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One key task in the early fight against the COVID-19 pandemic was to plan
non-pharmaceutical interventions to reduce the spread of the infection while limiting
the burden on the society and economy. With more data on the pandemic being
generated, it became possible to model both the infection trends and intervention
costs, transforming the creation of an intervention plan into a computational
optimization problem. This paper proposes a framework developed to help policy-
makers plan the best combination of non-pharmaceutical interventions and to
change them over time. We developed a hybrid machine-learning epidemiological
model to forecast the infection trends, aggregated the socio-economic costs
from the literature and expert knowledge, and used a multi-objective optimization
algorithm to find and evaluate various intervention plans. The framework is modular
and easily adjustable to a real-world situation, it is trained and tested on data collected
from almost all countries in the world, and its proposed intervention plans generally
outperform those used in real life in terms of both the number of infections and
intervention costs.
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1. Introduction

The first line of defense against the spread of the SARS-CoV-2 virus was the introduction
of Non-Pharmaceutical Interventions (NPIs) by national governments. With the virus being
aerosol-borne, some of the key measures included the use of face masks and restrictions on
gatherings, which have often resulted in partial or full lockdowns. While effective at reducing
the number of infections (1, 2), restrictive NPIs also presented immense Socio-Economic
Costs (SECs) to the population (3). Policy-makers were faced with an almost impossible task
of carefully balancing NPI costs against the predicted NPI benefits, largely without having
appropriate tools and data for evidence-based decisions.

To add complexity to the problem, in a typical intervention plan adopted by policy-makers,
a combination of NPIs would be used, each of them taking place for different periods of
time. These plans were usually prepared by expert panels who had the challenge of selecting
intervention plans without assurance that they would really flatten the infection curve enough
to be lifted within the expected period (4, 5).
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While many models for the prediction of daily infections and
the impact of NPIs on the spread of the pandemic have been
proposed (1, 2), little work has been done regarding the prescription
of intervention plans—especially taking into account the NPI costs
and how to best combine NPIs. Yousefpour et al. (6), for example,
proposed a framework based on SEIRD models and multi-objective
optimization to prescribe NPIs. However, the optimization did not
operate on real-life NPIs, and as such, this approach cannot be
directly used by policy-makers. Chen et al. (7) created a linear
programming tool to explore the trade-off between the expected
mortality rate of COVID-19 and return to normal activities, while
Yaesoubi et al. (8) developed a decision tool to determine when to
trigger, continue, or stop physical distancing intervention in order
to minimize both the deaths from COVID-19 and intervention
duration. Both studies combined the objectives into a single function
and the final result was a single intervention plan. Such approaches
require a strong predefined preference on how to balance the
objectives, which is often difficult to define in practice. In addition,
none of the three approaches was extensively tested on various
epidemiological scenarios. For this reason, their generalization to
real-world situations is not known.

A more structured attempt to research the possibility of using
artificial intelligence (AI) to automatically prescribe intervention
plans was made by the $500K Pandemic Response Challenge (9),
organized by XPRIZE and sponsored by Cognizant. The participants
were tasked with finding good trade-offs between the costs of NPIs
and their benefits—and assemble three-month intervention plans
for each territory (all countries and some sub-country regions). An
approach proposed by the sponsor [Miikkulainen et al. (10)] involved
the use of evolutionary algorithms to evolve neural networks that
prescribe intervention plans. This approach was intended to point
the way for the competitors, who would go on to develop better-
performing approaches. The competition ended with two “Grand
Prize Winners.” One of them (11) combined two prescriptors:
the first selected the most cost-effective intervention plans from
a subset of possible plans with precomputed effectiveness, and
the second greedily composed intervention plans from most cost-
effective individual NPIs. The other winning submission—submitted
by some of this paper’s authors—was the starting point for the
approach described here.

In this paper, we describe a framework to help policy-makers
design reasonable intervention strategies by dynamically adjusting
NPIs. The framework is comprised of three components: a predictor
based on the SEIRD epidemiological model that predicts infection
trends, a compilation of SECs of NPIs, as found in the literature, and a
prescriptor that finds diverse optimized intervention plans. The main
methodological novelty of the predictor is that the key parameters of
the SEIRDmodel can be dynamically adapted to any set of given NPIs
using a machine-learning model. Intuitively, the machine-learning
model decreases the disease transmission rate in the SEIRD model
when strict NPIs are in place, and vice versa. In contrast to most
related work, our prescriptor uses multi-objective optimization and
does not combine the objectives into a single function. As such, it
can find near-optimal trade-offs between the costs (SEC) and benefits
(reduced number of infections) of NPIs, and presents the results
in the form of a Pareto-front approximation. Ideally, the obtained
Pareto-front approximation ranges from costly intervention plans,
which significantly decrease infections, to cheap but not as effective

TABLE 1 Social and economic costs for OxNPIs.

OxNPI Economic Social Combined

C1: School closing 3.9 11 0.55

C2: Workplace
closing

22.0 11 0.96

C3: Cancel public
events

1.4 7 0.32

C4: Restrictions on
gatherings

1.4 10 0.45

C5: Close public
transport

0.3 2 0.09

C6: Stay at home
requirements

5.2 12 0.62

C7: Restrictions on
internal movement

7.8 10 0.59

C8: International
travel controls

6.6 2 0.20

H1: Public
information
campaigns

0.0026 1 0.04

H2: Testing policy 0.6 1 0.05

H3: Contact tracing 0.1 1 0.04

H6: Facial coverings 0.03 5 0.21

Economic costs are shown as % of GDP loss in the period the NPI was implemented. The social

costs are based on domain knowledge and expressed on a 1–12 scale. The combined column is

the average of the two costs, when both are normalized to the [0, 1] range.

ones—presenting a set of plans for the policy-maker to choose from.
Our methodology was extensively tested: the predictor was tested
on data from 194 territories and the prescriptor on data from 50
territories. It yields semantically sensible results, achieves similar
or better prediction accuracy than previously proposed models,
and furthermore, proposes better plans—at least based on our
simulations—than those actually implemented by policy-makers in
the studied period (March 2020 to April 2021).

2. Methods

We defined an intervention plan as a prescription of which
NPIs, and with what strictness, are to be used on each day in a
time period. For this study we considered 12 NPIs listed in Table 1,
and we denoted this set as OxNPIs as it is derived from Oxford’s
OxCGRT dataset (12) introduced in the following subsection. The
task of finding good intervention plans could then be framed as a
multi-objective optimization problem—trying to minimize both the
number of infections and the SEC that would result from a given
plan.

Given this formulation, we had to solve the following three
problems: 1) how to estimate the number of infections in a specific
territory, given an intervention plan; 2) how to estimate the SEC of
an intervention plan; and 3) how to use both these estimators and a
multi-objective optimization algorithm to find different intervention
plans. We start by describing the dataset used and then our solution
to each of the listed problems in the following subsections.
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2.1. Dataset

The NPIs used in this study were derived from the “COVID-
19 Government response tracker” database, collected by Blavatnik
School of Government at Oxford University (12). This database
defines the periods in which different NPIs (e.g., “C1: School closing”
and “C8: International travel controls”) were implemented in each
territory (entities such as countries, US states, or counties of the
UK). It also defines their “strictness” in the form of numbers usually
ranging from 0 to 3 or 4, which can represent, for example, if all or
only some schools were closed. From the NPI list available in the
Oxford database, we selected 12 for analysis in this study: H1, H2,
H4, H6, C1-C8 (OxNPIs). Their description and the reasoning for
their selection can be found in the Supplementary material—Non-
Pharmaceutical Interventions.

The number of infections and deaths (note that we are working
with “reported cases” which is only an approximation for the
actual number of infections) was queried from the same database
for the period between March 1, 2020, and April 14, 2021.
This database contained 235 territories, of which different subsets
were used in different stages of our methodology. For fitting the
epidemiological model, all 235 territories were used. Then, some
territories were excluded as their data could not be accurately fit with
an epidemiological model (e.g., if the number of reported infections
were too low or data was missing). This resulted in 194 territories
on which we evaluated the predictive model. For each of them, we
chose fifty 70-day time intervals, thus generating 9,700 test cases for
the task.

In addition to the already described OxNPIs and infection
numbers, the following attributes were used to train the machine-
learning models: vaccination (13) (one shot, two shots), strains
(14, 15) of concern and interest as defined by the World
Health Organization (16) testing rate (17), number of hospitalized
patients (18), number of patients in intensive care (18), mask use (19),
mobility (20, 21), weather (22), holidays (19), and 93 static features
characterizing countries and regions (e.g., development, culture, and
health) from our previous study (23). “Duration” features were also
constructed to capture how long each NPI had been active to date and
how much time had elapsed since the first recorded infection case.

Finally, for the prescriptor evaluation, we chose a representative
sample of 50 different 60-day intervals. This sample was selected by
first defining the “category” for each time interval: the categories
were created based on the size of the territory (small/large) and
the derivative of the number of infections (slope). The slopes were
either constant, moderately steep (falling/raising), or very steep
(falling/raising). Altogether, we had 10 categories, and we randomly
selected five time-intervals from each. An additional condition for an
interval to be selected was to have at least 0.5 average number of daily
new infections per 100k of population.

2.2. Hybrid machine-learning
epidemiological model

To predict the future number of infections we used an
epidemiological model that can model the course of the disease given
some parameters (infection rate, incubation period, mortality) in

combination with a machine-learning model that can estimate these
parameters from the active NPIs.

2.2.1. Epidemiological model
We used the SEIRD (24) model, which originates from the

SIR family of standard epidemiological models used to study the
dynamics of infectious diseases. Even if the SEIRD model is more
complex than the basic SIR or SIRD models, it has proven to
be more numerically stable than the other two for our purpose,
and in addition, the numbers for all five categories were available.
The model consists of a set of differential equations (Equation 1).
Letters represent the size of a given compartment (Susceptible,
Exposed, Infected, Recovered, and Deceased), N is the sum of all
compartments, β is the infection rate, σ is the incubation period
(1/days), γ is the recovery rate, µ is the mortality rate, and t is time.
The reproduction number can be estimated as β

σ
.

dS

dt
= −β

SI

N
dE

dt
= β

SI

N
− σE

dI

dt
= σE− (γ + µ)I

dR

dt
= γ I

dD

dt
= µI

(1)

In a standard SEIRD model, the parameters β , µ, and σ are
constant. In reality—especially in the case of COVID-19—they are
highly dependent on various factors, including the NPIs. In related
work, there were several attempts at modeling β as a function
of interventions. In the DELPHI model developed by COVID
Analytics (25), the effect of interventions was modeled using an
arctan function (26). Zou et al. (27) used machine learning to learn
the epidemiological model parameter values from the number of
infected and removed (deceased and recovered) cases at time t.
In our model, we used machine-learning models that used several
different features to achieve this task—allowing us a greater flexibility
in dynamically changing the parameters, as opposed to what could be
achieved with other methods from related work.

2.2.2. Predicting the model parameters with
machine learning

The first step of the process was to fit the β , µ, and σ

parameters to different territory/time intervals. This was done by
finding parameter values that minimize the least squares error in
predicting the reported number of infections and deaths. The time
series of data for each of the 235 territories were split into intervals
based on two criteria: NPI change (at least two NPIs change on the
same day) and infection trend (a 7-day moving-average number of
infections that was previously raising, starts falling—or vice versa),
and each was fitted separately.

These fitted values were then used as prediction targets for three
machine-learning regression models (one model per parameter).
When trained, these models would be used to predict the parameters
when evaluating different NPIs by the prescriptor.

For the prediction of each parameter, we used the features
described in the Dataset section, and some of their subsets. We
performed an initial feature selection on the available dataset by
employing Recursive Feature Elimination (RFE) with a 10-fold cross-
validation. We evaluated both 1) straightforward feature selection
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(i.e., running the algorithm on all available features), and 2) including
the OxNPIs in the selected features and running the RFE only on
the remaining features. However, the results showed no significant
improvement after the RFE algorithm. For the sake of model
interpretability, we selected the features presenting the strongest
correlation with the reported number of infections, and ended up
with OxNPIs, duration features, historical infections, COVID-19
strains, and vaccination features.

We tested linear regression (28), ridge regression (28), decision
tree (28), LGBM (29), XGB (30), CatBoost (31), Elastic Net (28),
Bayesian ridge (28), SVR (28), and Random Forest models (28).
The models were compared with 10-fold cross-validation where
the train/test splits were performed territory-wise, meaning that all
instances of a territory were in either the test or the train set. Keeping
all instances of one territory in the same set was important since
consecutive instances were typically similar.

In the cases of linear and ridge regression, the regression
coefficients for the final model were calculated as the mean values
of the coefficients generated in the 10-fold cross-validation. The “H1:
Public information campaigns” regression coefficient initially had an
excessive value because the corresponding NPI was essentially always
present (and was thus used by the model almost as the intercept).
We, therefore, manually adjusted it based on Haug et al.’s (32) study.
Specifically, we used the four NPIs for which there was a good match
between our categorization and the one presented by Haug et al.: “C1:
School closing,” “C7: Restrictions on internal movement,” “C3: Cancel
public events,” and “C5: Close public transport.” We computed the
ratio between the decrease in reproduction rate (β/γ ) for these four
NPIs (32), and the decrease for “H1: Public information campaigns.”
We then multiplied our coefficients for the same NPIs with these
ratios, which yielded four possible values for the H1 coefficient. We
used the average of these. We then re-ran the regression with fixed
relations between the NPI coefficients, so that the relation between
them and other coefficients could be readjusted.

Since the parameter β (infection rate) was most strongly affected
by NPIs, and since we are aware of no strong reason why the other
two should be, we also considered predicting β only. And since the
parameters of the model are not independent, we considered using
some as features for the prediction of others. However, both of these
approaches gave worse results.

2.2.3. Prediction pipeline
The goal of the prediction pipeline is to predict the number

of infections given an intervention plan (which OxNPIs are used
on a given day). To do so, we create a feature vector by joining
the OxNPI data with the remaining features. Then, for each day, a
prediction of all three parameters is made with the three respective
machine-learning models.

Next, for the time interval leading to (but not including) the
prediction interval, the fitted parameters are queried. We assume that
the parameters at the beginning of the prediction interval should be
the same as the fitted parameters at the end of the last one directly
preceding it. Thus, the machine-learning predictions are normalized
as βi = βlast/β0, where βi is the value of the predicted parameter β

on the i-th day, and βlast is the last known fitted value of β preceding
the prediction interval. Parameters σ and µ are normalized similarly.

If the parameters for any day are such that the reproduction rate
exceeds five, then the value of β is reduced until the reproduction

rate falls to this threshold value. This is done because such high
reproduction rates do not appear in real-life data, but they might be
predicted due to some edge case in machine learning. All parameters
are smoothed using weighted decay (α = 0.2), as we assume that all
parameters are changing smoothly.

When the parameters are estimated for each day, they are
inserted into the SEIRD model, which can then produce the number
of infections for each day. The starting value of the “Exposed”
compartment is set in a way such that the predicted and reported
numbers of infections match on day zero.

2.3. Socio-economic costs of di�erent NPIs

The collection of socio-economic costs (SEC) of individual
OxNPIs was not the primary focus of our work, but nonetheless we
compiled a sensible set in order to properly test our methodology.
The collected SECs were derived from a set of costs from related
work and from the opinion of a domain expert. Due to the available
literature, the costs are likely to contain a bias toward Western
countries, and most data is based on reports and gray literature.

In the study, we used the values listed in Table 1, but the
methodology is rather general and a policy-maker can easily adapt
it to produce a set of SECs for a specific territory—possibly also
implicitly expressing their preferences on what NPIs to avoid (by
assigning them higher costs). The combined SEC is made simply by
normalizing both costs to the [0, 1] range and then averaging both.
While this number does not have a good interpretation, it does rank
the OxNPIs according to their SECs. The costs are given for the case
in which the NPI is implemented with its maximum strictness. For
other strictness levels, the costs were linearly scaled down (in rare
cases, a custom social cost was defined and used instead of the linearly
scaled value). In addition, the “C6: Stay at home requirements” NPI
requires the implementation of the C1, C2, C3, C4, C5, and C8 NPIs.
Thus, even if it did not have the highest cost, the overall cost implicitly
includes the costs of all other listed NPIs.

2.3.1. GDP loss
Because the available findings on economic cost of NPIs differ in

terms of the setting and time, they were normalized to represent the %
of GDP loss caused by the NPI while it was in effect. Country-specific
GDP values (US $) were used (33). For example, if the “C3: Cancel
public events” NPI is active for 1 month and it has the cost of 1.4,
then our method assumes that the GDP in this month is 1.4% lower
than usual—note that this is not the annual GDP loss but that for the
predicted period. The complete overview of the cost data used can
be found in the Supplementary material—GDP cost. While there is
some overlap between the NPIs, we have explicitly modeled this only
in case of C6 as previously described.

2.3.2. Social impact
While economic costs were available for most OxNPIs, the

literature on social costs was far more scarce. We thus placed the
ranking of OxNPIs by social costs on a theoretical foundation, but
we could not justify the numerical costs as solidly. In addition,
according to the literature, these costs may vary across countries
(e.g., collectivistic vs. individualistic countries); however, we applied
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standard levels for all WEIRD countries (i.e., for Western, Educated,
Industrialized, Rich, and Democratic, a common grouping in
psychological studies). To estimate the social costs, we ranked the
OxNPIs from the highest to the lowest based on the perceived strain,
dread and loss, perceptions of restricted freedoms, and constraining
behaviors (i.e., on the negative impact of each measure on behavior,
attitudes, and one’s well-being). Using the rational choice theory,
we assumed that the higher the perception of strain, dread and
loss, the more negative is the impact and the higher are the social
costs. Understanding human behavior and risk perception is central
to effective pandemic management, and thus we applied insights
from social and behavioral sciences to inform our assumptions on
social impact. For determining the cost of individual policies see
Supplementary material—Social cost discussion.

2.4. Proposing interventions

The task of proposing intervention plans can be mathematically
formulated as a multi-objective optimization problem with two
objectives that need to be minimized: the total number of infections
(f1) and the SECs of the proposed plan (f2). The two objectives are
conflicting since an effective way to slow down the spread of infection
requires a stringent intervention plan with expensive NPIs. The first
objective is expressed as the total number of infections predicted from
the HMLE model, while the second objective is the cost of NPIs
averaged over the plan’s duration. The problem is constrained by
limiting the number of new daily infections to 150 per 100k residents.
This is done as the plans with more infections were not considered
useful to policy-makers and almost never appear (< 1%) in real-life
data in the studied period.

The proposed intervention plans are composed of OxNPIs
that can vary over time, but are restricted to last at least g days
in a row, where g is a predetermined parameter we refer to as
granularity. An NPI, for example, “C2: Workplace closing,” can be
applied with different levels of strictness (0—no policy, 1— closure
recommended, 2—closure for specific sectors, 3—closure for all-but-
essential workplaces). With this in mind we can formally define
the intervention plan—a solution to the proposed optimization
problem—as a 12 × n integer-valued matrix, P, where its 12 rows
correspond to the 12 OxNPIs and n is the number of time slots
determined by the given granularity and the whole period (e.g.,
Figure 1 contains n = 4 time slots resulting from a granularity value
of 14 days and an interval length of 60 days). In detail, Pij indicates
the strictness of the i-th NPI in the j-th time slot. In particular, we
tested five values for granularity: 1, 3, 7, 14, and 30.

Based on the multi-objective formulation of the proposed
optimization problem, the experimental evaluation aimed at finding
sets of trade-off intervention plans representing approximations for
Pareto fronts. For this purpose, we used the Nondominated Sorting
Genetic Algorithm II (NSGA-II) (34) equipped with a Constrained
Dominance Principle (CDP) (34) to handle the constraint. NSGA-
II belongs to the group of evolutionary algorithms, and as such,
it imitates the biological evolution to search the space of possible
intervention plans and find plans with good trade-offs between the
two objectives.

The optimization problem was solved using two NSGA-II
internal solution representations: the full representation defined by

FIGURE 1

Sample intervention plan for France between November 24, 2020, and
January 24, 2021, with a granularity value of 14 days. Refer to Figure 6
to see how this plan compares against other proposed plans in the
same period.

the matrix P and the condensed representation defined by a vector
of length n where the j-th variable corresponds to the maximum
SEC allowed at the j-th time slot. The second representation was
considered due to the significant reduction in the search space
dimensionality (from 12n to n), allowing for much faster convergence
than the high-dimensional search space for the full representation.
While the full representation can be used without modifications, the
condensed representation needs to be decoded to the intervention
plan before evaluation. This is achieved by replacing the SECs with
OxNPI values. The OxNPI combination to replace each SEC is
selected as the one with the lowest projected infections out of those
within the allowed SECs. This mapping is computed in advance, by
having all OxNPIs combinations sorted based on their effectiveness
(by using linear model’s coefficients for each NPI), so that the most
effective combination that does not exceed the cost threshold can
easily be selected.

The one-point crossover was used as the crossover operator and
the random resetting as the mutation operator. Additionally, the
crossover probability was set to 0.9 and the mutation probability to
1/D, where D equals 12n for the full representation and n for the
condensed representation.

3. Results

3.1. Predicting infections

While the SEIRD model on its own is accurate in predicting the
future in cases where NPIs are not changing and historically-fitted
parameters can be used (see Figure 2 and Supplementary material—
Estimating the prediction error), it does not correctly predict the
infection trends following a change of the NPIs— which is essential if
the framework is to propose which NPIs to use in the future. Ideally,
as the NPIs change, the parameters of the SEIRD system would be
adjusted accordingly, taking into account their changed impact on
the disease transmission rate. An example of such behavior can be
seen in Figure 2, as generated by our HMLE method.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1073581
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Janko et al. 10.3389/fpubh.2023.1073581

FIGURE 2

(A) Daily infections for Italy over 20 months (purple) together with the
predictions using best fitted SEIRD model (green). Fitting was
conducted by first splitting the data into segments, represented by
dashed vertical lines, where at least two NPIs were changed with
respect to the previous segment. Di�erent segments use di�erent
fitted parameters. (B) Daily infection predictions for Norway, made
both by using only fitted parameters (green) and by using parameters
adapted by machine learning, which reflect the change to more strict
NPIs (yellow).

To assess the performance of the HMLE method, we show in
Figure 3 that our predictor significantly outperforms the “standard
predictor” provided by Cognizant in the second phase of the XPRIZE
competition (9) (for details of this test, see Supplementary material—
Estimating the prediction error). This is a predictor published prior to
the competition (10), which represented the state of the art for NPI-
dependent prediction at the time. The mean average error (MAE)
of our predictor is 5.9 times lower on day 70. To explore what
contributes to the increased performance, we compared the full
implementation to two additional versions of our method: 1) one
that relies only on machine learning to set the parameter values of
the SEIRD model without normalizing them using the last known
fitted parameter values, and 2) one that retains the last known
fitted parameter values throughout the forecast period, without using

FIGURE 3

Di�erent versions of the HMLE method compared to the “standard
predictor” (9). Testing was conducted on 50 random time intervals for
each of the selected 194 territories.

FIGURE 4

Coe�cients from the linear model corresponding to OxNPIs. We use
the terminology of Oxford’s COVID-19 Government Response Tracker
(12), with containment (C) and health (H) categories. Relative values of
NPIs can signify their importance for reducing the number of
infections—the larger the negative value, the more they suppress the
infection spread.

machine learning to account for NPI changes. The experimental
results showed that the parameters predicted by themachine-learning
model are less appropriate on average, than the last known fitted
parameters; when normalized, however, they outperform the last
known fitted parameters. The benefit of machine learning does not
appear to be huge, but it is significant in case of important NPI
changes, as demonstrated in Figure 2.

Of all machine-learning algorithms tested (see
Supplementary material—Estimating the prediction error), the
Ridge classifier (a type of linear model) had the highest accuracy.
Aside from the prediction accuracy, the model has an additional
advantage—it is easily interpretable. Figure 4 lists the coefficients
corresponding to the normalized OxNPI strictness values. Given
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FIGURE 5

(A) Hypervolume progress for di�erent granularity values using
condensed representation and (B) hypervolume progress for full and
condensed representations with the best performing granularity
values. A logarithmic scale is used for the horizontal axis (number of
evaluations).

this normalization, the model’s coefficient magnitude can indicate
relative NPI importance. Our model’s most important intervention is
the cancellation of public events, which is consistent with the related
work that typically ranks it among the top NPIs (32). Next is school
closure, which additionally results in some parents staying at home,
so its importance is not surprising. These two are followed by contact
tracing—which is difficult to execute well, and other sources do not
rate this NPI as high. In the fourth place are international travel
controls, which played a big role in some countries, particularly in
the early stages of the pandemic. The importance of this NPI was
corroborated by Haug et al. (32). Other NPIs have notably lower
coefficient values. This may come as a surprise for “C2: Workplace
closing,” “C4: Restrictions on gatherings,” and “C6: Stay at home
requirements,” but it should be noted that 1) these three NPIs have a
large overlap with each other and with other NPIs, and 2) they were
usually instituted when the epidemiological situation was grave, with
many NPIs in force simultaneously, thus making it very difficult to

FIGURE 6

Comparing di�erent intervention plans for France. (A) Shows the SEC
(GDP loss + social cost) over time. (B) Shows the predicted number of
infections, (C) Shows the trade-o�s between the two criteria (SEC and
the number of infections) for di�erent plans.

properly isolate the importance of each of them. This is why in these
cases the assigned regression coefficient do not necessarily correctly
reflect their relative importance. Nonetheless, their sum is close to
the largest single coefficient. Of note, the NPI features were not the
only ones included in the model, but the coefficient values of the
others were an order of magnitude lower than those listed here.

Finally, for a direct comparison with related work, the HMLE
model described here is an improved version of the one used in the
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FIGURE 7

(A) Average SEC across all 500 proposed intervention plans (50 test
cases, 10 plans on each), given the number of days since the
intervention has started. (B) Average OxNPI strictness (normalized to
0-1 range) across all 500 proposed intervention plans, given the
number of days since the intervention has started.

XPRIZE challenge, which was ranking between the 1st and 4th place
during the 2 month prediction period on real data for 235 territories
(35).

3.2. Proposing interventions

Figure 1 shows a sample trade-off intervention plan consisting
of NPIs changing in time (g = 14), to provide a better intuition
for the end goal of this work. It lists all 12 OxNPIs, their maximum
value, and some sample values. For example, the intervention plan
depicted in Figure 1 suggests to close all-but-essential workplaces
from November 24, 2020, to December 20, 2020, but relaxes most
countermeasures after that.

The experimental setup was established based on some initial
experiments. NSGA-II was run with a population of 100 solutions
for 500 generations (50k plan evaluations in total). This number of
evaluations proved to be sufficient for convergence using coarser
granularity values. Moreover, increasing function evaluations did not
significantly improve the results, even for finer granularity values. For

this reason, 50k evaluations represented a good trade-off between the
framework’s effectiveness and efficiency.

We tried to identify the best value for granularity and we
compared five values: 1, 3, 7, 14, and 30. Theoretically, with a finer
granularity, we can achieve at least as good intervention plans as
with a coarser granularity. However, with finer granularity, aside
from being impractical in real-life use, the search space of the
optimization problem increases significantly, and the optimization
cannot always find the best solutions. Then, we compared the two
ways of representing intervention plans during optimization: full vs.
condensed.

In all experiments in this section, the optimization was tested on
50 representative territory/time interval examples (see Section 2.1.).
Due to the stochastic nature of the employed optimization approach,
the presented results were obtained after running the optimization
31 times on each example, as this is enough to obtain statistically
relevant results. To measure the effectiveness of the multi-objective
optimization, we used the well-known hypervolume indicator (36)—
the volume of the area bounded by the Pareto front approximation
and a user-defined reference point. The medians of the obtained
hypervolumes were used for testing the statistical significance of one
granularity/representation being better than the other.

We first compared different granularity values when using
the condensed representation. According to the Friedman test,
we observed statistically significant differences between granularity
values: χ2(3) ≈ 150.678 and p < 0.01 for social weights, χ2(3) ≈

119.309 and p < 0.01 for GDPweights, and χ2(3) ≈ 106.139 and p <

0.01 for combined weights. Post-hoc analysis with Wilcoxon signed-
rank test and Holm’s correction to adjust the p-values indicated
that the granularity of 14 days was the most effective among the
tested values (see Supplementary material—Details about the multi-
objective optimization results).

Our results confirm that the optimization algorithm struggles to
find near-optimal interventions plans with fine granularity values,
due to the increase in search space dimensionality. For example,
Figure 5 shows the hypervolume progress—the improvement of
the results during the optimization—averaged over 31 optimization
runs where the number of intervention plan evaluations was
experimentally increased from the default 50 to 300 k. This was done
to estimate the optimization behavior and convergence when using
a large number of evaluations. As we can see, although the results
obtained with a granularity value of 7 days eventually surpassed
those results obtained with a granularity value of 14 days (at around
230 k evaluations), the computational time required to obtain better
results using finer granularity values was almost five times longer,
and the gain in the solutions’ quality was negligible compared to
the additional computational resources spent (Figure 5). In addition,
the extremely small differences between the granularity value of 7
or 14 days are practically irrelevant since, in a real-world scenario,
the objectives cannot be measured and predicted with such accuracy.
Moreover, it is easier to implement intervention plans that change
with coarse granularity values (37); therefore, a granularity value of
14 days seems to be a reasonable choice.

A similar investigation was devoted to finding the best granularity
value for the full representation. The results of the statistical analysis
revealed significant differences in hypervolume values and showed
that the granularity of 30 days is the best performing value for
this representation. The complete results can be found in the
Supplementary material.
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Finally, we compared the full and condensed representations with
the best performing granularity values. According to the Wilcoxon
signed-rank test, the condensed representation outperformed the full
representation for all types of weights (p < 0.01). Moreover, Figure 5
compares the hypervolume progress between the two representations
on a typical problem instance, where a much faster convergence
can be observed with the condensed representation. This was
not unexpected since the applied optimization approach performs
significantly faster for low-dimensional search spaces. The results
provided in the following sections were obtained using the condensed
representation with a granularity of 14 days since this was the best
performing setting.

3.3. Intervention plan interpretation

To better understand how different intervention plans compare,
we generated 10 different intervention plans for the same
territory/time interval as that shown in Figure 1 (among all
intervention plans obtained by the optimization, we selected the 10
that are the furthest from each other in the objective space). Figure 6
shows for each plan 1) the strictness of the interventions over time, 2)
the resulting infection curve, and 3) the comparison of the 10 plans
in terms of the number of infections and strictness. This example was
done with the granularity of 14 days using the “combined” cost for
the interventions. However, we generated plans using all different
intervention costs and both 7 and 14 granularities for the same 50
test cases that were used for testingmulti-objective optimization. This
complete set of results can be found on the results webpage (38).
For a subset of these results, see Supplementary material—Sample
intervention plans.

The proposed plans present a wide range of trade-offs between
the two objectives, and policy-makers can choose the one most suited
to their needs. In addition, they can change a portion of the plan
if deemed necessary and evaluate it again. This whole framework is
available as a web tool (39), currently implemented for Slovenia.

The proposed solutions were compared with the real-life solution
implemented in the same territory/time. This real-life solution was
estimated in two ways, (real) using the actual reported number of
infections and (predicted) using the predicted number of infections
given the implemented NPIs. As the real SEC was, in most cases,
unknown, we used the same estimation function for the real case as
for the proposed plans. In all 50 test cases, the proposed solutions
compared favorably against the predicted case, and in 47 test cases,
the proposed solutions compared favorably against the real case. On
average, we could find a solution with the same number of infections
but with 47.1% lower SEC, or a solution with the same SEC but 68.8%
lower number of infections (for details, see Supplementary material—
Comparison of the proposed and implemented solutions).

To explore the trends in the structure of the intervention plans,
we considered two experiments. First, we averaged the OxNPIs costs
across all plans in all test examples, aggregated on a daily basis.
The results in Figure 7 show that, on average, the intervention plans
are the strictest at the beginning and then gradually become more
relaxed. It also shows that in test intervals where the infections were
falling, the overall strictness is lower than in cases where infections
were raising. The difference might not be as big as expected,

again due to the optimizer providing a wide range of intervention
plans.

In the second experiment in Figure 7, we show the average
strictness of individual OxNPIs, again averaged across all
intervention plans in all test cases. The NPIs with high average
intensities can be considered to provide good trade-offs between
their cost and effect.

The structure of the proposed plans was generally quite consistent
from one territory to another. One can reason that—since the NPIs
tend to have similar cost and benefit (at least in relative terms)
regardless of the current epidemiological picture, and the prescriptor
is designed to create solutions with a wide range of costs—the
resulting plans will, in most cases, share a common structure that
will be somewhat adjusted for different territories/time intervals.
Another way of looking at it is to consider that reducing the number
of infections when there are, for example, 1,000 daily infections
has the same importance to the algorithm as reducing the number
when there are 3,000 daily infections. It is up to the policy-maker
to consider when the situation merits selecting a different proposed
intervention plan with a lower/higher SEC.

4. Conclusion

The presented framework can generate efficient intervention
plans to fight a pandemic, and can evaluate their effect and costs.
This can greatly help policy-makers to pursue sensible intervention
strategies and reason about their strengths and weaknesses. We
showed that intervention plans it generates—at least when evaluated
with our methodology—are better than past interventions generated
by policy-makers. Since very few NPIs are still used against COVID-
19, the main value of our framework is in pandemic preparedness:
both as a tool to fight future pandemics (for which it would probably
not require many modifications), and as a demonstration of the
value of artificial intelligence in this area in general. All data used
to generate the figures is available in our repository (38). The
same repository also contains all final results. All code used in the
production of the results is available in our code repository (40).

4.1. Intervention plan insights

In general, the most effective NPIs were school closing, canceling
of public events, workplace closing, contact tracing, and international
travel controls. This list is not surprising as it is similar to the
findings in the literature (1, 2). When accounting for cost (which
is usually not done), the most efficient NPIs were information
campaigns, canceling of public events, and international travel
controls, followed by school closing. The least efficient were the
restrictions on internal movement, facial coverings, stay-at-home
requirements and workplace closing. The latter two are on the list due
to their high cost; in particular, the former can usually be substituted
with a combination of other more socially acceptable NPIs. The low
placement of facial coverings was surprising. Perhaps this is due
to masks being somehow inconsistently applied, which may result
in bad training data—or alternatively due to "facial coverings" NPI
being almost always active, which made it difficult to isolate its effect.
Finally, it could be the case that its social cost was overestimated in
this study and it should be reduced in potential future analysis.
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An additional benefit of the framework, aside from calculating the
cost benefit of individual NPIs, is that it can present a timeline of NPI
changes that adapts to the current epidemiological situation. In most
cases, the approach “start with a strict policy and reduce it over time”
seems to be the most effective. We have also shown that adapting the
NPI policy every 14 days is enough to get almost ideal cost/benefit as
with finer granularities (e.g., adapting every 3 days provides negligible
benefits). Intervention plans made and changed on a monthly basis
were found still acceptable; however, using a granularity value of 14
proved to be generally more robust. This could be a valuable finding
as frequent changes in NPI policy make adherence difficult and can
probably increase socio-economic costs (although we did not model
this explicitly). For comparison, we analyzed how often were NPIs
changing in real-life situations. For 80% of countries, themedian time
before changing at least one NPI was somewhere between 14 and 30
days and approximately 90% of countries changed their NPIs at least
once, under 14 days of the last change.

4.2. Technical advantages

The following are the key innovations introduced: 1) combining
machine-learning and SEIRD models in a way that allows the
SEIRD parameters to be adapted to different NPIs and thus simulate
their effect on infections; 2) using historically fitted parameters to
normalize the values output by machine learning in order to adapt
predictions for each territory; 3) using multi-objective optimization
for finding the best intervention plans in combination with a
“condensed” solution representation—facilitating a highly efficient
search.

We argue our predictor to be state-of-the-art. However, it was
designed and trained for the whole world, and it is almost certain
that for many specific territories, a better predictor could be/was
developed.

Similarly, while the proposed OxNPI costs are carefully
considered, they can certainly be improved upon, especially for
specific territories. In future work, the whole SEC model can even
be made more complex, i.e., non-linearly accounting for the NPI
duration. To take all of this in consideration, we made our whole
methodology highly modular, so that each part can be substituted by
a similar one if necessary—or one can simply adjust the parameter
values of the current components.

4.3. Limitations

A drawback of the proposed framework is the negligible effect of
vaccinations in the models. While we used some vaccination data,
the vaccinations were not widespread at the time of data collection.
This can be remedied in future work by using more recent data and
probably adding another compartment that models vaccinations to
the epidemiological model.

Second, the infection predictor can sometimes become unreliable
when predicting for two or more months in advance. We thus
recommend that it should be mostly used for shorter periods (30–
45 days in advance) and then the predictions should be updated in
real time as new data become available. The predictor also becomes
unreliable when the number of infections is growing very quickly.

Due to the nature of exponential growth, even a small misprediction
of a parameter of the SEIRDmodel can quickly lead the model astray.
The problem is compounded by people spontaneously behaving
more cautiously during severe disease breakouts, which affects the
infections but is not recorded in NPI data. This effect is difficult to
avoid, so it should be taken into consideration when analyzing the
proposed plans. It should also be noted that infection prediction is
used as the basis for NPI prescription (it is used to simulate the effects
of different intervention plans), and thus any error in the former
affects the latter. This effect is also difficult to avoid or even evaluate,
as only one intervention plan can be executed at the same time in
practice.

Models were made based on the COVID strains active in the
studied period and would have to be slightly adjusted in order to be
used for the currently emerging or future COVID strains.

Last, we used the reported number of the infections as one of the
objectives—and one can argue that some other metric, such as the
number of hospitalizations or deaths might be more appropriate. The
hospitalizations were rejected in this study as the data needed was
available for only 33% of the studied territories, while infections were
preferred over deaths to match the Pandemic Response Challenge
competition. Nonetheless, effectively the same methodology (with
some tweaks to the epidemiological model) could be used to study
the other mentioned criteria.
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Machine learning for analyzing non-countermeasure factors affecting early spread
of COVID-19. Int J Environ Res Public Health. (2021) 18:750. doi: 10.3390/ijerph1
8136750

24. Martcheva M. An introduction to mathematical epidemiology. In: Texts in Applied
Mathematics. New York, NY: Springer US (2015).

25. Thornburg H. Introduction to Bayesian Statistics. (2001). Available online at: http://
ccrma.stanford.edu/jos/bayes/bayes.html

26. Li ML, Bouardi HT, Lami OS, Trikalinos TA, Trichakis NK, Bertsimas D.
Forecasting COVID-19 and analyzing the effect of government interventions. MedRxiv.
(2021). doi: 10.1101/2020.06.23.20138693

27. Zou D, Wang L, Xu P, Chen J, Zhang W, Gu Q. Epidemic model guided
machine learning for COVID-19 forecasts in the United States. MedRxiv. (2020).
doi: 10.1101/2020.05.24.20111989

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: machine learning in python. J Mach Learn Res. (2011) 12:
2825–30. doi: 10.5555/1953048.2078195

29. Ke G, Meng Q, Finley T, Wang T, ChenW, MaW, et al. Lightgbm: a highly efficient
gradient boosting decision tree. Adv Neural Inf Process Syst. (2017) 30:3146–54.

30. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’16. New York, NY: ACM (2016). p. 785–94.

31. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased
boosting with categorical features. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems. NIPS’18. Red Hook, NY: Curran Associates Inc.
(2018). p. 6639–49.

32. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al.
Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum
Behav. (2020) 4:1303–12. doi: 10.1038/s41562-020-01009-0

33.Worldbank.GDP for the US. (2021). Available online at: https://data.worldbank.org/
indicator/NY.GDP.MKTP.CD (accessed October 20, 2021).

34. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans Evolut Comput. (2002) 6:182–97.
doi: 10.1109/4235.996017

35. XPRIZE. Predictor Model Results as of Monday 22 February 2021. (2021). Available
online at: https://phase1.xprize.evolution.ml/

36. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans Evol Comput. (1999) 3:257–71.
doi: 10.1109/4235.797969

37. Shen Y, Powell G, Ganser I, Zheng Q, Grundy C, Okhmatovskaia A, et al.
Monitoring non-pharmaceutical public health interventions during the COVID-19
pandemic. Sci Data. (2021) 8:225. doi: 10.1038/s41597-021-01001-x

38. JSI. Results Repository. (2021). Available online at: https://github.com/jsi-dis/ai-
covid-interventions

39. JSI. COVID-19 Intervention Plans-A Web Application for the Ministry of Health.
(2021). Available online at: http://xprize-e9.ijs.si:5555/

40. JSI. Code Repository. (2021). Available online at: https://repo.ijs.si/covid/covid-
xprize/

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1073581
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1073581/full#supplementary-material
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1016/S1473-3099(21)00143-2
https://doi.org/10.1136/bmjopen-2020-046863
https://doi.org/10.1073/pnas.2012704118
https://doi.org/10.1016/S2214-109X(20)30110-8
https://doi.org/10.1016/j.chaos.2020.109883
https://doi.org/10.1101/2020.07.16.20152033
https://doi.org/10.1177/0272989X21990371
ww.xprize.org/challenge/pandemicresponse
ww.xprize.org/challenge/pandemicresponse
https://doi.org/10.1109/TEVC.2021.3063217
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://doi.org/10.1038/s41562-021-01122-8
https://outbreak.info/
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://doi.org/10.1038/s41597-020-00688-8
https://ourworldindata.org/coronavirus
https://covidmap.umd.edu/api.html
https://covidmap.umd.edu/api.html
https://www.google.com/covid19/mobility/
https://covid19.apple.com/mobility
https://covid19.apple.com/mobility
https://www.visualcrossing.com/weather-data
https://doi.org/10.3390/ijerph18136750
http://ccrma.stanford.edu/jos/bayes/bayes.html
http://ccrma.stanford.edu/jos/bayes/bayes.html
https://doi.org/10.1101/2020.06.23.20138693
https://doi.org/10.1101/2020.05.24.20111989
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1038/s41562-020-01009-0
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://doi.org/10.1109/4235.996017
https://phase1.xprize.evolution.ml/
https://doi.org/10.1109/4235.797969
https://doi.org/10.1038/s41597-021-01001-x
https://github.com/jsi-dis/ai-covid-interventions
https://github.com/jsi-dis/ai-covid-interventions
http://xprize-e9.ijs.si:5555/
https://repo.ijs.si/covid/covid-xprize/
https://repo.ijs.si/covid/covid-xprize/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Optimizing non-pharmaceutical intervention strategies against COVID-19 using artificial intelligence
	1. Introduction
	2. Methods
	2.1. Dataset
	2.2. Hybrid machine-learning epidemiological model
	2.2.1. Epidemiological model
	2.2.2. Predicting the model parameters with machine learning
	2.2.3. Prediction pipeline

	2.3. Socio-economic costs of different NPIs
	2.3.1. GDP loss
	2.3.2. Social impact

	2.4. Proposing interventions

	3. Results
	3.1. Predicting infections
	3.2. Proposing interventions
	3.3. Intervention plan interpretation

	4. Conclusion
	4.1. Intervention plan insights
	4.2. Technical advantages
	4.3. Limitations

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


