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Textual Context-Aware Dense Captioning with

Diverse Words
Zhuang Shao, Jungong Han, Kurt Debattista, Yanwei Pang

Abstract—Dense captioning generates more detailed spoken
descriptions for complex visual scenes. Despite several promising
leads, existing methods still have two broad limitations: 1)
The vast majority of prior arts only consider visual contextual
clues during captioning but ignore potentially important textual
context; 2) current imbalanced learning mechanisms limit the
diversity of vocabulary learned from the dictionary, thus giving
rise to low language-learning efficiency. To alleviate these gaps, in
this paper, we propose an end-to-end enhanced dense captioning
architecture, namely Enhanced Transformer Dense Captioner
(ETDC), which obtains textual context from surrounding regions
and dynamically diversifies the vocabulary bank during caption-
ing. Concretely, we first propose the Textual Context Module
(TCM), which is integrated into each self-attention layer of the
Transformer decoder, to capture the surrounding textual context.
Moreover, we take full advantage of the class information of
object context and propose a Dynamic Vocabulary Frequency
Histogram (DVFH) re-sampling strategy during training to
balance words with different frequencies. The proposed method
is tested on the standard dense captioning datasets and surpasses
the state-of-the-art methods in terms of mean Average Precision
(mAP).

Index Terms—Dense Captioning, Enhanced Transformer
Dense Captioner, Textual Context Module, Dynamic Vocabulary
Frequency Histogram

I. INTRODUCTION

Dense captioning originates from image captioning [1].

Rather than generating a single caption for the entire image,

dense captioning aims to detect objects in images and describe

them in natural language. Thanks to local region descriptors

that provide rich and dense semantic labeling of the visual

elements, dense captioning can benefit other tasks, including

visual question answering [2], image segmentation [3].

Most existing image captioning methods adopt an encoder-

decoder architecture, which was inspired by the successful

transfer of sequence to sequence training used for machine

translation [4] in earlier years. To be more specific, a Convo-

lutional Neural Network (CNN) acts as an encoder, extracting

features of a given image before the features are decoded

by a trainable Recurrent Neural Network (RNN). However,
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the resulting captioning algorithms based on simple encoder-

decoder frameworks do not prioritise the important parts of

feature maps. Therefore, many follow-up methods aim to

address this issue. Among them, [5] proposed aligned high-

level information while [6], [7] resorted to different forms of

attention to learn a group of weights to give more priorities

according to the importance of feature maps. On top of

attention mechanisms, further work has steered these advances

along two orthogonal directions to improve the overall per-

formance of image captioning. First, rapid progress of the

Transformer [8] framework in many computer vision research

fields, such as object detection [9], has helped to develop a

Transformer-based image captioner. For instance, [10] pro-

posed a Transformer-based structure with grid features to

alleviate the semantic noise in attention. Subsequently, [11]

proposed RSTNet to integrate spatial information to flatten

grid features and adaptive attention to bridge the gap between

non-visual signals and words. Second, recent advances in im-

age captioning have increased the diversity and distinctiveness

of the generated captions. [12] proposed a framework with

context-object split latent spaces to generate more diverse

captions for a given image while [13] proposed another metric

named CIDErBtw to supervise the training in order to increase

the distinctiveness between images with a similar theme.

In general, dense captioning is more challenging than image

captioning due to the higher requirement of attaining more

detailed and comprehensive descriptions of a given image.

[16] pioneered the dense captioning task and designed a Fully

Convolutional Localization Network (FCLN), constituting of

a detector to detect all the RoIs and a decoder to generate the

text descriptions of them one by one. Subsequently, many other

solutions were presented, which can be broadly categorized

into two classes: with or without the context encoded in their

architectures. At the early stage, the architecture adopted a

Faster R-CNN [17] to localize RoIs followed by caption-

ing them independently using a Long Short-Term Memory

(LSTM) module [18]. Such a pipeline processed the RoIs

independently but under-explored possible contextual infor-

mation that can be leveraged to improve training. To remedy

this situation, [19] integrated the RoI features with image

features. This can be regarded as a global context due to the

fusion before captioning via an LSTM decoder. However, this

global context seems too coarse, thus providing ambiguous

clues for the training. To overcome this shortcoming, there

have been several methods that explored fine-grained contexts.

For example, [15] proposed a non-local similarity graph to

mutually interact the target RoI with its neighboring RoIs.

Alternatively, with the support of data statistics, [14] made
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Fig. 1: Two examples of neglecting language context during

dense captioning from [14] and [15], respectively.

use of the close relationship between RoIs and detected objects

via object detection, which naturally considered the contextual

information in their architecture. Moreover, inspired by the

Transformer architecture, [20] proposed a Transformer-based

Dense Captioner (TDC), which also considered different im-

portance of each detected RoI by a Region-Object Correlation

Score Unit (ROCSU).

In spite of the limited overall success of the aforementioned

methods, developing dense captioning remains incomplete.

It is believed that several limitations still exist, in which

two of them are particularly critical. First of all, existing

methods [14] [15] [20] only take advantage of visual context to

guide the captioning process in their decoders but TOTALLY

overlook the importance of language context from the sur-

roundings of a detected RoI. In other words, the language

information of detected RoIs are processed independently

without any interactions, which is inefficient. It is likely to

cause some mistakes during caption inference. We demonstrate

this via two examples taken from the state-of-the-art methods

[20] in Fig. 1. Here, when captioning the last word for the

orange RoI in the middle, [14] merely leveraged the visual rep-

resentation of itself plus the previous embeddings of those pre-

dicted words (in this case ‘a’, ‘woman’, ‘holding’,‘a’,‘white’)

and the object context trained off line. Thus, they can only

guarantee a relatively good grammatical structure but fail to

refer to the correct object. This inefficient clue usage leads

to the mistake to caption ‘flag’ instead of the correct answer

‘frisbee’. In a similar situation, [15] only took advantage

of the visual representation of itself plus the same previous

embeddings and the visual features of surrounding RoIs. As

shown in Fig. 1b, when inferring the word after ‘green’ for

the orange box, only surrounding visual clues are added as a

clue. As a result, it writes the incorrect word ‘pepper’ instead

of ‘frosting’. However, it is believed that the language clues

from surrounding RoIs are always valuable, thus deserving

more attention. Take the same examples, if these two models

could look around to see the captioning words of the red

RoI in Fig. 1a ‘a white frisbee’, or the word ‘frosting’ in

the white and green boxes in Fig. 1b, it would significantly

help the word inference process, thus improving the accuracy

of generated captions. To alleviate this problem, we propose

a novel structure, termed Textual Context Module (TCM),

which can be integrated into each self-attention layer in the

Transformer decoder to selectively capture useful surrounding

textual context.

Secondly, previous methods unconsciously employed im-

balanced learning due to imbalanced training data. Hence, the

learned model tends to output descriptions with words that

appeared frequently in training samples only. The consequence

is that the diversity of vocabulary learned from the dictionary

is rather limited, thus leading to lower language-learning

efficiency. Without special treatment, the situation would not

be remedied. To demonstrate this issue, we run the context

as guidance (COCG) method [14] and noticed that only about

48.13% (940 out of 1953) of the words in the vocabulary

bank were learned and appeared in the test period, which

indicates both a low learning efficiency and low diversity of

test captions. In order to overcome this limitation, we take

full advantage of the class information of object context via

the extra words in the dictionary and propose a novel Dy-

namic Vocabulary Frequency Histogram (DVFH) re-sampling

strategy to re-balance words with different frequencies during

training.

To sum up, the major contributions of this work are four-

fold:

• We propose an enhanced end-to-end dense captioning

framework based on the Transformer, dubbed Enhanced

Transformer-based Dense Captioner (ETDC). A distinct

property of ETDC is characterized by taking into account

the surrounding textual context and providing more di-

verse textual words.

• A novel module, named Textual Context Module (TCM),

which can be integrated into each self-attention layer

in the Transformer, is proposed to select important and

useful textual context during word inference.

• We make full use of the class information of object

context as the extra words in the dictionary and pro-

pose a novel Dynamic Vocabulary Frequency Histogram

(DVFH) re-sampling strategy during training to balance

words with different frequencies such that the generated

captions can be more diverse.

• Extensive experimental results on different datasets show

the superiority of the proposed method against the state-

of-the-art methods by a wide margin in terms of mean

Average Precision (mAP).
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The rest of this paper is organized as follows: To begin

with, we review the prior works in Section II. Then, in

Section III, we present the proposed methodology and expound

on the details of ETDC. Extensive experimental results of

our proposed method are demonstrated in Section IV with

both qualitative and quantitative analysis. Finally, we draw a

conclusion and discuss future work in Section V.

II. RELATED WORK

A. Image Captioning

Most of the earlier work solved image captioning via

retrieval based methods, designing sets of templates in the

retrieval caption pools [21] with straightforward visual feature

encoders [6]. However, descriptions of the image to sentences

that already exist in the caption pools cannot associate with

new objects in all images of a dataset [21]. To remedy

this, with the successes of deep learning techniques and the

improvement of computer hardware, numerous deep learning

methods were proposed. Initially, [22] integrated the use of

image-text embedding model and multi-modal sentence gen-

eration models with a CNN as the encoder and an LSTM as the

decoder and [23] further proposed an reinforcement learning

framework. Nevertheless, these works did not consider the

spatial information which is crucial for comprehensive and

complete description generation during captioning. Therefore,

a series of follow-ups focused on the attainment of fine-grained

visual and sentence features. In [5], a fine-grained region

feature extractor from images was designed by an R-CNN

object detector [24] and it produced region-level captions for

the given image.

The initial encoder-decoder frameworks, described above,

treated each region with equal importance. Doing so fails to

focus on the more important part that can provide decisive

visual clues for captioning. To tackle this issue, different forms

of attention models have been proposed due to their plug-

and-play nature. [7] proposed a model on top of semantic

attention, which was composed of both top-down and bottom-

up attention. Moreover, [25] developed a framework with

two Graph Convolutional Networks (GCNs) to explore visual

relationships. Recently, the Transformer architecture [8] has

brought the advance of Natural Language Processing (NLP)

and found application in many computer vision tasks as

well. [26] firstly proposed a Transformer-based model for the

image captioning task by extracting a single global image

feature from the image as well as uniformly sampling features

by dividing the image into patches before the feature vectors

were input sequentially into the Transformer encoder [8].

Transformer-based solutions also concentrated on improving

some hidden properties. [10] brought in grid features to

coordinate with RoI features to reduce the semantic noise

in the attention mechanism of the Transformer architecture,

while [11] proposed RSTNet to integrate spatial information

to flatten grid features and adaptive attention to bridge the

gap between non-visual signals and words. On the other hand,

several prior arts made efforts to improve the diversity and

distinctiveness of the captions. [12] proposed context-object

split latent spaces to produce captions with more diversities

and [13] proposed a new evaluation metric called CIDErBtw

to supervise the training process in order to improve the

distinctiveness between different images with a similar theme.

B. Dense Captioning

To meet the requirement of achieving richer and more

detailed descriptions, dense captioning [16] was proposed as

a new task that requires an intelligent vision system to both

localize and describe multiple salient regions within an image

using natural language. Existing dense captioning algorithms

can be approximately categorized into two categories: caption-

ing with and without the guidance of contextual information.

1) Dense Captioning Without Context: [16] proposed a

framework, which is composed of a prototype of a Region

Proposal Network (RPN) in Faster R-CNN as an encoder and

an LSTM as a decoder. All the anchors are firstly represented

by features of the same size. They are then passed through

the RPN and a fully-connected layer to determine if they

are foreground (the descriptive region) or background. If an

anchor is recognized as foreground, it is named RoI with

its corresponding feature. At the same time, the bounding

box coordinates of these RoIs are also slightly adjusted via

regression. Finally, RoIs are described by an LSTM language

model.

2) Dense Captioning With Context: [19] was the first work

to add contextual information to guide the dense captioning

task, in spite of its high conceptual similarity to [16]. The

slight change of the framework lay in that the image feature

acted as the global context, and it was input into the caption

decoder with RoI features. Even though the added context

led to a better performance eventually, this kind of contextual

information is global and too coarse to encode fine-grained

context information as guidance information.

To capture more fine-grained and detailed context, several

subsequent attempts were presented. For example, [15] estab-

lished a non-local similarity graph to interact a target RoI

with its neighboring RoIs. In this scenario, the guidance is

the weighted sum of neighboring RoIs. Furthermore, [14]

argued that objects in images can provide valuable cues to

help locate RoIs and generate descriptions for them via data

statistics. Inspired by this, the authors brought in an off-

line object detector as guidance information to guide the

training of the model. To be specific, the entire algorithm is

essentially an encoding-decoding procedure. In the encoding

end, the representations of each contextual object fused with

its CNN feature and geometry features (relative coordinates)

are encoded one by one with a uniquely designed module,

termed guidance LSTM. Here, the guidance information is

composed of RoI features, which finally obtains the contextual

information denoted as ci. In addition, in the decoding end,

the authors attempted to deploy two kinds of caption decoder,

namely context as guidance (COCG) and context is decoded

with an LSTM (COCD). Although they both have a caption

LSTM for captioning as well as a location LSTM for the

adjustment of RoI bounding boxes, the main difference is their

respective frameworks to decode hidden states.

Moreover, inspired by Transformer architecture, [20] pro-

posed a Transformer-based Dense Captioner (TDC), in which
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Fig. 2: The proposed ETDC framework is made up of an RoI detector, a feature and context merge module, followed by our

Dynamic Vocabulary Frequency Histogram (DVFH), Transformer-based encoder and decoder with a novel Textual Context

Module (TCM) inside each decoder layer. Given an image, the RoI detector finds RoIs and the feature and context merge

module prepares contextual information generated via the pre-trained object detector for further use. Afterwards, the merged

feature with object class information is input into the DVFH for resampling to balance word frequency. Then, the encoder

encodes visual information using attention, which provides a visual representation. Finally, after the word embeddings are

conducted, visual representation and sentence information are decoded by the caption decoder that integrates language context

from surrounding RoIs with TCM to generate dense captions for each RoI.

different importance of each detected RoI was considered and

by a Region-Object Correlation Score Unit (ROCSU).

III. METHODOLOGY

The overall framework of our proposed ETDC is shown

in Fig. 2. Given an image, the Faster R-CNN based RoI

detector firstly detects RoIs that are to be described. These

are subsequently merged with visual object context from a

pre-trained object detector in an offline manner with image

features extracted from a pre-trained ResNet-152 network as

[20]. This merged visual representation is then input into the

proposed Dynamic Vocabulary Frequency Histogram (DVFH)

module for re-sampling with object class information. After

this, the re-sampled visual features are input into Transformer-

based encoder to capture the internal relationships. Together

with word embeddings and positional encodings they are

then input to the decoder, in which the integrated Textual

Context Module (TCM) identifies language context from the

surrounding RoIs, eventually predicting sentences for each

detected RoI.

In the following of this section, we will first generally

review Transformer architecture in the scenario of dense

captioning. After it, we explain our proposed Enhanced

Transformer-based Dense Captioner. Next, we will introduce

the deployment of our Textual Context Module. Then, we

will give details of our novel Dynamic Vocabulary Frequency

Histogram. Finally, we show our training and optimization

details.

A. Preliminary Review of Transformer in Dense Captioning

Scenario

Fig. 3 shows the structure of the Transformer [8] in

this dense captioning scenario. Generally, following encoder-

decoder framework, it consists of two parts, termly visual

encoder and caption decoder. The numbers of visual encoder

layers and caption decoder layers keep the same with each

other, denoted as L. (L = 2 in Fig. 3). The Transformer layer

setting is an empirical value. It is based on two aspects. On

one hand, dense captioning is a compound task, consisting of

two complex task: RoI localization and RoI captioning. We

found that many works on similar compound task empirically

adopted 2 as the Transformer layer number. For example, [27]

and [28] for dense video captioning, and [29] for pedestrian

search. Another reason for this number is that more Trans-

former layer stacks are likely to cause out of memory issue
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where the layer normalization is omitted.

because the compound tasks are often much heavier than

single computer vision tasks.

1) Visual encoder: To be specific, in the visual encoder,

visual features added with positional encoding (denoted as F )

are first fed in as the input. We adopt positional encoding (PE)

procedure in [8] with sin and cos functions.

It should be noted that PE operation only occurs at the

bottom of the multi-layer Transformer-based encoder and

decoder stacks. The dimension of PE is the same as the input,

so PE embedding can be added directly to the input. After the

visual features are added with PE, the output is denoted as

F , which is input into three linear projectors to attain three

different vectors Q, K, V . These three vectors are fed into the

visual encoder, the visual encoding procedure is given by:

V
(

F l
)

= ϕ(PF (ω(F l)), ω(F l));

ω(F l) =







ϕ(MA(f l
1, F

l, F l), f l
1)

...
ϕ(MA(f l

T , F
l, F l), f l

T )






;

ϕ(α, β) = LayerNorm(α+ β);

PF (γ) = M l
2 max(0,M l

1γ + bl1) + bl2,

(1)

where ϕ is layer normalization [30] on residual output, PF
represents the feed-forward layer which consists of two linear

layers with a nonlinear activation function in between. ω is

the output of assembled multi-head attention with a layer

normalization by ϕ. M l
1 and M l

2 are the weights trained for

the feed-forward layers, and bl1 and bl2 are bias vectors. F l is

the input of the lth encoding layer. f l
t is given as the query to

the encoding layer and l is the lth encoding layer. Note that

F 0 is the aforementioned visual feature F added by positional

encodings. MA is a fine-grained component called multi-head

attention, which is composed of H parallel partial dot-product

attention components. Its realization is as follows:

MA(qi,K, V ) = concat(h1, h2, ..., hH)WO,

hj = A(W q
j qi,W

K
j K,WV

j V ),
(2)

where {hj |j ∈ [1, H]} refer to the index of each independent

head. W q
j , WK

j , WV
j denote the linear linear projectors to the

input q, K, V for hj . WO is the weight matrix for each head.

It is noted that when the query comes from the decoder layer,

and both the keys and values are from the encoder layer, it

represents cross-module attention. In contrast, if the queries,

keys, and values are all from encoder or decoder, this kind of

multi-head attention is named self-attention. A is the scaled

dot-product attention operation realized by the equation below.

A(qi,K, V ) = V
exp (KT qi/

√
d)

∑T

t=1 exp (k
T
t qi/

√
d)

, (3)

where qi ∈ Rd is a query in all T queries that composes qi,
a group of keys kt ∈ Rd and values vt ∈ Rd, where

t = 1, 2, ..., T , the output of dot-product attention is the

weighted sum of the vt values. The weights are determined

by the dot-products of query qi and keys kt. Specifically, kt
and vt are placed into respective matrices K = (k1, ..., kT )
and V = (v1, ..., vT ) [31]. d is the dimension of qi and

√
d is

to normalize the dot-product value.

In the end, with the output of l encoding layers, the encoded

visual features, F l, as a part of the input, is fed into the caption

decoder.

2) Caption Decoder: The caption decoder, which is made

up of L decoding layers, is formulated as follows:

Sl+1
≤t = ϕ(PF (ω(Sl

≤t)), ω(S
l
≤t));

ω(Sl
≤t) =





ϕ(MA((δ(Sl
≤t)1), F

l, F l), δ(Sl
≤t)1)

...
ϕ(MA((δ(Sl

≤t)t), F
l, F l), δ(Sl

≤t)t)



 ;

δ(Sl
≤t) =





ϕ(MA(sl1, S
l, Sl), sl1)

...
ϕ(MA(slt, S

l, Sl), slt)



 ;

p(wt+1|F 0, SL
≤t) = softmax(WV S

L
t+1),

(4)

where s0i , i = 1...t stands for a word token with an embedding

dimension demb. WV ∈ RVs×demb is the word embedding re-

sult for the whole vocabulary bank, where Vs is the vocabulary

size. Sl
≤t = (sl1, ..., s

l
t) is the predicted words before time step

t+ 1. wt+1 is the probability of each word in the vocabulary

bank at time step t + 1. δ is the cross-module attention

that attends the current representation of word embedding to

the visual representation F l from the corresponding layer of

the visual encoder. ϕ represents the self-attention part in the

decoder. However, different from the encoder, its inputs are

words. The multi-head attention mechanism of δ and ϕ MA is

same with Eq. 2 and Eq. 3 whereas their inputs are different.

It is noted that the restriction of time step means that the

attention is only on the already generated words.

B. Enhanced Transformer-based Dense Captioner

In this section, we introduce our novel Enhanced

Transformer-based Dense Captioner. Given an image from

an image set I = {I1, I2, ...IN}, our target is to detect an

RoI set, denoted as R = {r1, r2, ...rM} and then describe

each of them with a corresponding sentence set defined as

S = {s1, s2, ...sM}. To this end, our proposed ETDC is made
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up of five components, namely RoI detector, feature-context

merge module, dynamic vocabulary frequency histogram, vi-

sual encoder, and caption decoder. We will elaborate other four

parts in this section except for dynamic vocabulary frequency

histogram module in Section III-D.

1) RoI detector: We adopt the Region Proposal Network

(RPN) [32] as our RoI detector. It is trained in an end-to-end

manner, together with the captioning task, to identify whether

a region proposal is an RoI to be described. It is noted that

our framework does not only use RoI features from RPN, but

integrates RoI features with contextual information as intro-

duced in the next section. Specifically, we use a configuration

similar to [14], however, we replace its backbone structure

VGG16 [33] like [20] with a Resnet-101 due to its superior

shortcut structure [34]. In this way, given an image in I , we

obtain the RoI set R = {r1, r2, ...rM} and its corresponding

RoI feature set, denoted as RF = {rf1, rf2, ...rfM}.

2) Feature-context merge module: Discussed in [14], the

descriptions of RoIs have a very close relationship with the

objects detected in the image. Therefore, the prior knowledge,

i.e. object detection, can provide useful aids as contextual

information for dense captioning. Inspired by this and to obtain

such prior knowledge, we pre-trained a Faster R-CNN object

detection network on the MS COCO dataset [35] with the same

operation as [14] and [20]. This is used to create contextual

information and get a fair comparison. This way enables

us to obtain a set of bounding box coordinates of detected

objects Bobj = {b1, b2, ...bobjN } with their confidence scores

confobj = {conf1, conf2, ...confobjN } and object features

of = {of1, of2, ...ofobjN } . To get features of each bounding

box, we extract bounding box and image features with a

pre-trained ResNet-152 network because the deeper neural

network can capture more local features and it is more suitable

for local bounding boxes. We denote corresponding bounding

box features as B = {bf1, bf2, ...bfobjN }. To simultaneously

provide global features, the image features are extracted by

the same pre-trained ResNet-152 network and are defined

as Imgf = {Imgf1, Imgf2, ...ImgfN}. We also get the

geometry information of each object bounding box, namely

G = {g1, g2, ...gobjN }. Same as [14], gi, i ∈ [1, objN ]
is the corresponding coordinate and size ratios of bi. We

only add up class information ahead denoted as cls =
{cls1, cls2, ...clsobjN }.

With the aforementioned visual features constituting pre-

pared context and RoI information, it is the role of the feature-

context merge module to merge them. We concatenate B with

G to get the potential context for each RoI as BG, then it is

allocated to each RoI and thus we get a context matrix denoted

as C ∈ RM×objN×(dF+dG), dF and dG are the dimensions of

features and geometry information. Because of the different

dimensions of object features and RoI features, to align with

the image and RoI features and fuse the context information,

a linear mapping from RdF+dG to Rd is generated as follows:

Calign = WcC+ b, (5)

where Wc and b are weight and bias, which can be learned

in the linear layer for alignment. After we attain Calign, we

incorporate it with expanded image feature of a given image Ii,

Imgfi and RoI feature Rfi. Finally, we get the visual features

F 0 = (f0
1 , ...f

0
T ) ∈ RM×T×d, T = 2 + objN as the input of

our visual encoder.

3) Visual Encoder and Caption Decoder: Our visual en-

coder and caption decoder are based on the Transformer

architecture in [8]. We also applied the Multi-Head mechanism

into our architecture as shown in the last section. Given the

merged visual features F ′0 = (f ′0
1 , ...f ′0

T ), which is the re-

sampled visual feature from DVFH (will introduce in III-D),

the visual encoder tries to learn a best mapping from F ′0

to V = (v1, v2, ...vL) via attention mechanism, where the

subscript is the index of the encoding layer and L is the

total layer of the visual encoder. Similar to the visual encoder,

the caption decoder first takes the word embeddings denoted

as E = {e1, e2, ...eM} ∈ RM×Len×demb , where M is the

RoI number, Len is the length of sentences, and demb is

the embedding dimension, and feeds it to masked multi-head

attention layer in which an upper triangular mask is used to

avoid the exposure of the word information at the inference

time stamp and onwards. After this masked multi-head layer,

the output is sent to our proposed TCM (discussed in III-C) to

gain language context from surrounding RoIs, the output size

of the TCM is the same as E. Finally, the output of TCM and

the corresponding layer visual feature from V are fed into the

cross-module attention module to gain multi-modality features

as hidden states to generate sentences for RoIs.

C. Textual Context Module

In this section, we demonstrate our novel Textual Context

Module. The main idea of this module is to capture the

language context from surrounding RoIs detected. The inputs

of the masked multi-head attention are the word embeddings

in the shape of M × Nwords × demb, where M is the RoI

number, Nwords is the fixed word number, and demb is

the word embedding size. Traditional Transformer masked

multi-head takes different word embeddings in sentences and

deploys a masked self-attention operation to avoid cheating

(the machine should NOT encode the word information at

the inference time step and onward) according to Eq. 4. The

machine can only refer to the word information before the

inference time step and the unavailable information is blocked

by an upper triangular matrix [8]. After this masked multi-

head attention, the output feature is directly sent to cross-

module attention to interact with visual features. However,

due to the batch-processing mechanism of the Transformer,

the attention operation is targeted on the last two dimensions.

And a word can only attend to the words before the time

step of its corresponding RoI. This limits the horizon of word

inference. Therefore, after the output of multi-head masked

attention, TCM is proposed to alleviate it. The whole process

is given by following steps:
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…
N words

Input: word embeddings output
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(a) The traditional masked multi-head attention (example of one head)
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(b) Our proposed Textual Context Module.

Fig. 4: The comparison of traditional masked multi-head attention and our proposed Textual Context Module.

Sl+1
≤t = ϕ(PF (ω(Y l

≤t)), ω(Y
l
≤t));

ω(Y l
≤t) =





ϕ(MA(((Y l
≤t)1), F

l, F l)), (Y l
≤t)1)

...
ϕ(MA(((Y l

≤t)t), F
l, F l), ((Y l

≤t)t)



 ;

Y l
≤t =





TCM((δ(Sl
≤t)1)

...
TCM((δ(Sl

≤t)t))



 ;

δ(Sl
≤t) =





ϕ(MA(sl1, S
l, Sl), sl1)

...
ϕ(MA(slt, S

l, Sl), slt)



 ;

p(wt+1|F 0, SL
≤t) = softmax(WV S

L
t+1),

(6)

where δ(Sl
≤t) is the input and Y l

≤t is the output of TCM

layer, both ∈ RM×Len×demb . Other symbols and operations

are the same with Eq. 4 except TCM representing the

operation of our TCM layer. Its implementation is as follows:

TCM(Sl
≤t) = MA







δ(Sl
≤t)1

T

...

δ(Sl
≤t)t

T







T

(7)

Specifically, δ(Sl
≤t) is firstly transposed. We swap the

dimension of M and Nwords of the output of the multi-

head masked attention, thus turning the size of δ(Sl
≤t) to

RNwords×M×demb . Latterly, a multi-head self-attention op-

eration is implemented on the dimension of M and demb

according to Eq. 2 to attend the textual information from

other surrounding RoIs. After this multi-head self-attention,

finally, we resize the shape to the original size again to

RM×Nwords×demb so that it can be further input into the cross-

module attention as shown in Eq. 6. In this way, each word

feature successfully encodes information from the language

information of other paralleled RoIs. For example, the feature

of nth word of RoIM comes from the word feature of first to

(n− 1)th word feature of RoI1 to RoIM not only feature of

first to (n − 1)th word feature of RoIM any more and thus

enlarging its vision during word inference.

D. Dynamic Vocabulary Frequency Histogram

In this section, we introduce our proposed component Dy-

namic Vocabulary Frequency Histogram and corresponding re-

sampling strategy. We design DVFH to dynamically record the

used frequency of words in the dictionary during training. The

main idea of this memory module is to fully take advantage

of object context and class information to relatively increase

the number of training samples with infrequently-used words.

The inputs of DVFH are the merged feature class information

previously denoted as cls = {cls1, cls2, ...clsobjN }, object

features ofobj = {of1, of2, ...ofobjN } associated with their

confidence scores confobj = {conf1, conf2, ...confobjN },

the merged visual features F 0 = (f0
1 , ...f

0
T ) ∈ RM×T×d

that concatenate Imgf = {Imgf1, Imgf2, ...ImgfN}, R =
{r1, r2, ...rM} the object context Calign in III-B and the

corresponding sentence set defined as S = {s1, s2, ...sM} for

each detected RoI.

At each training iteration, firstly, all the sentences of de-

tected RoIs are marked as frequently-used or infrequently-

used RoIs by our designed function dubbed DV FHRoI given

ri ∈ R = {r1, r2, ...rM}, as follows:

DV FHRoI(ri) =

{

1 if 1
Nword

∑

j

log fij
logFmax

≤ logFm

logFmax

0 otherwise
,

(8)

where Nword is the total word number of si, and j is the

word index of si, fij is the up-to-the-minute word frequency

of the jth word of si in the DVFH. Fmax is the biggest

word frequency in the DVFH vocabulary bank, denoted as

DV FB and Fm is the median frequency in DV FB. If

DV FHRoI(ri) is 1, ri is an infrequently-used RoI; otherwise,

it is a frequently-used RoI. Moreover, similar to RoIs, all the

detected objects are marked as frequently-used or infrequently-

used objects by our designed function DV FHobj given obji,
its confidence confi, and its class clsi , as follows:

DV FHobj(obji) =

{

1 if 1
Ncls×confi

∑

k

log fo
ij

logFmax
≤ logFm

logFmax

0 otherwise
,

(9)

where Ncls is the total word number of the class label of

obji. confi is the detection confidence score of obji, and k
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is the word index of clsi, fo
ik is the up-to-the-minute word

frequency of the kth word of the class label in DV FB. Fmax

and Fm are the same as in Eq. 8. If DV FHobj value is 1, obji
is an infrequently-used object and a frequently-used object if

DV FHobj value is 0.

According to Eq. 8 and Eq. 9, we can gain a list

of infrequently-used objects and a list of frequently-used

RoIs. We then randomly replace frequently-used RoIs with

infrequently-used objects. Specifically, given rm in the list

of frequently-used RoIs and objn in the list of infrequently-

used object information. The corresponding feature ofobjn is

leveraged to replace rfm concatenated in F 0 = (f0
1 , ...f

0
T ).

Finally, the corresponding sentence of rm, sm, is replaced by

the index of clsn in the dictionary, and thus getting the re-

sampled visual feature F ′0 = (f ′0
1 , ...f ′0

T ) and corresponding

sentence batch S′ = {s′1, s′2, ...s′M} . In the end of each

training step, DV FB is updated by adding the word frequency

of the words appears in S′ into itself.

E. Training and Optimization Details

In this section, we show our training and optimization de-

tails. In order to enforce both the localization of detected RoIs

and descriptive captions to be as close as training examples

in an end-to-end manner, multiple loss function items are

leveraged during the Stochastic Gradient Descent [36] (SGD)

at each training step in a training batch as follows:

L = Lcls + Lreg + Lcaption, (10)

where Lcls is the classification binary cross entropy loss

function of Faster R-CNN RPN [17] for RoI detection, Lreg

is the smooth l1 loss [37] for coordinate regression of the

location of detected RoIs. It is notable that Lcaption is the cross

entropy loss of P = {p(wi|F 0; θ), i ∈ [1,max], which is the

probability distribution of descriptive sentences for RoIs in the

RoI batch, and their groundtruth sentences word by word.

IV. EXPERIMENT

In this section, we report and discuss the experiments

conducted on three public datasets in order to evaluate the

performance of our proposed dense captioning method.

A. Datasets and Evaluation Metrics

We adopt the Visual Genome dataset (VG) [38] and the VG-

COCO dataset [14], which is the intersection of VG V1.2 and

MS COCO [35], as the evaluation benchmarks. The selection

of datasets is the same as the state-of-the-art methods [14],

[15] to attain a fair comparison with them. The detailed

descriptions of each dataset, as well as the main evaluation

metrics, are elaborated below:

1) Visual Genome (VG): For fair comparisons, we also

conduct our experiments on VG V1.0 and VG V1.2, which are

same with the state-of-the-art methods. The training, validation

and test splits are chosen similarly as [14]–[16]. There are

77,398 images in the training split and 5,000 images in

validation and test split, respectively.
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Fig. 5: Average precision with different Meteor scores and

different IoU thresholds on the VG-COCO dataset.

2) VG-COCO: As elaborated in [14], the target bounding

boxes of VG V1.0 and VG V1.2 are much denser than the

bounding boxes in other object detection benchmark datasets

such as MS COCO and ImageNet [39]. To achieve proper

object bounding boxes and caption region bounding boxes for

each image, following the configuration in [14], the intersec-

tion set of VG V1.2 and MS COCO is used in our paper, which

is denoted as VG-COCO in which there are 38,080 images for

training, 2,489 images for validation and 2,476 for testing.

3) Evaluation Metrics: For evaluation, to comply with eval-

uation metrics of the state-of-the-art methods, we use the same

metric as in [14]–[16], [20] called mean Average Precision

(mAP). It measures the precision of both localizations and cap-

tions of RoIs. Following the threshold configurations in [16],

average precision is computed with combinations of different

IoU thresholds (0.3, 0.4, 0.5, 0.6, 0.7) for the evaluation of RoI

locations and different Meteor [40] thresholds (0, 0.05, 0.10,

0.15, 0.20, 0.25) for the evaluation of language similarity with

the ground truth. With each group of thresholds, the Average

Precision (AP) can be calculated. Finally, the mean value of

these APs is the mAP score. For each test image, top boxes

with high confidence after non-maximum suppression [41]

(NMS) with an IoU threshold of 0.7 are generated. In the

end, the results are generated by the second round of NMS

under the IoU threshold of 0.5.

B. Implementation Details

These experiments are carried out on an NVIDIA GTX 2080
Ti GPU with a memory of 11GM. For the proposed method,

all the image features, RoI features, and object bounding box

features have a dimension of 2048. The image batch size is set

to 1, the detected RoI batch size in a training step is 32, and

the maximum iteration is 1 m on the VG-COCO dataset, and

2m on VG V1.0 and VG V1.2 datasets. The initial learning

rate is 0.001 and the decrease factor is 0.1 at the steps of

480k, 640k, 800k on VG-COCO, and 1.2m, 1.5m, 1.8m on
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TABLE I: The mAP (%) performance of dense captioning

algorithms on VG-COCO dataset

Method mAP(%)

FCLN [16] 4.23

JIVC [19] 7.85

Max Pooling [14] 7.86

COCD [14] 7.92

COCG [14] 8.90

ImgG [14] 7.81

COCG-LocSiz [14] 8.76

COCG&GT [14] 9.79

TDC+ROCSU [20] 11.58

ETDC(VGG16) 12.28

ETDC+TCM+DVFH 14.30

VG V1.0 and VG V1.2. The momentum factor is set to 0.9,

and weight decay is 0.0005.

Furthermore, the RoI detector and object detector are trained

separately. The RPN based RoI detector is trained in an

online manner as a part of the whole architecture, whilst the

object detection network is pre-trained offline. They cannot

be trained jointly because they are designed for different

tasks. Specifically, RPN is trained for selecting potential RoIs,

which is a binary classification and regression problem. While,

the object detector is used to provide more comprehensive

contextual information to guide the entire dense captioning

framework.

C. Quantitative Results and Analysis

In this section, we first display quantitative results and

discussions on VG-COCO, VG V1.0 and VG1.2 respectively.

Then, we show the effectiveness of our proposed components

TCM and DFVH through ablation studies.

1) Results and analysis on VG-COCO Dataset: On the VG-

COCO dataset, we conduct extensive experiments to compare

our ETDC+TCM+DVFH approach and other baseline methods

as shown in Table I. We can make an obvious observation of

a significant improvement in mAP for ETDC+TCM+DVGH,

reaching 14.30%. Our proposed method yields a 2.72 gain of

mAP against the TDC+ROCSU method in [20]. Also, com-

pared with the state-of-the-art LSTM method, i.e. COCG, the

mAP of ETDC+TCM+DVFH method increases dramatically

by more than 60%. Specifically, to conduct fair comparison

with state-of-the-art methods in [14], we also implement our

ETDC+TCM+DVFH method under VGG16 backbone, which

is the same with [14], denoted as ETDC(VGG16). It can be

easily observed that due to the lack of shortcut in ResNet-101 ,

the quality of visual features dropped, thus causing a slight de-

crease of mAP (12.28%). However, it still outperforms COCG

by 38% and COCG with groundtruth by 25.4%. The better

performance of our method against other methods is even

more obvious, with the mAP reaching more than three times

of the FCLN method. The results demonstrate the superiority

of ETDC+TCM+DVFH, which stems from the broadened

horizon from TCM during decoding and the DVFH, which

resampled infrequently-used training sentences to diversify

the captioning training. It should be noted that even against

ground truth localization of each RoI plus the state-of-the-art

TABLE II: The mAP (%) performance of dense captioning

algorithms on VG V1.0 dataset and VG V1.2 dataset

Method VG V1.0 mAP(%) VG V1.2 mAP(%)

FCLN [16] 5.39 5.16

JIVC [19] 9.31 9.96

ImgG [14] 9.25 9.68

COCD [14] 9.36 9.75

COCG [14] 9.82 10.39

CAG-Net [15] 10.51 —

ETDC(VGG16) 11.31 10.60

TDC+ROCSU [20] 11.49 11.90

ETDC+TCM+DVFH 13.24 12.60

method COCG denoted as COCG&GT, ETDC+TCM+DVGH

still outperforms it by a 46.07% mAP increase.

2) Results and analysis on VG V1.0 and VG V1.2 Dataset:

ETDC+TCM+DVFH is also evaluated on the VG V1.0 dataset.

The mAP results are shown in the second column of Table

II. It can be seen that ETDC+TCM+DVFH achieves an mAP

of 13.24 and also outperforms all sorts of prior works by a

significant margin on this dataset. To be specific, our method

significantly outperforms TDC+ROCSU [20] by 15.23% and

the COCG method [14] by around 30%. Furthermore, the

comparison with CAG-Net in [7] also shows the superior-

ity of ETDC+TCM+DVFH, with 2.73 mAP improvement,

which is, to a large extent, due to the TCM module in

ETDC+TCM+DVFH that can supply a broad vision with the

help of textual context from other neighboring RoIs during

captioning. Moreover, DVFH can balance the frequently-used

words and infrequently-used words, thus yielding the afore-

mentioned better result. In addition, due to the replacement of

the VGG16 backbone without the shortcut structure in ResNet-

101, the performance of our proposed ETDC(VGG16) reduces

to 11.31. It is slightly lower than TDC+ROCSU method

(11.49) with ResNet-101 backbone. However, it still surpasses

the counterpart COCG method by over 15%. It is noticeable

that on VG V1.0, the performance gap between our proposed

method and the state-of-the-art methods is smaller than VG-

COCO. This is possibly because VG V1.0 is much bigger than

VG-COCO, thus containing more images with complex scenes

and captions, which is more difficult to caption even with the

guidance of DVFH and TCM.

We also evaluate our ETDC+TCM+DVFH approach on the

VG V1.2 dataset. The mAP results are shown in the third

column of Table II. It can be observed that the proposed

method ETDC+TCM+DVFH obtains a relative gain of 0.7

and 2.21 against TDC+ROCSU method (11.90) and COCG

method (10.39) on VG V1.2 with an mAP of 12.60. It is worth

noting that the mAP achieved by our ETDC+TCM+DVFH

is more than twice the mAP of the FCLN method, which

again shows the effectiveness of TCM and DVFH. Moreover,

due to the missing shortcut structure in VGG16 network, the

mAP of ETDC(VGG16) on the VG V1.2 drops to 10.60, but

still outperforms COCG method (10.39). It is also observed

that on VG V1.2, similar to VG V1.0, the advantage of the

proposed method decreases a little. This is as a result of similar

data distributions of VG V1.0 and VG V1.2 (same image set,

with slightly different corresponding captions), thus leading
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TABLE III: The mAP (%) performance of ablation studies on

VG-COCO Dataset

DVFH module TCM module mAP(%)

✗ ✗ 11.47
✗ ✓ 13.44
✓ ✗ 13.64

SVFB ✓ 13.98
✓ ✓ 14.30

to more images with complex scenes and captions, which is

more difficult to caption even with the guidance of DVFH and

TCM.

3) AP values comparison with different threshold combi-

nations: Fig. 5 shows the comparisons of average precision

between the COCG method in [14] and ETDC+TCM+DVFH.

It is easily observed that our proposed method outperforms the

COCG method under every group of threshold combinations

due to the extra guidance information by the TCM module

and the balanced training data from the DVFH re-sampling

module. In addition, with small threshold combinations, our

ETDC+TCM+DVFH method achieves a significant improve-

ment whereas the improvement shrinks with the increase of

threshold combination. This is mainly because of the compli-

cated scenes of this task, thus causing the diversity of potential

descriptive ways for a given RoI. However, even though the

machine can learn a correct sentence with key information

subjectively, it may not literally ensemble the ground truth

due to the interference of other samples with similar scenes.

Therefore, it may still gain a low objective Meteor score.

4) Ablation Studies: To validate the impact of our proposed

ETCM module and DVFH module, we also conduct a wide

range of ablation studies. We begin with the very basic model

which only maintains ETDC without any modification denoted

as the ETDC method. Furthermore, we subsequently show

results with the TCM module added to ETDC, denoted as

ETDC+TCM. Finally, we integrate the TCM module and

DVFH module denoted as ETDC+TCM+DVFH. The results of

the ablation studies are shown in Table III. A significant metric

increase from 11.47% (ETDC only) to 13.44% by almost

2% is seen when the TCM module is added due to more

language context clues absorbed, leading to a broader horizon

during captioning. In contrast, the mAP rises to 13.64% (a rise

of 2.17%) when only the DVFH is used. The improvement

of the metric comes from the alleviation of the unbalanced

usage of the words in the dictionary by DVFH. There is a

further 0.86% improvement in mAP with the DVFH module

integrated, which originates from more balanced training and

diverse training samples via re-sampling. To better clarify

why ETDC+TCM+DVFH can achieve better dense captioning

ability, we also show an example and analyze the reason in

depth in the next section.

To validate the impact of our proposed ETCM module and

DVFH module, we also conduct a wide range of ablation stud-

ies. We begin with the very basic model which only maintains

ETDC without any modification denoted as the ETDC method.

Furthermore, we subsequently show results with the TCM

module added to ETDC, denoted as ETDC+TCM. Finally,

we integrate the TCM module and DVFH module denoted as

ETDC+TCM+DVFH. The results of the ablation studies are

shown in Table III. A significant metric increase from 11.47%

(ETDC only) to 13.44% by almost 2% is seen when the TCM

module is added due to more language context clues absorbed,

leading to a broader horizon during captioning. There is a

further 0.86% improvement in mAP with the DVFH module

integrated, which originates from more balanced training and

diverse training samples via re-sampling. To better clarify

why ETDC+TCM+DVFH can achieve better dense captioning

ability, we also show an example and analyze the reason in

depth in the next section.

To further validate the effectiveness of the DVFH module,

we additionally propose a Static Vocabulary Frequency His-

togram (SVFH) module with a static vocabulary frequency

bank, denoted as SVFB. To build up SVFB, we simply calcu-

late the frequency of every word in the groudtruth captions in

the whole training set, which is formulated as follows:

SV FHRoI(ri) =

{

1 if 1
Nword

∑

j

log fs
ij

logF s
max

≤ logF s
m

logF s
max

0 otherwise
,

(11)

where Nword is the total word number of si, and j is the

word index of si, fij is the word frequency of the jth word

of si in the SVFB, which consists of all the words in the

dataset and their frequencies. F s
max is the maximum word

frequency in SVFB and F s
m is the median frequency in the

SVFB. If SV FHRoI value is 1, ri is an infrequently-used RoI

and a frequently-used RoI if SV FHRoI value is 0. Moreover,

similar to RoIs, all the a detected objects are marked as

frequently-used or infrequently-used objects by our designed

function SV FHobj given obji, its confidence confi, and its

class clsi , as follows:

SV FHobj(obji) =

{

1 if 1
Ncls×confi

∑

k

log fo
ik

logF s
max

≤ logF s
m

logF s
max

0 otherwise
(12)

where Ncls is the total word number of the class label of

obji. confi is the detection confidence of obji, and k is the

word index of clsi, f
o
ik is the up-to-the-minute word frequency

of the kth word of the class label in the SVFH. F s
max and

F s
m are the same as in Eq. 11. If SV FHobj value is 1, obji

is an infrequently-used object and a frequently-used object if

SV FHobj value is 0. Note that since the SVFH is static and

all the word frequencies are calculated before the training, it

means no update during the training stage.

According to the experimental results in Table III, when

SVFH is used in conjunction with the ETDC and TCM

modules, the mAP performance rises from 11.47% to 13.98%,

but is still inferior to our proposed ETDC+TCM+DVFH. This

is because in DVFH, the vocabulary histogram is dynamic

and it is adaptive in accordance to the ongoing training

process, whereas in SVFH, it reuses the same pre-defined

static vocabulary frequency histogram at each training step.

However, at each training step, the RoI training samples are

selected randomly. As a result of this, the SVFH only reflects

the distribution of word frequency distribution of the whole
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dataset, not the sampled data distribution. Therefore, it can’t

resample and balance the infrequently-used words effectively.

D. Qualitative Results and Analysis

In this section, we demonstrate qualitative results

and analysis to gain the subjective evaluation of our

ETDC+TCM+DFVH method. In the first subsection, we

present two examples from the VG-COCO and VG V1.0

datasets via the visualisation of all RoIs and their descriptions.

In the second subsection, we present the qualitative results of

ablation studies, which is the comparative result between our

proposed ETDC+TCM+DFVH method and ETDC method.

Thirdly, we also make a comparison of ETDC+TCM+DFVH,

the state-of-the-art method COCG, and the corresponding

ground truth provided. Finally, to explore the performance

yielded by TCM in depth, we recreated the captioning steps

of a given RoI and the corresponding TCM attention weights

on the texts of other surrounding RoIs.

1) Visual examples of dense captioning by

ETDC+TCM+DFVH: Two examples of dense captioning

results by ETDC+TCM+DVFH method are shown in Fig.

6. The example in Fig. 6a is from VG-COCO dataset and

another example in Fig. 6b is from VG V1.0 dataset. From

these visualization samples, we can clearly observe the decent

quality of RoI localizations and RoI captions attained by our

proposed ETDC+TCM+DVFH. To start with, it is obvious

that our proposed model is able to have a good command

of the correct grammar. A large majority of the generated

sentences are readable, following the correct plain English

grammar and complying with the human understanding.

This stems from the guidance of TCM, which is capable of

providing language context clues that are from surrounding

RoIs when captioning a given RoI.

Furthermore, it is clear that the proposed method is profi-

cient with some commonly used means of description, e.g.,

in the first example. Here, the structure is correctly used

three times with correct grammar, and therefore, creating more

informative captions with the aid of the TCM module. It can

oversee the words of the surrounding context that includes

different entities, thus bridging multiple entities together by

properly using a with structure.

Finally, ETDC+TCM+DVFH method can adapt to different

scenes, no matter whether it is an indoor scene as in Fig.

6a with multiple persons or an outdoor scene with objects

as in Fig. 6b. This is because of the re-sampling mecha-

nism of DVFH, which can balance the infrequently-used and

frequently-used words in the training samples. Therefore, more

infrequently-used words can be exposed more frequently in

the training samples, and it is more adaptive to diverse scenes.

Specifically, the model successfully describes ‘radiator’ (in the

black RoI box), ‘couch’ (in the red RoI box) in Fig. 6a, and

‘gas’ in Fig. 6b as a result of the aforementioned mechanism.

2) Ablation studies: To analyze the experimental results

of ETDC+TCM+DVFH and ETDC in depth, in this section,

we discuss the importance of each part of our contributions,

e.g., TCM and DVFH separately. To be specific, we pro-

vide the top-10 results sorted by RoI confidence of both

ETDC+TCM+DVFH and ETDC approaches in the same im-

age from VG-COCO as shown in Fig. 7 although we have

given quantitative analysis in the last section.

Fig. 7 shows the comparative visualization results between

our proposed ETDC+TCM+DVFH method and the method

only keeps ETDC but removes TCM and DVFH. We choose

the top-10 results according to the confidence scores of RoIs.

Generally, the ETDC+TCM+DVFH can create more accurate

details and interactions between different entities inside the

given image. Firstly, three green boxes show the different

extents of interactions with other RoIs. For example, the ETDC

method only generates ‘blue and white helmet’ without any

link with the man whereas the ETDC+TCM+DVFH method

can identify the connection with the man by generating ‘a man

wearing a helmet’, which is more well-rounded. This is due

to the TCM module that can help the model to attend to the

words from other RoIs (e.g. the blue one with a caption ‘man

wearing green jacket’ can provide additional language clues

for captioning). In addition, from the orange boxes in two

graphs, we can see the ETDC+TCM+DVFH method is more

capable of creating generalized and precise description that

reveals the theme of the image whilst ETDC can only focus

on the local description outputting captions including only two

people due to the lack of language interactions of different

RoIs. Last but not least, ETDC tends to commit a mistake if

the appearance of an entity is quite similar to an alternative

thing: In Fig. 7b, the model incorrectly outputs ‘skateboard’

instead of ‘snowboard’. This is because ‘snowboard’ is an

infrequently-used word in the dictionary and the training

for using this word is inadequate while TDC+TCM+DVFH

can gain extra experience of using this word by DVFH re-

sampling, thus giving a satisfying result.

3) Comparative results with COCG method and ground

truth: Fig. 8 shows some comparative qualitative results of

our ETDC+TCM+DVFH method, the state-of-the-art method

COCG and the ground truth as a reference to measure their

performances. It is clear that the ETDC+TCM+DVFH method

attains better performance in both localisation and description

of RoIs due to higher IoUs and Meteor scores shown in the

graph. It should be noted that ETDC+TCM+DVFH is likely to

outperform the COCG method by a large margin in terms of

Meteor language score. Both of our proposed modules TCM

and DVFH contribute to this. On one hand, TCM can bring

a wider vision during the captioning process of each word in

a given RoI by interacting the attention feature with textual

context from its surrounding RoIs. For instance, in Fig. 8a, the

ETDC+TCM+DVFH method benefits from TCM, thus taking

advantage of the textual context of other RoIs and attaining

precise caption starts with two men. On the contrary, COCG

method can only deduce the caption by visual contextual

information and the previous captioned own texts of the given

RoI, leading to a relatively bad result. Furthermore, DVFH also

gives rise to the better captioning result by the re-sampling

mechanism that balances the word frequency in training. For

example, in Fig. 8b, since ‘pine’ is an infrequently-used word,

without DVFH, COCG cannot think of it in this given scene,

let alone captioning this RoI in a better way with this word.

As a result, it can only use a frequently-used word ‘trees’
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a man 

with long 

hair a man wearing a striped 

shirt

pictures on the walla poster on the wall

a white 

radiator

books on a shelf

man with 

glasses

three people sitting on a couch

a man 

wearing a 

plaid shirt
table with 

books

(a) Dense captioning example from VG-COCO.

trees in the background

the plane has a yellow

wing

the grass is green

trees are behind a plane

grass is growing on 

the ground 

a plane is flying

the gas is 

white

the wing of the plane

(b) Dense captioning example from VG V1.0.

Fig. 6: Two examples of detected RoIs and their captions by ETDC+TCM+DVFH.

three people are skiing

the snow on the ground
snowboard on the ground

man wearing a black hat
a man wearing a hat

snowboard is black 

a green jacket on 

a man
a black jacket 

on a man

a brown winter 

jacket on a 

man

a man wearing a helmet

(a) The visualization results of ETDC+TCM+DVFH method.

two people are in the snow

the snow is white

man wearing a black hat
blue and white 

ski helmet

blue and black ski 

helmet

a black 

jacket 

man wearing a 

green jacket

a skateboard on the ground

the snowboard is white 

two people on a snowboard

(b) The visualization results of ETDC method.

Fig. 7: The comparative qualitative top-10 results of ETDC+TCM+DVFH and the model that only keeps ETDC according to

the RoI confidence scores.

two men 

standing with 

tennis rackets

a man holding a racket

(IoU: 0.225, Meteor: 0.01)

two men 

holding 

tennis 

rackets

(IoU: 0.34, 

Meteor: 0.86)

(a)

a large group of snow covered pine trees

trees in the background 

(IoU: 0.82, Meteor: 0.07)

Pines covered in snow

(IoU: 0.84, Meteor: 0.19)

(b)

Fig. 8: Qualitative results of baseline (COCG) and our proposed method (ETDC+TCM+DVFH). The green dotted box represents

the ground truth localization and caption, while the red box and the blue box are the prediction results of COCG and

ETDC+TCM+DVFH (Best viewed in color).
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to caption it. However, with DVFH, the proposed method

succeeds in properly captioning this RoI with the word ‘pine’.

4) Captioning Process With and Without TCM: To explore

the function of TCM more in depth, we recreate the captioning

process for a given RoI with and without the TCM module

as shown in Fig. 9. Generally, it is observed that compared

with the ETDC method in Fig. 9b, the addition of the TCM

module can always select the proper textual context to help

with the generation of the word at each step, which shows

its effectiveness. To be specific, at step t = 3, the created

correct word ‘two’ is originated from the high attention

weights on ‘a person’ in the purple and ‘a man’ in the light

blue surrounding RoIs, which helps the caption decoder to

know there are two persons in aggregation in the RoI. In

contrast, in Fig. 9b, the wrong word ‘a’ is generated only

by the isolated decoding feature without TCM. We notice that

on this occasion, the RoI box is imperfect (fails to include

two people together). Therefore, only with the use of the

decoding feature, it must be visually confusing, causing a

wrong inferring ‘a’. Furthermore, in the third column, at the

step t = 5, the model with TCM successfully attends to the

previous captioned word ‘skateboard’ in the surrounding RoIs

indicated by high attention weights whereas the counterpart

method is misled by a visual similarity between sitting and

skateboarding. Without the TCM module, it cannot see the

context clue of other surrounding RoIs and cannot calibrate

this mistake, thus creating the wrong word ‘sitting’.

V. CONCLUSION

In this paper, a novel trainable end-to-end Enhanced

Transformer-based Dense Captioner (ETDC) was designed

to boost the dense captioning performance. To this end, we

proposed the Textual Context Module (TCM), to capture

surrounding textual context. In addition, we presented a Dy-

namic Vocabulary Frequency Histogram (DVFH) re-sampling

strategy during training to balance words with different fre-

quencies by fully taking advantage of the class information

of object context as the alternative infrequently-used words

in the dictionary. We tested this plug-and-play method on

three different standard dense captioning datasets and the

results turn out that our method outperformed the state-of-

the-art method by a wide margin in terms of mean Average

Precision. Due to its plug-and-play property, in our future

work, we may apply it to different tasks such as action recog-

nition [42], image segmentation [3], [43],event detection [44],

visual relationship detection [45] and magnetic resonance

image reconstruction [10], [46] though there might be some

changes on ETDC, DVFH and TCM module according to the

downstream task.
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(b) The captioning process for a given RoI (The dark blue one begins with ’there’) of ETDC method at the step of t = 3, t = 4 and t = 5.
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