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Mitigating Modality Discrepancies for RGB-T

Semantic Segmentation
Shenlu Zhao, Yichen Liu, Qiang Jiao, Qiang Zhang* and Jungong Han

Abstract—Semantic segmentation models gain robustness
against adverse illumination conditions by taking advantage of
complementary information from visible and thermal infrared
(RGB-T) images. Despite its importance, most existing RGB-
T semantic segmentation models directly adopt primitive fusion
strategies, such as element-wise summation, to integrate multi-
modal features. Such strategies, unfortunately, overlook the
modality discrepancies caused by inconsistent unimodal features
obtained by two independent feature extractors, thus hinder-
ing the exploitation of cross-modal complementary information
within the multi-modal data. For that, we propose a novel
network for RGB-T semantic segmentation, i.e. MDRNet+, which
is an improved version of our previous work ABMDRNet [1]. The
core of MDRNet+ is a brand new idea, termed the strategy of
bridging-then-fusing, which mitigates modality discrepancies be-
fore cross-modal feature fusion. Concretely, an improved Modal-
ity Discrepancy Reduction (MDR+) subnetwork is designed,
which first extracts unimodal features and reduces their modality
discrepancies. Afterwards, discriminative multi-modal features
for RGB-T semantic segmentation are adaptively selected and
integrated via several Channel Weighted Fusion (CWF) modules.
Furthermore, a Multi-Scale Spatial Context (MSC) module and
a Multi-Scale Channel Context (MCC) module are presented
to effectively capture the contextual information. Last, we elab-
orately assemble a challenging RGB-T semantic segmentation
dataset RTSS for urban scene understanding to mitigate the
lack of well-annotated training data. Comprehensive experiments
demonstrate that our proposed model surpasses other state-
of-the-art models on the MFNet, PST900 and RTSS datasets
remarkably.

Index Terms—RGB-T Semantic Segmentation, Bridging-then-
fusing, Modality Discrepancy Reduction, Contextual Information,
Dataset.

I. INTRODUCTION

S
EMANTIC segmentation aims to associate pixel-level

category labels to the objects in the scenes. As a pivotal

yet challenging scene understanding technology, it plays an

important role in a variety of computer vision applications,

including autonomous driving [2]–[4], agriculture monitoring

[5], pathological analysis [6]–[8] and so on.

With the emergence of Fully Convolutional Networks

(FCNs) [9], Deep Convolutional Neural Networks (DCNNs)
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Fig. 1. Two typical categories of failure scenarios for semantic segmentation
algorithms based on RGB data. (a) RGB images; (b) TIR images; (c)
Semantic segmentation masks induced from only RGB images; (d) Semantic
segmentation masks induced from RGB-T image pairs.

based RGB semantic segmentation methods [10]–[18] have

been proposed successively and achieved prominent perfor-

mance in many challenging large-scale datasets [19], [20]. Un-

fortunately, their performance usually degrades significantly

under much weak or strong illumination conditions due to

the light sensitivity of RGB sensors. Specifically, in common

urban scenes, the failures of semantic segmentation algorithms

based on RGB data are often due to: 1) The illumination

condition is good on the whole but there are some indistin-

guishable low contrast areas, such as objects containing similar

colors with the backgrounds (e.g., the green dotted box in the

first row of Fig. 1 (a)) or different categories of objects with

similar spatial appearances (e.g., the red dotted box in the

second row of Fig. 1 (a)). Here, we call these cases ‘Confusing

Illumination’ (‘CI’); 2) The overall illumination conditions

are so weak or strong that most objects and backgrounds are

almost invisible, as shown in the third and fourth rows of Fig.

1 (a), which are named as ‘Extreme Illumination’ (‘EI’).

To make up for the deficiency of RGB sensors, consider-

able researches have been devoted to combining information

provided by other sensors. Compared to RGB sensors, thermal

infrared (TIR) sensors show stronger robustness against illumi-

nation or weather changing, which dedicate to providing clear

contour and semantic cues for targets with temperatures above

absolute zero. In recent years, with the prevalence of TIR sen-

sors, researchers have begun to appreciate the preponderance

of TIR sensors to assist RGB sensors for achieving reliable

semantic segmentation under diversely adverse illumination

conditions. So far, some relevant exploratory works [1], [3],
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Fig. 2. Different pipelines for unimodal feature extraction. (a) The RGB
and TIR images are routinely fed into two independent feature extractors
to obtain their unimodal features, respectively, which completely ignores
the modality discrepancies; (b) The RGB and TIR images are fed into a
Siamese feature extractor to obtain their unimodal features, respectively, which
can intuitively reduce modality discrepancies. However, the huge distribution
discrepancies between multi-modal data make it difficult for the Siamese
feature extractor to well represent the features of different modalities, resulting
in inferior prediction performance; (c) The previous modality discrepancy
reduction subnetwork presented in ABMDRNet [1] employs a cross-modal
image translation based way to reduce modality discrepancies from the per-
spective of unimodal feature enhancement; (d) The MDR+ subnetwork further
ensures the effectiveness and stability of modality discrepancy reduction by
jointly introducing Siamese feature extractors, adversarial learning and image
reconstruction constraints.

[21]–[27] have been consecutively proposed.

As illustrated in Fig. 2 (a), most of existing RGB-T semantic

segmentation methods [3], [21]–[26], [28], [29] routinely

adopt two independent feature extractors to extract unimodal

features from different modalities separately. For example,

[21], [23], [26], [28], [29] adopt two symmetrical ResNets [30]

to extract multi-level RGB and TIR features. Unfortunately,

they usually ignore the modality discrepancies between multi-

modal features. Specifically, the unimodal features extracted

by two irrelevant feature extractors with ZERO interaction

indicate that the RGB data and their paired TIR data are

mapped into two heterogeneous feature spaces, which may

result in the lack of comparability and compatibility between

the two types of unimodal features, thus hindering the ex-

ploitation of cross-modal complementary information. This

may be one of the rational reasons why the complementary

information between RGB and TIR modalities is difficult to

(a) (b) (c)

(d) (e) (f)

RGB

TIR

Fig. 3. Illustration of modality discrepancy reduction. (a)-(c): Original
RGB features, TIR features and their fused features obtained by element-
wise summation, respectively. (d)-(f): RGB features, TIR features and their
fused features obtained by element-wise summation after reducing modality
discrepancies, respectively. The visualizations illustrated here are all from the
same channel of their own features.

exploit crudely. More intuitively, such negligence of modality

discrepancies will be reflected in the dramatic weakening of

the discriminative complementary information in the cross-

modal fused features. For example, the people regions, marked

by the red boxes in Fig. 3 (a), have intensity values close

to the backgrounds, while the same regions in Fig. 3 (b)

have higher intensity values than the backgrounds. If the

summation fusion is directly employed without considering

the modality discrepancies, the complementary information

with higher discriminability provided by TIR data will be

undesirably suppressed in the cross-modal fused features, as

shown in Fig. 3 (c).

Considering the above issue, an intuitive solution is to

extract both RGB and TIR features by employing a Siamese

unimodal feature extractor [31] with the same network struc-

tures and parameters, as shown in Fig. 2 (b). The Siamese

network has been extensively used to map the data from

different modalities into a common feature space. However,

due to the insurmountable distribution discrepancies between

RGB data and TIR data, it is almost impossible to find a

suitable common feature space to completely represent the in-

formation of the two modalities simultaneously, thus resulting

in inferior prediction performance. Alternatively, inspired by

some knowledge transfer methods such as [32], our previous

work [1] proposed a roundabout strategy to alleviate the

problem of modality discrepancies, as shown in Fig. 2 (c).

Specifically, RGB (TIR) data is first fed into a feature extractor

Er (Et) to capture multi-level RGB (TIR) features, which are

then employed to generate the pseudo TIR (RGB) data by a

translation network. On top of that, the modality discrepancies

will be effectively reduced by minimizing the distance between

the features of pseudo TIR (RGB) data and those of matched

real TIR (RGB) data. In fact, the core idea of modality dis-

crepancy reduction is to potentially improve the feature mining

capability of the unimodal feature extractors (i.e., Er and Et in

Fig. 2 (c)), thus achieving modality discrepancy reduction from

the perspective of unimodal feature enhancement. As a result,

the extracted unimodal features will certainly contain some

discriminative information of another modality in addition to

the information of their own modality, as shown in Fig. 3 (d)

and Fig. 3 (e). As visualized in Fig. 3 (f), the fused features

obtained after reducing modality discrepancies preserve more

cross-modal complementary information than those original

fused features in Fig. 3 (c).
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Despite its effectiveness, our previous modality discrepancy

reduction subnetwork used in [1] suffers from two crises.

Firstly, the features of pseudo data and those of matched real

data with the same modality extracted by two independent

feature extractors are still represented in two heterogeneous

feature spaces, which makes it unreasonable to measure the

distance between them directly. Secondly, minimizing the

distance between the features of pseudo data and those of

matched real data with the same modality without considering

the feature extraction capability of their corresponding feature

extractors may lead to the training collapse of modality

discrepancy reduction. For example, the values of pseudo data

features and those of matched real data features with the same

modality may be greatly close but meaningless (e.g., all of

them are 0) in some extreme cases. This will lead to the failure

of modality discrepancy reduction.

This paper intends to further improve and extend our

conference paper [1] by addressing the aforementioned two

problems. Based on the above analysis, we present, an MDR-

Net+ for RGB-T semantic segmentation in this paper, where

an improved Modality Discrepancy Reduction (MDR+) sub-

network is proposed to better achieve the modality discrepancy

reduction. As shown in Fig. 2 (d), in order to rationalize

the measurement of feature distances, we employ a Siamese

feature extractor (see St or Sr in Fig. 2 (d)) to represent

the features of pseudo data and those of matched real data

with the same modality in a common feature space, instead of

using two independent feature extractors. Moreover, in order

to further facilitate the Siamese feature extractor (St or Sr)

to find a suitable common feature space for well representing

the information of pseudo and real data simultaneously, we

enforce the distribution of generated pseudo data and that of

matched real data with the same modality to be as close as

possible via adversarial learning. Finally, we consider image

reconstruction as an auxiliary to constrain the feature extrac-

tion capability of the Siamese feature extractor (St or Sr).

Owing to these improvements, the feature mining capability of

unimodal feature extractors (i.e., Er and Et in Fig. 2 (d)) will

be potentially improved by simply but reasonably minimizing

the distance between the features of pseudo data and those of

matched real data with the same modality, thus effectively and

stably reducing modality discrepancies.

Apart from algorithmic problems, the lack of data with

annotations, especially for urban scenes, is another major

bottleneck to hold back the development of RGB-T semantic

segmentation. In this paper, we assemble a challenging RGB-T

Semantic Segmentation (RTSS) dataset for urban scene under-

standing. We elaborately select 1880 pairs of matched RGB-T

images from KAIST [33], LasHeR [34] and RGBT234 [35],

and manually label them at the pixel level. These labels include

four categories: human, non-motor, car and background, which

focus on the most important objects (usually having higher

temperature values) in urban scenes for autonomous driving

and traffic dispersion. Similar to the most widely used RGB-

T semantic segmentation dataset MFNet [3], we also divide

RTSS into daytime and nighttime parts. Moreover, we further

divide RTSS into three categories of scenarios according to

illumination conditions, including one category of scenarios

with good illumination conditions both in whole and in part

(here is named as General Illumination (‘GI’)) and two typi-

cal categories of failure scenarios for semantic segmentation

algorithms based on RGB data (i.e., ‘CI’ and ‘EI’).

The main contributions of our work are summarized as

follows:

• We propose an MDRNet+ based on a novel strategy

of bridging-then-fusing, which innovatively mitigates the

modality discrepancies before cross-modal feature fusion

to effectively exploit cross-modal complementary infor-

mation with high discriminability for RGB-T semantic

segmentation.

• Different from our previous ABMDRNet, in this paper,

we propose an improved MDR+ subnetwork, which ra-

tionalizes the distance measurement between the features

of pseudo data and those of matched real data with the

same modality and alleviates the training collapse prob-

lem by jointly introducing Siamese feature extractors,

adversarial learning and image reconstruction constraints,

thus providing a more effective and more stable modality

discrepancy reduction process.

• We carefully assemble a challenging RGB-T semantic

segmentation dataset RTSS for urban scene understand-

ing, which provides a timely supplement for training

such autonomous driving algorithms based on RGB-T

semantic segmentation.

The remainder of this paper is organized as follows. Section

II discusses related works on RGB semantic segmentation

and multi-modal semantic segmentation. Section III details

the proposed MDRNet+. Section IV provides a more detailed

analysis of our RTSS. Experimental results, performance eval-

uations and comparisons are included in Section V. Finally,

conclusions are drawn in Section VI.

II. RELATED WORK

A. RGB Semantic Segmentation

Early RGB semantic segmentation methods [36], [37]

mainly rely on low-level hand-crafted features to segment

objects and backgrounds. Recently, deep learning based se-

mantic segmentation models have become the mainstream

and achieved remarkable performance. Fully Convolutional

Network (FCN) [9], as a pioneer, arouses the research upsurge

of semantic segmentation. Then, Noh et al. [10] proposed the

first Encoder-Decoder architecture for semantic segmentation,

which is simple but efficient and is still one of the mainstream

architectures used in semantic segmentation models to date. To

preserve more precise spatial information in encoder, Sun et al.

[13] proposed the HRNet by performing repeated multi-scale

fusions to boost the high-resolution representations with the

help of the low-resolution representations of the same depth

and similar levels. As well, to address the problem of the

diversity of objects, Chen et al. [14] proposed the Atrous

Spatial Pyramid Pooling (ASPP) to capture the discriminative

multi-scale contextual information by several atrous convolu-

tional layers with different dilation rates. Although such multi-

scale contextual information extraction modules have achieved

great successes in semantic segmentation, their receptive fields
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Fig. 4. Overall framework of our proposed MDRNet+. The proposed model consists of the MDR+ subnetwork for unimodal feature extraction as well as for
modality discrepancy reduction, several CWF modules for cross-modal feature fusion and the MSC and MCC modules for contextual information exploitation.

are still limited, thus failing to exploit the global contextual

information. Recently, many models try to exploit the long-

range dependencies to address such an issue and have achieved

promising results. For example, Li et al. [11] jointly learned

the long-range semantic and spatial dependencies to mine

the global contexts for semantic segmentation. Ding et al.

[17] introduced the pixel-wise semantic attention block and

the category-wise semantic attention block to capture more

explicit contextual dependencies in a low computational com-

plexity. In addition, some works [18], [38] focus on exploring

some lightweight frameworks to balance the parameters and

accuracy for real-time semantic segmentation.

B. Multi-modal Semantic Segmentation

Recently, with the development of imaging techniques [3],

[22], [33]–[35], [39], [40], many studies employ multi-modal

data (e.g., RGB-D images and RGB-T images) to address some

issues arising from the RGB semantic segmentation.

1) RGB-D Semantic Segmentation: The depth sensors aim

to provide rich information of geometrical structures and

spatial layouts to improve segmentation performance in com-

plex scenes. To better integrate RGB information and depth

information, Hazirbas et al. [41] proposed the pioneering

work based the encoder–decoder structure, i.e., FuseNet, in

which multi-level RGB and depth features are integrated

progressively by summation fusion. Hung et al. [42] proposed

LDFNet to enhance the fused multi-modal features by intro-

ducing the luminance information for depth image. Hu et al.

[43] proposed an Attention Complementary Module (ACM)

to capture more high-quality single-modality RGB features

and depth features from different channels for boosting the

RGB-D semantic segmentation. In addition, unlike the idea of

fusing RGB and depth features conventionally, some methods

exploit depth information to improve the standard convolution.

For example, Wang et al. [44] proposed a depth-aware CNN

to integrate the geometry information within depth images

into CNN by augmenting the standard convolution with a

depth similarity term, which does not introduce any parameters

and computation complexity but boosts the RGB-D semantic

segmentation performance. As well, to solve the problem of

noise in depth images, Chen et al. [45] proposed a separation-

and-aggregation gate module to effectively diminish the in-

fluence of noisy depth measurements while incorporating

sufficiently complementary information to facilitate RGB-D

semantic segmentation. In addition, aiming at the diversity of

objects, which also exists in RGB-D semantic segmentation,

some methods focus on capturing multi-scale contextual infor-

mation. Zhang et al. [46] proposed the NANet to exploit the

non-local context of RGB-D features at multiple stages along

the spatial and channel dimensions.

2) RGB-T Semantic Segmentation: Compared to depth sen-

sors, TIR sensors dedicate to providing robust contour and se-

mantic cues under extreme illumination conditions. Recently,

with the development of TIR sensors, some RGB-T semantic

segmentation methods are gradually proposed. MFNet [3],

as the pioneer work for RGB-T semantic segmentation, first

adopted a two-stream structure to extract unimodal features

and then integrated them through custom shortcut blocks. Sun

et al. [21] proposed the RTFNet, in which the multi-level

RGB features and TIR features are first fused by element-wise

summation and then several upsampling inception blocks are

inserted to improve decoding performance. Shivakumar et al.

[22] proposed the PSTNet to enhance the segmentation results

by using the RGB segmentation mask as an additional input.
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Guo et al. [23] proposed the MLFNet to capture contextual

information comprehensively by employing multi-level skip

connections in decoder. Sun et al. [24] proposed the FuseSeg,

in which the multi-level RGB and TIR features are integrated

through concatenation. Xu et al. [25] proposed an Attention

Fusion Module (AFM) to improve the contextual correlation

between the RGB and TIR features. Deng et al. [28] exploited

attention mechanisms to excavate and enhance multi-level

features from both the channel and spatial views. Zhou et al.

[29] introduced prior edge information to enhance boundary

extraction for finer RGB-T semantic segmentation. Zhou et

al. [47] jointly used multi-label supervision to optimize the

network in terms of semantic, binary and boundary characteris-

tics. Moreover, in addition to the fusion strategy, MMNet [26]

and ABMDRNet [1] also consider the semantic gaps between

encoders and decoders and the modality discrepancies between

multi-modal features, respectively.

Alternatively, in this paper, a novel strategy of bridging-

then-fusing is presented to capture the cross-modal features,

where the unimodal feature extraction and modality discrep-

ancy reduction are achieved by an MDR+ subnetwork and then

the discriminative multi-modal features are adaptively selected

and fused by several CWF modules.

III. OUR MODEL

In this section, we describe the overall architecture of the

proposed MDRNet+, as illustrated in Fig. 4. Specifically, the

proposed model consists of four procedures: 1) Unimodal

feature extraction and modality discrepancy reduction by the

MDR+ subnetwork; 2) cross-modal feature fusion by several

CWF modules; 3) Robust contextual information exploitation

by the MSC and MCC modules and 4) Semantic segmentation

mask prediction.

A. MDR+ Subnetwork

Although the complementary information within the multi-

modal input images can boost the semantic segmentation per-

formance, the modality discrepancies, as discussed in Section

I, may hinder the exploitation of cross-modal information. To

avoid such a dilemma, we design an MDR+ subnetwork, pri-

marily consisting of four steps (i.e., unimodal feature extrac-

tion, cross-modal image translation via adversarial learning,

feature extraction of pseudo data and matched real data with

the same modality and feature distance minimization), which

aims to reduce modality discrepancies via unimodal feature

enhancement. It is noted that the steps of MDR+ subnetwork

except for the unimodal feature extraction only work during

the training phase and do not require any additional computa-

tions and parameters during the testing phase.

As shown in the regions marked by the grey boxes of Fig.

4, the MDR+ subnetwork is a bi-directional process, in which

two branches (i.e., RGB→TIR and TIR→RGB) are used for

the RGB/TIR feature extraction and the modality discrepancy

reduction from RGB/TIR data to TIR/RGB data, respectively.

Specifically, the unimodal feature extractors are first employed

to extract multi-level features from one modality, which are

then used to generate the matched pseudo data of another

modality. After that, we introduce adversarial learning to

constrain the distribution of pseudo data and that of matched

real data with the same modality to be as close as possible.

Next, the Siamese feature extractors are employed to represent

the multi-level features of pseudo data and those of matched

real data with the same modality in a common feature space.

Moreover, we also perform additional image reconstruction

constraints on the Siamese feature extractors to constrain their

feature extraction capability. Finally, the modality discrepan-

cies from one modality to another modality are reduced by

minimizing the distance between the multi-level features of

pseudo data and those of matched real data with the same

modality. In the following contents, we will show the details

of the branch RGB→TIR that is used for the RGB feature

extraction and the modality discrepancy reduction from RGB

data to TIR data as an example. The implementation details

of MDR+ subnetwork and its advantages over the modality

discrepancy reduction subnetwork presented in [1] will also

be discussed as follows.

1) Unimodal Feature Extraction: First, given the RGB

images Ir from paired RGB-T images, we choose ResNet-

50 [30] as the RGB feature extractor Er, which contains

five residual convolutional blocks. The average pooling layers

and the fully connected layers in the original ResNet-50 are

removed to maintain more spatial information. Therefore, five

levels of RGB features {Fr
n|n=1, 2, 3, 4, 5} are obtained by

Er, which have the resolutions of 1/2, 1/4, 1/8, 1/16 and

1/32 of the original input sizes, respectively. It is important to

note that these RGB features are shared for subsequent cross-

modal image translation from RGB images to TIR images and

semantic segmentation.

2) Cross-modal Image Translation via Adversarial Learn-

ing: For the multi-level RGB features {Fr
n|n=1, 2, 3, 4, 5}

obtained by Er, an RGB data to TIR data translation network

Tr→t (i.e., the region marked by the red dotted box in Fig. 4)

is employed to restore the resolutions of feature maps progres-

sively and generate the pseudo TIR images. Specifically, the

translation network Tr→t consists of two steps: 1) Four Up-

sample Modules (UMs) with the same structures but different

inputs are employed to refine the details and semantics in each

level, and 2) A cascaded combination of a 2×2 transposed

convolutional layer, a standard 3×3 convolution layer and a

Sigmoid activation function is employed to generate pseudo

TIR images with one channel. More specifically, the UM

consists of a 2×2 transposed convolutional layer, a standard

3×3 convolution layer and a short cut. As a result, the refined

RGB features {Frup
n |n=1, 2, 3, 4, 5} with the same resolutions

as their corresponding features in {Fr
n|n=1, 2, 3, 4, 5} can be

obtained by

Frup
n =





Conv((TConv(Frup
n+1;αn) + Fr

n);βn),
n = 1, 2, 3, 4

Fr
5, n = 5

(1)

where Conv(∗;αn) denotes a 3×3 convolutional layer with

its parameters αn. TConv(∗;βn) denotes a 2×2 transposed

convolutional layer with a stride of 2 and βn denotes its
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parameters. Here, the short cut is element-wisely added up.

Finally, the output of the first step in the RGB data to TIR

data translation network, i.e., F
rup
1 , is fed into the second step

mentioned above to generate the final pseudo TIR images Ipt

with one channel, i.e.,

Ipt = Sigmoid(Conv(TConv(Frup
1 ; γ); θ)), (2)

where TConv(∗; γ) denotes a 2×2 transposed convolutional

layer with a stride of 2 and γ denotes its parameters.

Conv(∗; θ) denotes another 3×3 convolutional layer with

its parameters θ. Sigmoid(∗) denotes the Sigmoid activation

function.

In the following content, we will use Gr→t containing the

RGB feature extractor Er and the translation network Tr→t to

refer to the cross-modal image translation process from RGB

data to TIR data.

Furthermore, in order to ensure that the features of gen-

erated pseudo TIR images and those of matched real TIR

images can be well represented in a common feature space,

we introduce a TIR modality discriminator Dt to constrain

the distribution of generated pseudo TIR images Ipt to be

as close as possible to that of matched real TIR images It

through adversarial learning. The structure of the TIR modality

discriminator is consistent with PatchGAN [48]. Specifically,

for the adversarial learning process between Gr→t and Dt,

we first describe the training objective and relevant losses for

the TIR modality discriminator. Given the generated pseudo

TIR images Ipt and the matched real TIR images It, we feed

them into Dt and choose the cross-entropy loss as the TIR

modality discriminator loss Lt
d for the two classes (i.e., real

TIR images and pseudo TIR images) to train Dt, i.e.,

L
t
d = −

1

H1W1

H1∑

i=1

W1∑

j=1

(log(Dt
ij(I

t)) + log(1− (Dt
ij(I

pt)))).

(3)

Here, Dt
ij(I

t) and Dt
ij(I

pt) represent the output of Dt at

position (i, j) with inputs It and Ipt, respectively. H1 and W1

denote the height and width of Dt(It) or Dt(Ipt).

On the other hand, Gr→t aims to make the distribution of

pseudo TIR images Ipt and that of matched real TIR images

It tend to be similar and confuse Dt by maximizing the

probability of generated pseudo TIR images being considered

as their matched real TIR images. Therefore, the adversarial

loss, i.e., Lt
adv , is expressed as:

L
t
adv = −

1

H1W1

H1∑

i=1

W1∑

j=1

log(Dt
ij(I

pt)), (4)

where Ipt = Gr→t(Ir).

3) Feature Extraction of Pseudo Data and Matched Real

Data with the Same Modality: Given the generated pseudo

TIR images Ipt and the real TIR images It, instead of

employing two separate feature extractors with the same

network structures but different parameters as [1], we employ a

Siamese feature extractor St with the same network structures

and parameters to simultaneously capture their multi-level

features.

Specifically, we still adopt ResNet-50 as the Siamese fea-

ture extractor St to extract the multi-level features (i.e.,

{Fpt
n |n=1, 2, 3, 4, 5} and {Frt

n |n=1, 2, 3, 4, 5}) from Ipt and

It, respectively. The average pooling layers and the fully

connected layers in the original ResNet-50 are also removed.

Moreover, in order to further ensure that the features of

pseudo TIR images {Fpt
n |n=1, 2, 3, 4, 5} and those of matched

real TIR images {Frt
n |n=1, 2, 3, 4, 5} contain sufficient ef-

fective information, we concisely employ a real TIR image

reconstruction constraint to improve the feature representation

capability of the Siamese feature extractor St. Specifically,

we use the high-level features Frt
5 to reconstruct the real TIR

images by using five successive 2×2 transposed convolutional

layers with strides of 2. Here, the TIR image reconstruction

loss Lt
rec employs a binary cross-entropy loss, i.e.,

L
t
rec = −

1

HW

H∑

i=1

W∑

j=1

(Itij log(I
rt
ij ) + (1− Itij)log(1− Irtij )),

(5)

where Irt denotes the reconstructed TIR images after using

the Sigmoid activation function. H and W denote the height

and width of It. (i, j) represents the position coordinate of a

pixel.

4) Feature Distance Minimization: Finally, we minimize

the distance between the features of pseudo TIR images (i.e.,

{Fpt
n |n=1, 2, 3, 4, 5}) and those of matched real TIR images

(i.e., {Frt
n |n=1, 2, 3, 4, 5}) with a modality discrepancy reduc-

tion loss Lr→t
mdr, i.e.,

Lr→t
mdr =

5∑
n=1

‖Frt
n − Fpt

n ‖
2

2
. (6)

By minimizing the distance between the features of pseudo

TIR images and those of matched real TIR images, the feature

mining capability of the RGB feature extractor Er can be

potentially improved. As a result, the multi-level RGB features

{Fr
n|n=1, 2, 3, 4, 5} will contain some certain discriminative

information of TIR modality in addition to the information of

their own modality, thus indirectly achieving the information

propagation from TIR data to RGB data.

Similarly, for the branch that is used for the TIR feature

extraction and the modality discrepancy reduction from TIR

data to RGB data, given the TIR images It, five levels of

TIR features {Ft
n|n=1, 2, 3, 4, 5} are first obtained by a TIR

feature extractor Et. Here, we also choose ResNet-50 as the

TIR feature extractor Et. These TIR features are also shared

for subsequent cross-modal image translation from TIR images

to RGB images and semantic segmentation. After that, the

refined TIR features {Ftup
n |n=1, 2, 3, 4, 5} and the generated

pseudo RGB images Ipr are obtained by a TIR data to RGB

data translation network Tt→r (i.e., the region marked by the

green dotted box in Fig. 4) with the same strategy as that

in Tr→t. Subsequently, we also introduce an RGB modality

discriminator Dr with the same structure as Dt to constrain

the distribution of generated pseudo RGB images Ipr to be

as close as possible to that of matched real RGB images

Ir by adversarial learning. Accordingly, the RGB modality

discriminator loss Lr
d and the corresponding adversarial loss
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Fig. 5. Structure of the proposed CWF module. The weight vector Wn is
able to weigh the importance of features from the RGB modality along the
channel dimension.

i.e., Lr
adv , are expressed as:

L
r
d = −

1

H1W1

H1∑

i=1

W1∑

j=1

(log(Dr
ij(I

r)) + log(1− (Dr
ij(I

pr)))),

(7)

L
r
adv = −

1

H1W1

H1∑

i=1

W1∑

j=1

log(Dr
ij(I

pr)), (8)

respectively. Here, Ipr = Gt→r(It). Dr
ij(I

r) and Dr
ij(I

pr)
represent the output of Dr at position (i, j) with inputs Ir

and Ipr, respectively. Gt→r contains the TIR feature extractor

Et and the translation network Tt→r.

Then, we also employ a ResNet-50 as another Siamese

feature extractor Sr to capture the multi-level features (i.e.,

{Fpr
n |n=1, 2, 3, 4, 5} and {Frr

n |n=1, 2, 3, 4, 5}) from Ipr and

Ir, respectively. Meanwhile, a real RGB image reconstruction

constraint is employed to improve the feature representation

capability of the Siamese feature extractor Sr. Mathematically,

the RGB image reconstruction loss Lr
rec can be expressed by

L
r
rec = −

1

HW

H∑

i=1

W∑

j=1

(Irij log(I
rr
ij ) + (1− Irij)log(1− Irrij )),

(9)

where Irr denotes the reconstructed RGB images after using

the Sigmoid activation function.

Finally, we minimize the distance between the features of

pseudo RGB images (i.e., {Fpr
n |n=1, 2, 3, 4, 5}) and those of

matched real RGB images (i.e., {Frr
n |n=1, 2, 3, 4, 5}) with

another modality discrepancy reduction loss Lt→r
mdr, i.e.,

Lt→r
mdr =

5∑
n=1

‖Frr
n − Fpr

n ‖
2

2
. (10)

5) Advantage Analysis: Compared with the modality dis-

crepancy reduction subnetwork designed in the previous

version [1], our improved MDR+ subnetwork employs the

Siamese feature extractors to extract the features of pseudo

data and those of matched real data with the same modality,

which can map the pseudo data and the matched real data

with the same modality into a common feature space. Before

that, an adversarial learning technique is employed to constrain

the distribution of pseudo data to be as close as possible to

that of matched real data, which can facilitate the Siamese

feature extractors to well represent the features of pseudo

and real data simultaneously. These two improvements jointly

improve the rationality of the distance measurement between

the features of pseudo data and those of matched real data

with the same modality. Moreover, the introduction of addi-

tional image reconstruction constraints can improve the feature

representation capability of the Siamese feature extractors,

which further ensures the validity and stability of modality

discrepancy reduction. The visual and quantitative ablation

analysis in Section V will further prove the effectiveness of

modality discrepancy reduction and the superiority of our

improved modality discrepancy reduction subnetwork over the

previous version in [1].

B. CWF

After using MDR+ subnetwork, we obtain the multi-level

RGB and TIR features with lower modality discrepancies from

the perspective of unimodal feature enhancement. Considering

that these unimodal features only contain partial discriminative

information of another modality in addition to the information

of their own modality, an effective fusion strategy needs to

be explored to further exploit the cross-modal complementary

information. However, existing RGB-T semantic segmentation

methods usually adopt primitive fusion strategies, such as con-

catenation [3], [22] and element-wise summation [21], [23],

[24], which fail to take into account the importance of dif-

ferent channels within multi-modal features. In fact, different

channels of features have different class-discriminability, and

treating them equally will significantly affect the categorical

performance of RGB-T semantic segmentation.

Based on the above analysis, we propose a novel Chan-

nel Weighted Fusion (CWF) module to effectively inte-

grate the cross-modal complementary information by re-

weighting the importance of unimodal features in a channel-

dependent way. Specifically, for the obtained multi-level fea-

tures {Fr
n|n=1, 2, 3, 4, 5} and {Ft

n|n=1, 2, 3, 4, 5}, we only

use the features from the first four levels to reduce the com-

putation complexity of the entire model. Therefore, we will de-

scribe the fusion of {Fr
n|n=1, 2, 3, 4} and {Ft

n|n=1, 2, 3, 4}
next. As shown in Fig. 5, Fr

n and Ft
n are first concatenated

and then fed into two convolutional layers to calculate their

relative importance in a channel-wise way. The corresponding

importance weight vector Wn is obtained by

Wn = GAP(Sigmoid(BConv(Cat(Fr
n,F

t
n); ε))). (11)

Here, BConv(∗; ε) denotes a convolutional block with a 1×1

convolutional layer and a 3 × 3 convolutional layer, and ε

denotes its parameters. GAP(∗) denotes the global average

pooling operation. Intuitively, in our CWF module, Wn and

1−Wn are used to represent the importance of RGB features

and TIR features along the channel dimension, respectively.

Higher values in Wn indicate that corresponding channels

of features in the RGB modality are more likely to contain

important information than those corresponding channels of

features from the TIR images and vice versa. Here, 1 denotes

a vector of 1’s with the same size of Wn.
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After obtaining these channel importance weight vec-

tors {Wn|n=1, 2, 3, 4} for the four levels, we fuse

{Fr
n|n=1, 2, 3, 4} and {Ft

n|n=1, 2, 3, 4} in a weighted

summation way to select those features with high dis-

criminability from multi-modal data. The fused features

{Ffused
n |n=1, 2, 3, 4} are thus obtained by

Ffused
n =





Wn ⊙ Fr
n + (1−Wn)⊙ Ft

n, n = 1

DB(Ffused
n−1 ) +Wn ⊙ Fr

n + (1−Wn)⊙ Ft
n,

n = 2, 3, 4
(12)

where ⊙ denotes the channel-wise multiplication and DB(∗)
denotes a residual block with a stride of 2 for downsampling.

C. MSC and MCC

Contextual information has been proved to be effective

for dealing with the diversity of objects in RGB semantic

segmentation, but they are still not well exploited in RGB-

T semantic segmentation. For that, we propose the MSC and

MCC modules, which are performed on F
fused
3 and F

fused
4 ,

respectively, to capture contextual information by exploiting

the interaction between multi-scale information of the cross-

modal fused features and their long-range dependencies along

the spatial and channel dimensions.

1) MSC: The structure of MSC is shown in Fig. 6. Given

the 3-rd level of the fused features F
fused
3 ∈ R

H2×W2×C2 ,

MSC establishes the interaction between the multi-scale in-

formation and their long-range dependencies along the spatial

dimension to fully mine contextual information.

Specifically, an ASPP-based structure with dilation rates

of 1, 6, 12 and 18 is first employed to extract multi-scale

information from the input fused features. Then, the features of

four scales are concatenated and fed into a 1×1 convolutional

layer to reduce their channels, thus obtaining the fused multi-

scale features Fms
3 ∈ R

H2×W2×C2 . Subsequently, the multi-

scale spatial correlation matrix Mms ∈ R
H2W2×H2W2 of Fms

3

can be computed by a Long-range Dependency Unit (LDU),

i.e.,

Mms = Norm(RS (Fms
3 ) · (RS (Fms

3 ))
T
), (13)

where (∗)T denotes the matrix transpose and RS(∗) transfers

the size of the input matrix from R
H2×W2×C2 to R

H2W2×C2 .

Norm(∗) denotes the Min-Max Normalization operation and

· denotes the matrix multiplication. Analytically, the long-

range dependencies among the multi-scale features can be

regarded as an inter-regional correlation for input features.

In addition, the correlations among feature points from in-

put features should also be considered to supplement global

contextual information. Therefore, we introduce the original

spatial correlation matrix Mos ∈ R
H2W2×H2W2 , computed

by another LDU (i.e., Eq. (14)), and subsequently establish

the cooperation between Mms and Mos by element-wise

summation.

Mos = Norm(RS(Ffused
3 ) · (RS(Ffused

3 ))T). (14)

Transpose

Normal

C
B
R

r=6 r=12 r=18r=1

C

3

fused
F

os
M

L
D
U

ms
M

3

ms
F

C
B
R

L
D
U

R

RConv+BN+ReLU Matrix multiplication Matrix reshape Inverse of matrix 

multiplication
Normal

Min-Max

normalization

3

ms
F

R

R

R

3

fused
F

Fig. 6. Structure of the proposed MSC module.

After that, the output features with rich spatial contextual

information are obtained by

F̃
fused

3 = R̃S((Mms +Mos) · RS(F
ms
3 )) + F

fused
3 , (15)

where R̃S(∗) denotes the inverse process of RS(∗).
2) MCC: Similarly, given the 4-th level of the fused

features F
fused
4 ∈ R

H3×W3×C3 , MCC aims to establish the

interaction between the multi-scale information and their long-

range dependencies along the channel dimension to further

mine contextual information.

Specifically, MCC first uses the same method as MSC to

obtain the multi-scale features Fms
4 ∈ R

H3×W3×C3 . Then, the

multi-scale channel correlation matrix Mmc ∈ R
C3×C3 and

the original channel correlation matrix Moc ∈ R
C3×C3 are,

respectively, computed by

Mmc = Norm((RS (Fms
4 ))T · (RS (Fms

4 ))), (16)

Moc = Norm((RS(Ffused
4 ))T · (RS(Ffused

4 ))). (17)

Finally, the output features with rich channel contextual

information are obtained by

F̃
fused

4 = R̃S(RS(Fms
4 )× (Mmc +Moc)) + F

fused
4 . (18)

3) Analysis of Order: Theoretically, in the semantic seg-

mentation model, lower-level features provide richer detail

information with larger resolutions, while higher-level fea-

tures provide richer semantic information with larger channel

numbers. Thus, when performing MSC on the 3-rd level of

cross-modal fused features, we can explore richer spatial de-

pendencies and significantly reduce the computation compared

to performing it on the 1-st or 2-nd level. While, performing

MCC on the 4-th level of features can explore richer channel

dependencies, thus capturing more semantic cues of targets.

This underlying principle motivates us to apply MSC and

MCC to F
fused
3 and F

fused
4 , respectively.

D. Semantic Segmentation Mask Prediction

Given F̃
fused

4 with rich contextual information, we employ

three UMs to progressively recover details and semantics.

Finally, a series of operations, involving a 2×2 transposed

convolutional layer, a standard 3×3 convolution layer and a

Softmax activation function, are employed to predict the final

semantic segmentation mask.
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CI

EI

GI

Fig. 7. Sample examples from RTSS, including three groups, i.e., ‘GI’, ‘CI’
and ‘EI’ mentioned in the earlier Section I.

E. Loss Function

Considering the imbalance among pixels of each class,

we employ the weighted cross-entropy loss as the semantic

segmentation loss, which is defined by

Lseg = −
1

HW

H∑

i=1

W∑

j=1

W(xij)P (xij) log (Q (xij)), (19)

where W(xij) represents the coefficient of the category to

which the pixel xij belongs. P(xij) and Q(xij) represent the

ground truth label and the prediction on this pixel, respectively.

Finally, we adopt a joint loss function Ljoint that combines

semantic segmentation loss (i.e., Lseg), adversarial losses (i.e.,

Lt
adv and Lr

adv), modality discrepancy reduction losses (i.e.,

Lr→t
mdr and Lt→r

mdr) and image reconstruction losses (i.e., Lt
rec

and Lr
rec) to train the entire network, i.e.,

Ljoint =λ0Lseg + λ1(L
t
adv + Lr

adv) + λ2(L
r→t
mdr + L

t→r
mdr)

+ λ3(L
t
rec + L

r
rec),

(20)

where λ0, λ1, λ2 and λ3 denote four hyper-parameters for

controlling the tradeoff among the loss functions. We finally

set λ0, λ1, λ2 and λ3 to 1, 0.01, 1 and 0.1 in our experiments,

respectively.

The ultimate optimization objective becomes the following

min-max criterion:

max
{Dt,Dr}

min
{Gr→t,Gt→r}

Ljoint. (21)

IV. RTSS DATASET

The lack of data with annotations is one of the major

bottlenecks restricting the development of RGB-T semantic

segmentation. With this in mind, we elaborately assemble a

challenging RGB-T semantic segmentation dataset RTSS as a

supplement to the autonomous driving field. We will provide

the details of RTSS in terms of two key aspects, including

image collection and category annotation and dataset analysis.

A. Image Collection and Category Annotation

We elaborately select the RGB-T image pairs from some

existing datasets for other computer vision tasks, e.g., KAIST

[33] for RGB-T pedestrian detection, and LasHeR [34] and
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Fig. 8. Image resolution distribution of RTSS dataset. We divide the images
into four resolution ranges (i.e., h × w ≤ 310k, 310k < h × w ≤ 350k,
350k < h× w ≤ 390k and h× w > 390k) for statistics.
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Fig. 9. Percentage of the number of pixels for different classes in RTSS

dataset.

RGBT234 [35] for RGB-T tracking. Our proposed RTSS

dataset contains 1880 RGB-T image pairs under various urban

scenes, including 1496 pairs of daytime and 384 pairs of

nighttime. In addition to the classification of daytime and

nighttime as that in MFNet dataset [3], RTSS also divides these

RGB-T image pairs into three groups, i.e., ‘GI’, ‘CI’ and ‘EI’

as mentioned in the earlier Section I. Sample examples from

RTSS are shown in Fig. 7.

Meanwhile, pixel-level category annotations are essential

components for training a supervised RGB-T semantic seg-

mentation network. To this end, we manually provide four

pixel-level categories of annotations for RTSS, including car,

human, non-motor and background. This pixel-level annota-

tion costs 10 minutes per image pair on average.

B. Dataset Analysis

1) Resolution Distribution: When we select RGB-T image

pairs from existing datasets for other computer vision tasks, we

keep their original resolutions unchanged. Fig. 8 displays the

resolution distribution of RTSS, in which we divide them into

four resolution ranges (i.e., h× w ≤ 310k, 310k < h× w ≤
350k, 350k < h×w ≤ 390k and h×w > 390k) for statistics.

In RTSS, scenarios are more complex and target sizes are more

diverse, which is more challenging than [3].

2) Category Label Analysis: RTSS contains four classes,

including one background class and three target classes (i.e.,

human, non-motor and car), which focus on the most important

objects (usually having higher temperature values) in urban

scenes for autonomous driving and traffic dispersion. Fig. 9

presents the label distribution of different categories in RTSS.

In our dataset, only a few target categories in each image are

labelled, so the background pixels occupy the majority, which



10

0

100

200

300

400

500

600

700

800

900

CI ND EI

N
u
m

b
er

 o
f 

S
am

p
le

s

789

384

707

GI

Fig. 10. Statistics of sample sets (i.e., ‘GI’, ‘CI’ and ‘EI’) in RTSS dataset.

is similar to that in MFNet [3]. It is worth mentioning that the

intuitive reason why we choose the three categories of targets

for labelling is that, in urban scenes, their temperatures are

usually significantly in contrast to those of their surrounding

environments. For these targets, TIR data can provide more

discriminative information.

3) Sample Set Division: The RGB-T image pairs in RTSS

are manually divided into three different sample sets, including

‘GI’, ‘CI’ and ‘EI’. Fig. 10 shows the statistics of sample sets

in RTSS. Compared with the existing RGB-T semantic seg-

mentation dataset [3] for urban scene parsing, RTSS contains

more samples that need to effectively combine the information

from the two modalities for accurate segmentation, which is

beneficial to improve the exploitation ability of cross-modal

information for an RGB-T semantic segmentation model.

V. EXPERIMENT AND ANALYSIS

A. Datasets

We evaluate the superiority of our model on three RGB-T

semantic segmentation datasets, including two public datasets

(i.e., MFNet [3] and PST900 [22] datasets) and our proposed

RTSS dataset. Details of them are described as follows.

MFNet [3] contains 1569 RGB and TIR image pairs with

9 classes of pixel-level labels from urban scenes, in which

820 image pairs are taken at daytime and 749 image pairs are

taken at nighttime. All of the images in MFNet dataset [3]

have the same resolution of 480 × 640. PST900 contains 894

aligned RGB and TIR image pairs with 5 classes of pixel-level

labels. Details of RTSS are given in Section IV. We divide our

proposed RTSS dataset into the training set and the testing set.

The training set includes 75% of images and the testing set

contains 25% of the images in the entire dataset, respectively.

B. Evaluation Criteria

We evaluate the performance of our model and other

state-of-the-art methods from both visual and quantitative

perspectives. For the quantitative experiments, we adopt two

widely used evaluation metrics, i.e., mean Accuracy per class

(mAcc) and mean Intersection over Union per class (mIoU),

to evaluate the semantic segmentation performance of different

models. They can be computed by

mAcc =
1

N

N∑

i=1

M∑
m=1

ηmii

M∑
m=1

ηmii +
M∑

m=1

N∑
j=1,j 6=i

ηmij

, (22)

RGB

TIR

RGB

TIR

(a) (b) (c) (d) (e) (f)

Fig. 11. Visual comparisons of the cross-modal fused features with or without
reducing modality discrepancies. (a) and (d) denote the cross-modal fused
features obtained by summation fusion; (b) and (e) denote the cross-modal
fused features, which are obtained by summation fusion after reducing the
modality discrepancies between unimodal features by the modality discrep-
ancy reduction subnetwork presented in ABMDRNet [1]; (c) and (f) denote
the cross-modal fused features, which are obtained by summation fusion
after reducing the modality discrepancies between unimodal features by the
improved MDR+ subnetwork proposed in our MDRNet+.

mIoU =
1

N

N∑

i=1

M∑
m=1

ηmii

M∑
m=1

ηmii +
M∑

m=1

N∑
j=1,j 6=i

ηmji +
M∑

m=1

N∑
j=1,j 6=i

ηmij

,

(23)

respectively. Here, ηmii , ηmij and ηmji are the number of pixels

of class i that are correctly classified as class i, the number

of pixels of class i that are wrongly classified as class j and

the number of pixels of class j that are wrongly classified as

class i in the m-th image, respectively. M denotes the number

of images. N represents the number of classes, which is 9 in

MFNet dataset [3] and 4 in RTSS dataset.

C. Implementation Details

The proposed network is implemented by Python 3.7.1 +

PyTorch 1.7.1 + Torchvision 0.8.2 on an NVIDIA GTX 3090

Ti GPU. The stochastic gradient descent (SGD) optimization

algorithm with a momentum of 0.9 and a weight decay

of 0.0005 is adopted to train our proposed network. The

initial learning rate is set to 0.001, which is decreased by

the ‘poly’ policy during training. Moreover, the training data

are augmented by using random flipping, cropping and noise

injecting techniques. We train the network about 500 epochs

to its convergence. Especially, for the training on the RTSS

dataset, we resize the input resolutions to 480×640 to be

consistent.

D. Ablation Analysis

In this section, we validate the effectiveness of each com-

ponent in our proposed model on the MFNet dataset [3]. The

proposed MDR+ subnetwork, CWF, MSC and MCC modules

are first removed from our model as the baseline (denoted by

‘BS’).

1) MDR+ Subnetwork: We first verify the effectiveness of

modality discrepancy reduction. Moreover, to further explore

the superiority of our improved MDR+ subnetwork, we pro-

vide visual and quantitative comparisons with the previous

version of the modality discrepancy reduction subnetwork

proposed in ABMDRNet [1]. Finally, we also verify the

effectiveness of each component in MDRNet+ subnetwork.

Here, ‘MDR†’ and ‘MDR’ denote the MDR+ subnetwork
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Features of the pseudo TIR image: 

(a)

Features of the matched real TIR image: 

Features of the pseudo TIR image: 

Features of the matched real TIR image: 

(b)

Fig. 12. For a given RGB-T image pair (shown in the top row), the shallowest
layers of pseudo and real TIR features obtained by our improved MDR+
subnetwork and those obtained by the previous version of the modality
discrepancy reduction subnetwork in [1] are shown in (a) and (b), respectively.

and the previous modality discrepancy reduction subnetwork

proposed in [1], respectively. ‘adv’ and ‘recon’ denote the

adversarial learning and the image reconstruction constraints

used in MDR+ subnetwork, respectively.

The quantitative and visual experimental results are shown

in Table I and Fig. 11, respectively. The results of ‘BS’,

‘BS+MDR’ and ‘BS+MDR†’ indicate that reducing the modal-

ity discrepancies between multi-modal features benefits the

exploitation of cross-modal complementary information, thus

boosting the performance of RGB-T semantic segmentation

greatly. Meanwhile, by comparing Fig. 11 (a) (or Fig. 11

(d)) with Fig. 11 (b) (or Fig. 11 (e)) and Fig. 11 (c) (or

Fig. 11 (f)), it can be observed that the cross-modal fused

features obtained by summation after reducing modality dis-

crepancies are more discriminative than those obtained by

summing directly. Furthermore, from the results of ‘BS+MDR’

and ‘BS+MDR†’ in Table I, it can be observed that the

improved modality discrepancy reduction subnetwork MDR+

proposed in MDRNet+ shows better performance than the

original modality discrepancy reduction subnetwork presented

in ABMDRNet [1], which benefits from our constraints on the

distribution of pseudo data as well as on the extraction of the

features from pseudo data and those from the matched real data

with the same modality. In addition, the visual comparisons

between Fig. 11 (b) (or Fig. 11 (e)) and Fig. 11 (c) (or Fig.

11 (f)) also verify the advantages of MDR+ subnetwork in

cross-modal complementary information exploitation. More

intuitively, the visual comparisons between the features of

pseudo and real TIR images obtained by the previous version

of the modality discrepancy reduction subnetwork in [1] and

those obtained by our MDR+ subnetwork is taken as an

example, as shown in Fig. 12. Owing to our improvements for

reducing modality discrepancy, more channels of features from

TABLE I
QUANTITATIVE RESULTS (%) OF ABLATION ANALYSIS FOR THE IMPROVED

MODALITY DISCREPANCY REDUCTION SUBNETWORK.

Methods mAcc mIoU

BS 57.30 47.99

BS+MDR 62.37 51.98

BS+MDR† 66.90 53.44

BS+MDR†+w/o adv+w/o recon 64.92 50.34

BS+MDR†+w/o adv 66.84 52.18

BS+MDR†+w/o recon 65.18 51.25

TABLE II
QUANTITATIVE RESULTS (%) OF ABLATION ANALYSIS FOR THE CWF

MODULE EMPLOYED IN THE FUSION STAGE.

Methods mAcc mIoU

BS+MDR†+Sum 66.90 53.44

BS+MDR†+Concat 66.58 52.95

BS+MDR†+CW 67.25 53.67

BS+MDR†+CWF 67.11 54.06

pseudo and real TIR images contain effective information.

This will further facilitate the RGB feature extractor Er to

capture more discriminative TIR information in addition to

the information of their own RGB modality, thus achieving a

more effective and more stable modality discrepancy reduction

from the perspective of unimodal feature enhancement.

Furthermore, in order to further verify the contributions

of each component in MDR+ subnetwork, we also conduct

ablation analysis on the adversarial learning technique and

image reconstruction constraints used in MDR+ subnetwork.

As shown in the 4th-6th rows of Table I, it can be observed

from the results among ‘BS+MDR†+w/o adv+w/o recon’,

‘BS+MDR†+w/o adv’ and ‘BS+MDR†+w/o recon’ that the

introduction of adversarial learning for constraining the dis-

tribution of pseudo data and image reconstruction constraints

for constraining the effectiveness of the features of pseudo and

real images can both facilitate modality discrepancy reduction.

2) CWF: To explore the superiority of our proposed CWF

module, we fully compare it with some existing RGB-T

feature fusion strategies (e.g., ‘Sum’ [21], [23], [24], ‘Con-

cat’ [3], [22] and ‘CW’ [49]). The quantitative experimental

results are shown in Table II. It can be observed that, com-

pared with other fusion strategies (e.g., ‘BS+MDR†+Sum’,

‘BS+MDR†+Concat’, BS+MDR†+CW), our proposed CWF

module can more effectively select those discriminative infor-

mation from multi-modal features, which can further facilitate

the exploitation of cross-modal information for RGB-T seman-

tic segmentation.

3) MSC and MCC: MSC: We verify the effectiveness of

MSC module by embedding it into the baseline model ‘BS’

mentioned in Table I and the model ‘BS+MDR†+CWF’ men-

Before 

MSC

After 

MSC

Fig. 13. Visual comparisons of the cross-modal fused features before and
after employing MSC.
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TABLE III
QUANTITATIVE RESULTS (%) OF ABLATION ANALYSIS FOR MSC AND

MCC MODULES. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS.

Methods mAcc mIoU

BS+MSC 65.75 52.86

BS+MDR†+CWF+MSC 68.61 54.01

BS+MCC 69.19 53.66

BS+MDR†+CWF+MCC 72.02 55.00

BS+MSC+MCC 70.87 54.93

BS+MDR†+CWF+MSC+MCC (MDRNet+) 74.65 56.78

TABLE IV
QUANTITATIVE RESULTS (%) OF DIFFERENT HYPER-PARAMETERS OF

LOSS FUNCTIONS. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS.

λ0:λ1:λ2:λ3 mIoU λ0:λ1:λ2:λ3 mIoU λ0:λ1:λ2:λ3 mIoU

1:0:0:0 55.70 1:0.01:1:0 56.23 1:0.01:1:0.01 56.29

1:0:0.2:0 55.94 1:0.02:1:0 56.20 1:0.01:1:0.02 56.45

1:0:0.4:0 55.95 1:0.04:1:0 56.09 1:0.01:1:0.04 56.50

1:0:0.8:0 56.01 1:0.08:1:0 56.18 1:0.01:1:0.08 56.59

1:0:1:0 56.08 1:0.1:1:0 56.18 1:0.01:1:0.1 56.80

tioned in Table II, respectively, thus obtaining ‘BS+MSC’ and

‘BS+MDR†+CWF+MSC’. As shown in Table III, the results

of ‘BS+MSC’ and ‘BS+MDR†+CWF+MSC’ indicate that the

introduction of the multi-scale information of cross-modal

fused features and their long-range dependencies along the

spatial dimension may provide more crucial spatial contextual

information for semantic segmentation. Fig. 13 illustrates the

visual comparisons of cross-modal fused features before and

after employing MSC, which indicates the discriminability

of the cross-modal fused features can be greatly boosted by

introducing those contextual information captured by MSC.

MCC: To validate the effectiveness of MCC, we em-

bed it into the baseline model ‘BS’ mentioned in Table

I and the model ‘BS+MDR†+CWF’ mentioned in Table

II, respectively. Obviously, the results of ‘BS+MCC’ and

‘BS+MDR†+CWF+MCC’ in Table III verified that the se-

mantic contextual information obtained by introducing the

multi-scale information of cross-modal fused features and their

long-range dependencies along the channel dimension can

further boost the RGB-T semantic segmentation performance.

Fig. 14 provides the visual comparisons of cross-modal fused

features before and after employing MCC module. It can also

be observed that more discriminative contextual information

containing rich target semantics is effectively mined by MCC.

Finally, we also embed the MSC and MCC modules into

the baseline model ‘BS’ mentioned in Table I and the model

‘BS+MDR†+CWF’ mentioned in Table II. As shown in the

5th-6th rows of Table III, the results of ‘BS+MSC+MCC’ and

‘BS+MDR†+CWF+MSC+MCC (MDRNet+)’ indicate that the

joint mining of multi-scale information of cross-modal fused

Before 

MCC

After 

MCC

Fig. 14. Visual comparisons of the cross-modal fused features before and
after employing MCC.

features and their long-range dependencies along the spatial

and channel dimensions can further facilitate the exploitation

of contextual information for RGB-T semantic segmentation.

4) Hyper-Parameter Settings: In this section, we con-

duct extensive experiments to determine the optimal hyper-

parameters to control the tradeoff among the loss functions

during the training phase, i.e., λ0 for the semantic segmenta-

tion loss Lseg , λ1 for the adversarial losses Lt
adv and Lr

adv ,

λ2 for the modality discrepancy reduction losses Lr→t
mdr and

Lt→r
mdr, and λ3 for the image reconstruction losses Lt

rec and

Lr
rec. According to the results from Table IV, we finally set

λ0, λ1, λ2 and λ3 to 1, 0.01, 1 and 0.1, respectively, in our

proposed model for better performance.

E. Comparison with the State-of-the-Art Methods

In this section, we compare our model with 16 state-of-

the-art (SOTA) methods, including 3 deep learning based

RGB semantic segmentation methods (i.e., DUC [12], DANet

[16] and HRNet [13]), 10 RGB-T semantic segmentation

approaches (i.e., MFNet [3], RTFNet-50/152 [21], PSTNet

[22], MLFNet [23], MMNet [26], AFNet [25], FuseSeg-

50/161 [24], ABMDRNet [1]), FEANet [28], EGFNet [29]

and 3 RGB-D semantic segmentation models (i.e., LDFNet

[42], ACNet [43] and SA-Gate [45]). Visual and quantitative

comparisons are both taken into account for comprehensive

comparisons.

1) Evaluation on the MFNet Dataset: To evaluate the

effectiveness of the proposed MDRNet+, we provide compre-

hensive comparisons between our model and other existing

methods on the MFNet dataset [3]. The quantitative results

are shown in Table V, which demonstrates that our method

outperforms other SOTA methods by a large margin on the

MFNet dataset [3]. This indicates that our method can well

exploit the complementary information from RGB-T image

pairs by using the MDR+ subnetwork and CWF module

and fully mine the contextual information by the proposed

MSC and MCC modules, thus significantly facilitating RGB-T

semantic segmentation. In addition, we are especially excited

to obtain a noticeable gain (i.e.,+5.2% and +2.0% in terms

of mAcc and mIoU, respectively) over the previous version

ABMDRNet [1], which benefits from our improvements for

modality discrepancy reduction.

To further explain the superiority of our proposed model,

Fig. 15 provides some visual comparisons of different models.

As shown in the 1st-3rd rows of Fig. 15, our proposed method

achieves significant superiorities over other SOTA models

under poor lighting conditions. This owes to the exploitation of

cross-modal information by the proposed MDR+ subnetwork

and CWF module. In addition, as shown in the 1st-6th rows

of Fig. 15, our method still outperforms other SOTA models

under complex scenes with multiple objects. This may benefit

from the robust contextual information of cross-modal fused

features and their long-range dependencies along the spatial

and channel dimensions mined by our proposed MSC and

MCC modules.

2) Evaluation on the PST900 Dataset: We also report

the quantitative experimental results of our model and other
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TABLE V
QUANTITATIVE RESULTS (%) OF DIFFERENT MODELS ON THE MFNET DATASET [3]. THE VALUE 0.0 REPRESENTS THAT THERE ARE NO TRUE POSITIVES

AND ‘—’ DENOTES THAT THE CORRESPONDING RESULTS ARE UNPUBLISHED. THE BEST THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN AND BLUE,
RESPECTIVELY.

Methods
Car Person Bike Curve Car Stop Guardrail Color Cone Bump

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

DUC [12] 92.4 82.5 84.1 69.4 71.3 58.9 58.4 40.1 25.5 20.9 17.3 3.4 60.0 42.1 52.2 40.9 61.2 50.7

DANet [16] 91.3 71.3 82.7 48.1 79.2 51.8 48.0 30.2 25.5 18.2 5.2 0.7 47.6 30.3 19.9 18.8 55.2 41.3

HRNet [13] 90.8 86.9 75.1 67.3 70.2 59.2 39.1 35.3 28.0 23.1 12.1 1.7 50.4 46.6 55.8 47.3 57.9 51.7

LDFNet [42] 87.0 67.9 83.9 58.2 82.7 37.2 67.4 30.4 32.9 20.1 8.2 0.8 67.4 27.1 55.6 46.0 64.6 42.5

ACNet [43] 93.7 79.4 86.8 64.7 77.8 52.7 57.2 32.9 51.5 28.4 7.0 0.8 57.5 16.9 49.8 44.4 64.3 46.3

SA-Gate [45] 86.0 73.8 80.8 59.2 69.4 51.3 56.7 38.4 24.7 19.3 0.0 0.0 56.9 24.5 52.1 48.8 58.3 45.8

MFNet [3] 77.2 65.9 67.0 58.9 53.9 42.9 36.2 29.9 12.5 9.9 0.1 0.0 30.3 25.2 30.0 27.7 45.1 39.7

RTFNet-50 [21] 91.3 86.3 78.2 67.8 71.5 58.2 59.8 43.7 32.1 24.3 13.4 3.6 40.4 26.0 73.5 57.2 62.2 51.7

RTFNet-152 [21] 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2

PSTNet [22] — 76.8 — 52.6 — 55.3 — 29.6 — 25.1 — 15.1 — 39.4 — 45.0 — 48.4

MLFNet [23] — 82.3 — 68.1 — 67.3 — 27.3 — 30.4 — 15.7 — 55.6 — 40.1 — 53.8

MMNet [26] — 83.9 — 69.3 — 59.0 — 43.2 — 24.7 — 4.6 — 42.2 — 50.7 62.7 52.8

AFNet [25] 91.2 86.0 76.3 67.4 72.8 62.0 49.8 43.0 35.3 28.9 24.5 4.6 50.1 44.9 61.0 56.6 62.2 54.6

FuseSeg-50 [24] — — — — — — — — — — — — — — — — 65.8 53.1

FuseSeg-161 [24] 93.1 87.9 81.4 71.7 78.5 64.6 68.4 44.8 29.1 22.7 63.7 6.4 55.8 46.9 66.4 47.9 70.6 54.5

ABMDRNet [1] 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8

FEANet [28] 93.3 87.8 82.7 71.1 76.7 61.1 65.5 46.5 26.6 22.1 70.8 6.6 66.6 55.3 77.3 48.9 73.2 55.3

EGFNet [29] 95.8 87.6 89.0 69.8 80.6 58.8 71.5 42.8 48.7 33.8 33.6 7.0 65.3 48.3 71.1 47.1 72.7 54.8

Ours 95.2 87.1 92.5 69.8 76.2 60.9 72.0 47.8 42.3 34.2 66.8 8.2 64.8 50.2 63.5 55.0 74.7 56.8

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

Background Car Person Bike Curve Car Stop Guardrail Color Cone Bump

Fig. 15. Visual comparisons of different methods. (a) RGB images; (b) TIR images; (c) DUC [12]; (d) DANet [16]; (e) HRNet [13]; (f) LDFNet [42]; (g)
ACNet [43]; (h) SA-Gate [45]; (i) MFNet [3]; (j) RTFNet [21]; (k) MMNet [26]; (l) ABMDRNet [1]; (m) Ours; (n) Ground truth.

TABLE VI
QUANTITATIVE RESULTS OF DIFFERENT MODELS (%) ON THE PST900 DATASET. ‘—’ DENOTES THAT THE CORRESPONDING RESULTS ARE

UNPUBLISHED. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS.

Methods
Background Fire-Extinguisher Backpack Hand-Drill Survivor

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [3] 98.89 97.85 68.59 4.87 77.49 63.02 57.15 37.31 15.40 8.63 63.50 50.34

RTFNet-50 [21] 99.74 98.89 69.78 54.46 73.08 67.91 64.07 52.24 58.19 54.11 72.97 65.52

PSTNet [22] — 98.85 — 70.12 — 69.20 — 53.60 — 50.03 — 68.36

ABMDRNet [1] 99.78 99.00 76.49 66.22 71.41 67.91 81.24 61.52 66.40 62.02 79.06 71.33

Ours 99.30 99.07 90.17 63.04 93.53 76.27 86.63 63.47 85.56 71.26 91.04 74.62

(a) (b) (c) (d)

Fig. 16. Some failure cases of our proposed method. (a) RGB images; (b)
TIR images; (c) Ours; (d) Ground truth.

TABLE VII
QUANTITATIVE RESULTS (%) OF DIFFERENT MODELS ON THE RTSS

DATASET. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS.

Methods
Background Human Car Non-motor

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [3] 99.4 97.9 56.2 47.5 84.9 78.7 55.9 47.9 74.1 68.0
RTFNet-50 [21] 99.4 98.0 46.0 39.2 91.0 84.6 50.1 44.1 71.6 66.5
PSTNet [22] 99.1 97.9 56.3 44.6 88.2 79.5 64.2 49.9 76.9 68.0
ABMDRNet [1] 99.4 98.5 66.9 54.9 91.7 85.5 65.4 56.9 80.8 74.0
Ours 99.5 98.5 64.6 56.0 91.2 85.7 73.8 61.0 82.3 75.3

RGB-T semantic segmentation models on the PST900 dataset.

As shown in Table VI, our proposed MDRNet+ still out-
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TABLE VIII
COMPLEXITIES AND INFERENCE SPEEDS OF DIFFERENT MODELS ON AN

GTX 1080TI GPU FOR AN RGB-T IMAGE PAIR OF SIZE 480×640. ‘—’
DENOTES THAT THE CORRESPONDING RESULTS ARE UNPUBLISHED.

Methods Backbone FLOPs/G Params/M Size/M FPS

DUC [12] ResNet-50 211.22 246.06 939.30 62.83

DANet [16] ResNet-50 144.08 359.57 1372.29 63.82

HRNet [13] DCNN 222.58 132.72 507.61 11.87

LDFNet [42] ERFNet 27.69 2.41 9.33 74.58

ACNet [43] ResNet-50 123.81 116.60 445.70 36.87

SA-Gate [45] ResNet-50 193.25 110.85 198.38 54.36

MFNet [3] DCNN 8.39 0.72 3.01 229.86

RTFNet [21] ResNet-152 337.04 254.51 1024.00 34.07

AFNet [25] DeepLab — — — 79.30

FuseSeg [24] DenseNet-161 193.40 141.52 568.30 30.01

ABMDRNet [1] ResNet-50 194.33 64.60 901.00 40.14

Ours ResNet-50 194.33 64.60 901.00 40.14

performs other models. This demonstrates the effectiveness

of our proposed model on different datasets. What’s more,

compared with the previous version ABMDRNet [1], our

model improves the semantic segmentation performance by

11.98% and 3.29% in terms of mAcc and mIoU, respectively,

which further verifies the validity of our improvements for

reducing modality discrepancies.

3) Evaluation on the RTSS Dataset: To further evaluate

the effectiveness of the proposed MDRNet+, we also compare

our model with some RGB-T semantic segmentation methods

on our proposed RTSS dataset. The quantitative experimental

results are shown in Table VII. Our model is also superior

to other SOTA methods remarkably. This may result from

the fact that scenarios in the challenging RTSS dataset have

higher dependencies on multi-modal data and the strategy of

bridging-then-fusing can better facilitate the exploitation of

those discriminative cross-modal complementary information.

Notably, the mAcc and mIoU value improvements (i.e., mAcc
from 80.8% to 82.3% and mIoU from 74.0% to 75.3%) of

MDRNet+ over the previous version ABMDRNet [1] also

demonstrate that the improved MDR+ subnetwork can bet-

ter reduce modality discrepancies, thus improving semantic

segmentation performance.

4) Complexities and Inference Speed Analysis: We measure

the inference speed of our proposed MDRNet+ and other

SOTA models on an NVIDIA GeForce GTX 1080Ti GPU.

Furthermore, the number of parameters (Params), the FLoating

point OPerations (FLOPs) and the memory sizes of these

RGB-T semantic segmentation models are also reported. As

shown in Table VIII, our model achieves competitive inference

speeds, i.e., 40.14 FPS, with other models. Noticeably, the

inference speed, Params, FLOPs and memory sizes of our

method is exactly the same to those of the previous version

ABMDRNet [1], because the modality discrepancy reduction

only occurs in the training phase and no additional parameters

and computational costs are introduced in the testing phase.

F. Failure Cases

In this section, we report some failure cases for our pro-

posed model. As shown in the red boxes of Fig. 16, some tiny

objects, which usually occupy less than 1000 pixels in the

scenes, are difficult to be precisely perceived by our model.

Even though the proposed MSC and MCC modules can deal

with objects with different sizes to some extent, the deepest

layers of features extracted by the hierarchically structured

CNN encoders almost lose the full details and semantics

of those tiny objects. As a result, those tiny objects may

not be well perceived when just using such features of the

deepest layers to predict semantic segmentation masks. We

will study this issue in the future work, which may be solved

by strengthening the exploitation of multi-level features.

VI. CONCLUSION

In this paper, a novel MDRNet+ has been presented for

RGB-T semantic segmentation, where the modality discrep-

ancy reduction, cross-modal feature fusion and contextual

information mining are simultaneously considered. By virtue

of the improved MDR+ subnetwork, the discrepancies between

RGB data and TIR data can be greatly reduced in a stable

way. On top of that, the discriminative multi-modal features

can be adaptively selected and fused by the proposed CWF

module. As a result, our bridging-then-fusing strategy can

obtain higher discriminative cross-modal features than those

traditional fusion modules do. This greatly improves the

semantic segmentation performance of our proposed model.

Owing to the proposed MSC and MCC modules, the con-

textual information can be well exploited by exploring the

interaction between multi-scale information of cross-modal

fused features and their long-range dependencies along the

spatial and channel dimensions. Thanks to that, the issue of

objects diversity in semantic segmentation can be addressed to

a large extent. In addition, we also provide a challenging RGB-

T semantic segmentation dataset RTSS with pixel-level labels

on four categories for urban scene understanding. Extensive

evaluations have verified the effectiveness and superiorities of

our proposed RGB-T semantic segmentation model. With the

collaboration of these subnetwork and modules, our proposed

RGB-T semantic segmentation model achieves competitive

results with other SOTA models on the MFNet, PST900 and

RTSS datasets.
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