. Basic regression results
The DiD regression results are presented in Table 3. Columns (1)

and (2) first introduce the Smart � city� post term and the control
variables, by using the DiD and PSM-DiD method. Columns (3) and
(4) control for year and city fixed effects. The results show that the
construction of smart cities has a significant positive impact on
eco-innovation, with coefficients of 0.162 and 0.21 respectively,
and both are significant at the 5 % level, thus supporting H2. The
balance test results are presented in Table A1 in the Appendix.

4.2.2. Parallel trend analysis and yearly effect
We test the parallel trend assumption between the treatment

and control groups, which should have similar growth trends in
green patents prior to the digital policy implementation. Figure 1
presents the growth trend in the number of green patents between
the treatment and control groups. The growth trends of the two
groups are roughly parallel before 2012 and diverge after 2012,
when smart-city policy was introduced.

Following Hering and Poncet (2014), we conduct a parallel
trend test, and the results are shown in Table 4 and Figure 2. We
use time dummy variables to explore whether or not the number
of green patents between the two groups display different trends
prior to the policy’s implementation. The year dummy variables
include: one year before the policy implementation (pret�1), two
years before the policy implementation (pret�2), and three years
before the policy implementation (pret�3). We also introduce the
year dummies following the policy implementation to examine
whether or not the eco-innovation effect of smart city construction
is continuous, including one year after the policy implementation
(posttþ1), two years after the policy implementation (posttþ2), and
three years after the policy implementation (posttþ3).

Table 4 shows that all coefficients of the Smart � city�
pret�n(n = 1, 2, 3) are statistically insignificant, which indicates that
the parallel trend assumption is satisfied. This shows that cities in



Table 2
Negative binomial regressions results.

Dependent variable: Green patents granted (gpc) (1) (2) (3) (4) (5)

ln(pre-sample fixed effect) 0.634*** 0.625*** 0.626*** 0.618*** 0.614***
(0.055) (0.054) (0.047) (0.056) (0.055)

ln(soqccs)t-1 H1 0.166*** 0.215***
(0.045) (0.053)

ln(spwsr) t-1 H1 0.066*** 0.072***
(0.011) (0.012)

smart city H2 0.397***
(0.126)

ln(soqccs)t-1*smart city H3 0.322**
(0.128)

ln(spwsr) t-1*smart city H3 0.045***
(0.017)

ln(govsci) t-1 0.688*** 0.632*** 0.562*** 0.672*** 0.602***
(0.084) (0.085) (0.073) (0.084) (0.087)

pop t 0.602*** 0.455*** 0.551*** 0.592*** 0.465***
(0.115) (0.116) (0.096) (0.111) (0.118)

Constant �3.651*** �2.079** �3.349*** �3.528*** �2.132**
(0.831) (0.879) (0.716) (0.806) (0.898)

ln(alpha) �0.497*** �0.543*** �0.497*** �0.516*** �0.565***
(0.088) (0.093) (0.072) (0.087) (0.092)

City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Log pseudolikelihood �4534.83 �4568.42 �6300.67 �4525.95 �4558.74
Wald chi2 1374.19 1551.19 1430.17 1410.86 1521.19
Pseudo-R-squared 0.165 0.170 0.166 0.167 0.173

Note: The standard error is given in parentheses. The standard errors are clustered at the city-level.
***, ** and * represent a significance level of 1%, 5%, and 10%, respectively.
Time period is from 2012 to 2018.
Environmental regulation is measured using two variables: the Sulfur Dioxide Removal Rate (soqccs) and Sewage discharge income (spwsr).
The Artificial intelligence policy is measured using the Smart city variable, which takes the value of = 1 if the city is smart, and = 0 otherwise.

Table 3
Difference-in-Differences & Propensity Score Matching regression results.

Method (1) DiD (2) PSM-DiD (3) DiD (4) PSM-DiD

Dependent Variable: Green patents granted (gpc)
Smart � city� post H2 �0.085 �0.098 0.162*** 0.210**

(0.071) (0.123) (0.05) (0.096)
Control variables Yes Yes Yes Yes
City Fixed Effects No No Yes Yes
Year Fixed Effects No No Yes Yes
Observations 1050 378 1050 378

R2 0.669 0.385 0.866 0.785

Note: The standard error is given in parentheses. The standard errors are clustered at the city-level.
***, ** and * represent the significance level of 1%, 5%, and 10%, respectively.
The PSM matching balance test is shown in Appendix Table A1.
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our treatment and control samples had similar eco-innovation
growth trends before the introduction of smart city policy. The
coefficients of the Smart � city� posttþn are positive and statisti-
cally significant. This suggests that the effect of smart city con-
struction holds in the short (t + 1) and long term [(t + 2)(t + 3)].
4.2.3. Anticipation effect
Many cities will apply for the smart city pilots. This indicates

the possibility of an anticipation effect in which potential partici-
pants begin to adjust their innovative strategies even before the
formal digital policies implementation. We conduct an anticipation
effect test, we run smart � city treatment variable before the policy
implementation period (2006–2011). The result is displayed in col-
umn (1) of Table 5. The coefficient of the smart � city is statistically
insignificant, which suggest that the anticipation effect is
insignificant.
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4.2.4. Placebo test
Following Hung andWang (2014), we conduct analysis akin to a

placebo test. First, we set up a hypothetical policy time for the pla-
cebo test. We assume that the smart city policy was implemented
in 2008 (post2008) and 2009 (post2009) respectively. The results are
presented in columns (2) and (3) of Table 5. The coefficients of
the Smart � city� postn(n = 2008, 2009) are insignificant, which
is inconsistent with the basic regression results and confirms the
eco-innovation effect of smart city construction.

Second, we also set a hypothetical treatment group to conduct
the placebo test. We select a hypothetical treatment group, with
the same number of cities as in the original treatment group. This
process is repeated 500 times. Figure 3 presents the kernel density
plot of the Smart � city� post coefficients for these 500 repetitions.
The estimated coefficient of Smart � city� post is �0.140, with a
standard deviation 0.224, which is far from the basic regression
coefficient of 0.21 (see Fig A1).



Fig. 1. Growth trend of green patents. Note: The horizontal axis represents one year
prior to the policy implementation (pret�1), two years prior to the policy
implementation (pret�2), three years prior to the policy implementation (pret�3),
one year after the policy implementation (posttþ1), two years after the policy
implementation (posttþ2) and three years after the policy implementation (posttþ3).

Table 4
Parallel trend and yearly effects.

Green patents granted (gpc)

Smart � city� pret�3 0.055
(0.195)

Smart � city� pret�2 0.085
(0.167)

Smart � city� pret�1 0.027
(0.151)

Smart � city� posttþ1 0.344***
(0.171)

Smart � city� posttþ2 0.125***
(0.052)

Smart � city� posttþ3 0.287**
(0.083)

Control variables Yes
City Fixed Effects Yes
Year Fixed Effects Yes
Observations 411

R2 0.804

Note: The standard error is given in parentheses. The standard errors are clustered
at the city-level.
***, ** and * represent the significance level of 1%, 5%, and 10%, respectively.

Fig. 2. Parallel trend graph.
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4.2.5. Robustness tests
A series of environmental protection policies (laws and regula-

tions) were introduced in 2013.10 In order to explore whether or not
the impact of the introduction of digital policies is still observable,
given the impact of these environmental protection policies, we
include a year dummy variable (policy2013) in column (4) of Table 5.
The results show that the coefficient of the interaction term
Smart � city� post is positive and significant, which is consistent
with the results shown in the basic regression results (see Table 3).

4.2.6. Policy mix effect – Digital Policies and Stringent Environmental
regulation

We employ the DDD (Difference-in-Differences-in-Differences)
method to test the policy mix effect. Specifically, we estimate the
equation, based on the DiD empirical model (including the interac-
tion term between the Smart-city *post), but this time with the
inclusion of the interaction term with Environmental Regulation
(Smart-city *post*ER), hereafter short for the policy mix variable.
Policy mix _psm (is based on a PSM city-level sample), which means
that the control group was selected using the PSM method. The
PSM method implies that both the smart cities and non-smart
cities groups have no statistically significant inter-group difference
based on the matching variables. However, within the smart cities
(or the non-smart cities) groups, there still exist differences regard-
ing the environmental regulations. We report the Policy mix _whole
result for the robustness check. Policy mix _whole is based on the
whole Chinese city-level sample, which means that the control
group includes all non-smart cities.

The regression results are shown in Table 6. The coefficients of
the interaction terms are both significantly positive. The coeffi-
cients 0.364 (column 1), 0.180 (column 2), 0.019 (column 3), and
0.013 (column 4), are all statistically significant at the 1 % level,
which provides further support for H3. Digital and environmental
policies are jointly generating more green patents compared to
the impact of each separate policy in isolation.
5. Conclusion

The prior literature has stressed the importance of environmen-
tal regulation for eco-innovation, yet little attention has been paid
to the different types of policies required to drive eco-innovation
and their spatial dimension. Even less attention has been paid to
the implications of digital policies for eco-innovation. In this paper,
we apply a negative binomial regression and quasi-natural exper-
imental methods (i.e., Difference-in-Differences and Propensity
Score Matching). We examine the joint impact of digital policies,
regarding the design of smart cities in China, and environmental
policies, on the production of green patents. We contribute to
debates in development studies focusing on eco-innovation by
10 Technical Policy of Pollution Prevention and Control in Cement Industry;
Technical Policy of Pollution Prevention and Control in Iron and Steel Industry;
Technical Policy of Pollution Prevention and Control in Sulphuric Acid Industry;
Technical Policy of Volatile Organic Compounds (VOCs) Pollution Control; Regulations
on Urban Drainage and Sewage Treatment; Action Plan for the Prevention and Control
of Air Pollution; Regulations on the Prevention and Control of Pollution from
Livestock and Poultry Scale Breeding; Guidelines on Accelerating the Development of
Green Cycle and Low Carbon Transportation; Opinions on Speeding up the Develop-
ment of Energy Conservation and Environmental Protection Industry; Guidelines on
Resolving Serious Overcapacity Contradictions; National Desertification Prevention
and Control Plan; Notice on Further Strengthening the Management of Strict
Environmental Impact Assessment for the Protection of Aquatic Biological Resources;
Suggestions on Promoting the Operation of Coal Industry; Regulations on the
Adjustment and Management of National Nature Reserves; Guidelines on Pilot Work
of Compulsory Liability Insurance for Environmental Pollution; Notice on Enhancing
Information Disclosure of Environmental Regulation of Pollution Sources; Notice on
the Key Work Arrangements of Environmental Information Disclosure; and Guide-
lines on Strengthening Emergency Management of Heavily Polluted Weather.



Table 5
Placebo test and robustness test.

Dependent Variable: Anticipation effect Placebo test Robustness test

Green patents granted (gpc) (1) (2) (3) (4)

Smart � city 0.186
(0.145)

Smart � city� post2008 0.127 Smart � city� post 0.122*
(0.089) (0.736)

Smart � city� post2009 0.138 policy2013 �2.217***
(0.086) (0.190)

Control variables Yes Yes Yes Yes
City Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes No
Observations 630 630 630 1050

R2 0.848 0.849 0.851 0.785

Note: The standard error is given in parentheses. The standard errors are clustered at the city-level.
***, ** and * represent the significance level of 1%, 5%, and 10%, respectively.

Fig. 3. Kernel density plot of the placebo test coefficient (the virtual treatment
group).
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introducing insights from recent studies into the policy mix for
sustainability across cities, focusing on the role of digital policies.
Also, this study uses a novel methodological approach, which
makes it possible to examine the quasi-exogenous impact of digital
policies on eco-innovation.

Our results demonstrate that digital policies stimulate green
patents. Notably, when digital policies are implemented in cities
which have strict environmental policies, the production of green
Table 6
The effect of policy mix (digital and environmental policy) upon eco-innovation.

Environmental regulation

Sulfur Dioxide Removal Rate (soqccs)

Policy mix_psm H3 0.364***
(0.141)

Policy mix_whole

Control variable Yes
City Fixed Effects Yes
Year Fixed Effects Yes
Observation 378

R2 0.787

Note: The standard error is given in parentheses. The standard errors are clustered at th
***, ** and * represent the significance level of 1%, 5%, and 10%, respectively.
Policy mix_psm is based on the PSM city-level sample.
Policy mix_whole is based on the overall Chinese city-level sample.
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patents increases. This suggests that, when these two policies act
jointly, there are strong systemic synergies and a deeper, more
extensive level of impact on eco-innovation compared to the
impact exerted by environmental policies alone. We argue that this
is due to digital policies acting to alleviating problems of systemic
coordination, which leads to improved outcomes at a systemic
level – the city level, in this case. This is a substantial contribution,
as environmental policies alone, on occasion, have been linked to
low or superficial investment in sustainable solutions (Frondel
et al., 2007). Indeed, our results may have important policy impli-
cations, as research shows that policy instruments constructed
around monetary incentives can often lead to outcomes whose
likelihood reduces over time, producing limited results in terms
of fostering transitions at the system level (e.g., Lamperti et al.,
2020).

Our research, deriving from a leading developing economy, sup-
ports the view that smart city construction can provide the public
digital infrastructure that nurtures coordination amongst new
technology industries, generating positive technological externali-
ties, and building indigenous capacity for eco-innovations. We fur-
thermore contribute to the literature on policy mix, as existing
studies tended to focus on the impact of narrow policy tools on
sustainability outcomes within specific sectors. We shed further
light on the combination of policies, acting at a broader level, that
can influence sustainability transitions. Our findings show that dig-
ital policies, such as public digital infrastructure investments in AI
and IoT, make a substantial contribution to eco-innovations of
smart cities in China, by both boosting the performance of these
cities over time and in comparison to non-smart cities. Further-
more, parallel trend analysis highlights a long-term impact of
Sewage discharge income (spwsr)

0.019**
(0.009)

0.180* 0.013**
(0.105) (0.005)
Yes Yes Yes
Yes Yes Yes
Yes Yes Yes
1050 378 1050
0.811 0.785 0.672

e city-level.
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digital and environmental policies on eco-innovations reflecting
sustained implications of such policies at the city level, steering
their development path towards sustainability. Our results suggest
that cities can form the loci for sustainable transitions, which is
highly desirable in countries such as China, where smart city poli-
cies focus on areas of high industrialisation, urbanisation and
growth, raising strong concerns regarding environmental sustain-
ability and sustaining competitiveness.

We should note that the results of our research, mainly reflect
industrial applications of digital and environmental policies and
their impact. As a consequence, outcomes from broader indicators
for sustainability used in other studies on smart cities (Liu & Peng,
2014), which identify a disconnection between smart and sustain-
ability in various countries (Albino et al., 2015; Hu, 2019) and in
China (Shen et al., 2018) are not immediately comparable. Smart
cities may involve broader changes, such as changes in institutions,
such as smart governance, or circular economy (Shen et al., 2018),
and they can influence the behaviour of individuals and of other
actors (e.g. consumers or supply chains) (Geels, 2006), in a way
that could potentially broaden and deepen the foundations sup-
porting a green trajectory in developing economies (Pegels &
Altenburg, 2020).

In policy terms, our empirical analysis yields important insights
for policy makers in developing economies. A commitment to net-
zero emissions in China by 2060 was recently announced, accom-
panied by press releases (e.g., Mallapaty, 2020; Rogelj et al., 2021)
that highlight the need to set specific targets, measures and goals
as well as define a specific scope for their application. We believe
that this paper constitutes an effort in that direction, as it shows
how digital policies at the city level stimulate eco-innovation and
offer a context for sustainability transition. Specifically, firstly,
our research reinforces the role of strict environmental policies
at the city level in eco-innovation. Second, we show that digital
policies, in the form of smart city construction, play an important
role in promoting eco-innovation in the context of developing
economies due to its potential to have an impact at the systems-
level. We, thus, shed light on the important role of policy in sup-
porting digital infrastructure for sustainability transition in cities.
Policy makers must continue to promote the development of pub-
lic digital infrastructure (such AI and IoT) as well as the related
technical expertise for their use and application in order to further
support actors in smart cities to overcome any barriers linked to
implementing IoT technologies and developing relevant capabili-
ties. The availability of relevant technologies and devices and their
cost will play an important role in rolling out such policies to other
priority cities. Policy makers at the local (city) level may feel
encouraged to bring together industry consortia, academic institu-
tions and technology/product/operation service providers to build
jointly high-quality interconnections among these actors to
unleash the potential of digital technologies in stimulating the tra-
ditional sectors to embrace green transition.
10
Furthermore, policy makers can direct future digital policies
towards developing and diffusing the implementation of more
sophisticated AI technologies. IoT and big data offer the inputs that
enable AI implementation. Sophisticated AI (such as machine
learning) can provide an invention-of-a-method-of-invention
(IMI) that can lead to disruptive – path breaking product eco-
innovations, as it offers the potential to transform how knowledge
is produced. By creating more advanced search tools and increas-
ing our understanding of the patterns of the actors’ behaviour,
sophisticated AI expands our existing knowledge, makes the exist-
ing search processes more efficient, and provides the means for
exploring new research questions that are beyond human percep-
tion and cognition (Cockburn et al., 2018). The diffusion of IMI
across wider domains could increase the productivity of R&D,
offering rich technological opportunities that will lead to disrup-
tive, systemic innovations with a transformational impact. This is
particularly helpful for addressing environmental problems, due
to their wicked, uncertain, systemic, and complex nature (De
Marchi, 2012; Ghisetti et al., 2015). It is expected that, within
smart cities, subsequent to further government support and shar-
ing of AI, various organisations, entrepreneurs, and the public sec-
tor will envisage and pursue such opportunities and environmental
sustainability goals.
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Appendix A
Table A1
Balance test.

Variables Treatment Group Control Group Difference T Value P Value

FDI/GDP 0.023 0.021 0.104 0.34 0.732
Population 8.225 8.173 0.08 0.28 0.780
GDP per capita 10.656 10.596 0.124 0.47 0.640
Output Value of Manufacturing Sectors/GDP 0.567 0.569 �0.015 �0.07 0.947
Government Expenditure/GDP 0.133 0.139 �0.102 �0.47 0.644
(Savings + Loans)/GDP 1.454 1.435 0.031 0.13 0.893
Investment in pollution control 10.336 10.274 0.100 0.330 0.740
Urbanisation rate 0.359 0.367 �0.051 �0.20 0.841

Note: We perform propensity score matching based on the previous year of policy implementation, i.e. 2011; we use the logit model to estimate the propensity scores and
apply the nearest neighbour matching method. The balance test results above show no significant difference regarding the mean values of the covariates between the
treatment and control groups Additionally, none of the T values are significant, which supports the PSM matching results.

Fig. A1. Kernel density plot prior to and after the propensity score matching. Note: This shows the kernel density plots of the propensity score prior to and after the matching,
respectively. It can be seen that there is a close match between the kernel density of the treatment and control groups, respectively, which further verifies the good matching
results of PSM.
Appendix B

Aspects of Chinese smart pilot city construction.
First level index
 Second level index
11
Third level index
Security system and infrastructure
 Security system
 Smart city development plan outline and implementation
plan
Institution
Policies and regulations
Funding planning and sustdigitalnment
Operation management
Network Infrastructure
 Wireless network
Broadband network(ADSL)
Next generation radio and television network
(NGB)
Public platform and database
 Urban public basic database
Urban public information platform
Information security
Smart construction and livability
issues
Urban construction
management
Town and country planning
Digital city management
Construction market management
Estate management
(continued on next page)
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(continued)
First level index
 Second level index
12
Third level index

Landscaping
Historic preservation
Building energy efficiency
Green building
Urban function improvement
 Water supply
Drdigitalnage system
Water saving techniques
Gas system
Waste sorting collecting and sorting treatment
Heating system
Lighting system
Underground pipeline and space comprehensive
management
Smart management and service
 Government service
 Decision support
Information disclosure
Online administration
Government service system
Basic public services
 Basic public education
Labour and employment service
Social insurance
Social services
Health Care
Public culture and sports
Disability Services
Basic housing security
Special application
 Smart Transportation
Smart energy
Smart environmental protection
Smart territory
Smart emergency
Smart security
Smart logistics
Smart community
Smart home
Smart payment
Smart finance
Smart industry and economy
 Industrial planning
 Industrial planning
Innovation input
Industrial upgrading
 Industrial factor agglomeration
Transformation of traditional industries
Emerging industries
 New and high-tech industry
Modern service industry
Other emerging industries
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