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Abstract 9 

An acoustic method for simultaneous condition detection, localization and classification in air-filled 10 

pipes is proposed. The contribution of this work is three-fold: (i) a microphone array is used to extend 11 

the usable acoustic frequency range to estimate the reflection coefficient from blockages and lateral 12 

connections; (ii) a robust regularization method of sparse representation based on wavelets basis 13 

function is adapted to reduce the background noise in acoustical data; (iii) the wavelet components are 14 

used to localize and classify the condition of the pipe. The microphone array and sparse representation 15 

method enhance the acoustical signal reflected from blockages and lateral connections and suppress 16 

unwanted higher-order modes. Based on the sparse representation results, higher-level wavelet 17 

functions representing the impulse response are used to localize the position of the sensor corresponding 18 

to a blockage or lateral connection with higher spatial resolution. It is shown that the wavelet 19 

components can be used to train and to test a support vector machine (SVM) classifier for the condition 20 

identification more accurately than with a time-domain SVM classifier. This work paves the way for 21 

the development of simultaneous condition classification and localization methods to be deployed on 22 

autonomous robots working in buried pipes.  23 

I. Introduction 24 

Buried pipe infrastructure is important to urban life and forms a vital part of many engineering structures 25 
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for transporting fluids and gases. In the UK alone there are over 600,000 km of sewer pipes [1]. The 1 

US Environmental Protection Agency estimates that water collection systems in the USA have a total 2 

replacement value between $1 and $2 trillion. In Europe, buried water pipe networks are much longer 3 

and have a much higher replacement value. These networks are aging rapidly and becoming more 4 

heavily used due to population growth, increasing demand for water, and climate change, which leads 5 

to an increased rate and severity of faults in these pipes. Therefore, reliable techniques for condition 6 

monitoring and fault detection are required for the inspection and targeted maintenance of pipe 7 

infrastructure.  8 

Autonomous robotic sensing systems working in buried pipes for condition monitoring and fault 9 

detection offer the opportunity to capitalise on recent advances in acoustic and ultrasonic sensing 10 

techniques [1]. Acoustic methods have been investigated for blockage detection and condition 11 

assessment in sewage pipes in the past decades [2]. These methods are a very attractive alternative to 12 

traditional visual closed-circuit television (CCTV) inspection methods because they are rapid and 13 

highly efficient computationally. Acoustically reflective artefacts including blockages can be localized 14 

remotely with respect to the robot position using the time delay of acoustic echoes measured with a 15 

microphone [3]. In sewer pipes the power reflection ratio and signal phase measured with the 16 

microphone can be used to discriminate between various in-pipe conditions, e.g. blockage, lateral 17 

connection or pipe end [4].  18 

Although acoustic methods are well suited for use on an autonomous robotic platform, they are 19 

complicated by the multi-modal sound wave propagation in a partially filled sewer pipe [5]. As a result, 20 

in this class of applications it is common to limit the frequency range to the so-call plane wave regime 21 

only, i.e. to the range below the first eigen-frequency of the round sewer pipe, 𝑓10 = 0.59𝑐2𝑅  [6], where 𝑐 22 

is the sound speed in air and 𝑅 is the radius of the pipe. In the case of a typical 300 mm sewer pipe this 23 

frequency is 669 Hz for 𝑐 = 340 m/s. In order to radiate a sufficient acoustic power in this frequency 24 

range a large powerful speaker is generally required, which is difficult to deploy on a small robot that 25 

would operate in a typical sewer. Furthermore, such a low-frequency range limits the condition 26 

localization and classification accuracy due to a relatively long wavelength and restricted frequency 27 
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band. The main contribution of this paper is to overcome this limitation by proposing a new microphone 1 

array processing and machine learning method that extends the frequency range well above the first 2 

eigen-frequency to achieve much higher spatial resolution for condition detection and classification in 3 

sewer pipes. 4 

A microphone array consists of a set of microphones positioned in a specific way to capture the spatial 5 

information about the sound field that can be used for various purposes, e.g. spatial filtering, noise 6 

reduction and dereverberation problems for audio processing [7]. This paper uses the microphone array 7 

located at the same cross-section to capture the acoustic signal containing the spatial information about 8 

the first four modes. This information is then processed to extract the fundamental mode (plane wave) 9 

to enable defect localization and classification. This method makes use of wavelets which are well 10 

suited to reconstruct a transient signal in the presence of background noise. The idea of using wavelets 11 

to deal with transient signals is  motivated by prior work such as Ferrante et al [8] who used the wavelet 12 

transform to analyze the transient pressure signal for leakage detection and Owowo and Oyadiji [9] who 13 

used wavelets and the soft threshold method to cancel background noise from acoustic signals for 14 

leakage detection in an air-filled pipe. However, little or no work has been on the use of wavelets to 15 

identify and localize conditions in sewer pipes. This paper proposes a sparse representation method 16 

which uses a wavelets basis to cancel the background noise, improve the resolution for condition 17 

localization and to increase the accuracy of classification between blockages and lateral connections 18 

through post-processing of enhanced acoustical data with Support Vector Machine (SVM). 19 

A health monitoring system should seek to answer a number of key questions, including the presence 20 

of a fault (i.e. a blockage or lateral connection) and the location of a fault [10] that are needed to target 21 

repair or clean-up operation. An advantage of the microphone sensing array we propose here is that it 22 

has a dual use for both condition detection and localization. The method we propose for localization 23 

uses the Kalman filter, which operates on acoustic features extracted from the signals measured by the 24 

microphone array.  This makes the approach highly efficient as a single sensing method is used for both 25 

tasks.  26 

The structure of this paper is organised as follows. Section II discusses the theory of acoustic wave 27 
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propagation in a cylindrical pipe, signal processing theory including wavelets, sparse representation and 1 

SVM. Section III presents the simulation results of the microphone array processing and acoustic 2 

reflection from blockages and lateral connections in the pipe. The experimental setup is discussed in 3 

section IV. Experimental results for blockage localization and identification are discussed in Section V.  4 

 5 

II. Theory 6 

II.A. Acoustic waves in a cylindrical pipe 7 
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 8 

Figure 1. The system of coordinates in a cylindrical pipe  9 

The acoustic field in a rigid cylindrical pipe filled with air is the solution of the wave equation written 10 

in cylindrical coordinates (𝑟, 𝜃, 𝑧) as illustrated in Figure 1. A convenient representation of the total 11 

acoustic field in the frequency domain is the normal mode decomposition as suggested by Morse and 12 

Ingard [6]: 13 

where 𝜔 is the angular frequency, m and n are the mode indices,  Ψ𝑚𝑛 is the mode shape function of a 14 

duct cross-section. The acoustic field in the pipe is multi-modal, i.e. it is a superposition of an infinite 15 

𝑝(𝑟, 𝜃, 𝑧, 𝜔) = ∑ 𝐴𝑚𝑛Ψ𝑚𝑛(𝑟, 𝜃)𝑒𝑖𝛾𝑚𝑛𝑧 
 (1) 
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number of waves with the modal amplitude 𝐴𝑚𝑛 and coordinate dependent shape functions Ψ𝑚𝑛(𝑟, 𝜃).   1 

For a cylindrical pipe with the radius R the mode shape function is given by [6]:  2 

where 𝐽𝑚(∙) denotes the mth Bessel function.  The eigen-number 𝛾𝑚𝑛 can be obtained from the equation 3 

for zero velocity on a rigid wall pipe [6] yielding:  4 

In the above equation ′ denotes partial derivative with respect to 𝑟. z-axis wavenumber is given by [6]: 5 

where k0 is the wavenumber in a free space (𝑘0 = 𝜔/𝑐0, c0 is sound velocity in air).  6 

Eq. (4) predicts the wavenumber for different modes at different frequencies, which means that the 7 

sound velocity in each mode (except in the case of plane wave when 𝑘00 = 0) is frequency and mode 8 

dependent. When the free field wavenumber k0 is larger than the eigen-number kmn, or the frequency is 9 

above the corresponding eigen-frequency fmn, the particular acoustic mode can propagate along the pipe 10 

with relatively little attenuation. Figure 2 shows schematically the angular and radial dependence of the 11 

first four mode shapes in the cylindrical pipe. In this figure the plus or minus correspond to the sign the 12 

modal shape (Ψ𝑚𝑛) in eq. (1) takes. 13 

Mode (0,0) Mode (1,0) Mode (2,0) Mode (0,1)

+

+

_

+

_

_

+

+

_

0.628R

 14 

Figure 2. An illustration of the behaviour of the first 4 mode shapes in the cylindrical pipe.  15 

The frequency response function (FRF) between the acoustic pressure p at (𝑟, 𝜃, 𝑧) and input point 16 

source at (𝑟𝑠, 0,0) with volume velocity Q can be calculated from [6] [11] [5]:  17 

Ψ𝑚𝑛(𝑟, 𝜃) = cos(𝑚𝜃) 𝐽𝑚(𝑘𝑚𝑛𝑟) (2) 

𝐽m′ (𝑘𝑚𝑛𝑟)| 𝑟=𝑅 = 0. (3) 

𝛾𝑚𝑛 = √𝑘02 − 𝑘𝑚𝑛2  , (4) 
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 1 

In particular, for the point source located at the centre of the pipe cross-section, only the axisymmetric 2 

mode can be excited when m=0 in Eq. (5). Similarly, only the axisymmetric modes can be separated 3 

when the receiver is located at the centre.  4 

The sound pressure in an infinite pipe with a blockage or lateral connection is equal to the summation 5 

between the incident (𝑝𝑖) and reflected (𝑝𝑟) components, given by: 6 

where 𝑅𝑚𝑛 is the reflection coefficient from the artefact. Using the modal orthogonality, the acoustic 7 

pressure of mode (𝑚, 𝑛) can be estimated from [6]: 8 

where 𝑆 is the cross-sectional area of the pipe. The modal amplitude 𝑃𝑚𝑛 can be used to predict the 9 

absolute value of the acoustic reflection coefficient 𝑅𝑚𝑛 [6]: 10 

Using Eq. (8), the reflection coefficient of a blockage and lateral junction can be predicted via numerical 11 

simulations, e.g. Finite Element Method (FEM), to compare against the experimental result as shown 12 

in the following sections.  13 

Note that in this paper only the plane wave (mode (0,0)) is analyzed for the identification and 14 

classification of blockages and lateral connections. This is because the acoustic plane wave is not 15 

dispersive, i.e. its speed does not depend on the frequency of sound [6]. As a result, the behavior of the 16 

reflection coefficient of the plane wave is easier to interpret and to use for condition classification and 17 

localization. For this mode the integral in Eq. (7) can be simplified as: 18 

𝑝(𝜔)𝑄(𝜔) = 𝜔𝜌0𝜋𝑅𝑒2 ∑ ∑ 𝐽𝑚(𝑘𝑚𝑛𝑟𝑠) cos 𝑚𝜃 [𝐽𝑚(𝑘𝑚𝑛𝑟)𝑒𝑖|𝑧|𝛾𝑚𝑛](𝛿𝑚0 + 1)𝛾𝑚𝑛𝐽𝑚2 (𝑘𝑚𝑛𝑅) [1 − ( 𝑚𝑘𝑚𝑛𝑅)2] .∞
𝑛=0

∞
𝑚=0  

 

(5) 

𝑝(𝑟, 𝜃, 𝑧, 𝜔) = 𝑝𝑖 + 𝑝𝑟 = ∑(𝐴𝑚𝑛𝑒𝑖𝑘𝑧𝑧+𝑅𝑚𝑛𝐴𝑚𝑛 𝑒−𝑖𝑘𝑧𝑧)Ψ𝑚𝑛(𝑟, 𝜃) (6) 

𝑃𝑚𝑛(𝑧)= 𝐴𝑚𝑛𝑒𝑖𝑘𝑧𝑧+𝑅𝑚𝑛𝐴𝑚𝑛𝑒−𝑖𝑘𝑧𝑧=∬ 𝑝(𝑟, 𝜃, 𝑧, 𝜔)Ψ𝑚𝑛(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃/𝑆, (7) 

𝑅𝑚𝑛 = max(|𝑃𝑚𝑛(𝑧)|) − min(|𝑃𝑚𝑛|)max(|𝑃𝑚𝑛(𝑧)|) + min(|𝑃𝑚𝑛|) (8) 
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In Eq. (9), the accuracy of the integration depends on the number and distribution of the sensing points 1 

and on the choice of the frequency range. In practical situations, there is usually not enough sensing 2 

points to cover the whole cross-section over which the integral in Eq. (9) is taken. This is particularly 3 

important at high frequencies to lead to unwanted contribution from higher modes in 𝑃00(𝑧). In order 4 

to remove the unwanted residue of higher modes as well as some background noise from the measured 5 

or predicted acoustic pressure, a sparse representation method using wavelets basis function is proposed 6 

and studied in this paper. 7 

II.B.  Sparse representation using wavelets 8 

Acoustic wave in the pipe can be complicated with multiple modes which travel at different velocities. 9 

Using the plane wave mode reconstruction method introduced in Section II.1 (i.e. Eq. (9)) a single mode 10 

can be extracted across a broad frequency range and used for in-pipe condition detection, localization 11 

and classification. This paper proposes a sparse representation with wavelets for the simplified impulse 12 

response to clean up the higher modes residue and to cancel background noise. Different from the 13 

wavelet decomposition and soft shrinkage for noise cancelation proposed in Ref. [6], this paper uses 14 

sparse wavelet representation to cancel background noise and to clear up some higher modes residue 15 

after the plane wave reconstruction with Eq. (9).   16 

There are two main reasons for using the sparse representation, Firstly, it is possible to assume that the 17 

acoustic echoes from the pipe artefacts (e.g. blockages/junctions) have relatively short duration time. 18 

This means that the impulse response actively measured on the robot is considered to contain a large 19 

number of zero components apart from the initial pulse and reflected echo wave packs, which leads to 20 

the sufficient sparsity relative to its dimension in time domain. The sparse nature of the impulse 21 

responses has been illustrated in Ref. [3] as an example and is explained further in our paper. Secondly, 22 

the impulse response can be written in terms of appropriate basis vectors where only a few vectors are 23 

active, hence reducing the number of the time-domain signals required to store for an accurate signal 24 

representation in accordance with the Nyquist sampling theorem  [12]. The basis vectors used in this 25 

paper are wavelet functions. 26 

𝑃00(𝑧)= ∬ 𝑝(𝑟, 𝜃, 𝑧, 𝜔)𝑟𝑑𝑟𝑑𝜃/𝑆 (9) 
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Wavelets is an extended Fourier analysis that make use of more general orthogonal bases rather than 1 

classical sinusoidal functions. This approach is helpful to overcome the uncertainty principle by 2 

exploiting a multi-resolution decomposition [12] to balance between different time and frequency 3 

fidelities in different frequency bands. It is particularly useful for decomposing complex signals that 4 

arise from multi-scale processes such as images and audio signals [12]. For a given mother wavelet 5 

function 𝜑(𝑡), the subspace of scale a is generated by the functions (sometimes called child wavelets) 6 

[12]: 7 

where 𝑗, 𝑞 ∈ ℤ; a >1 defines the scale and b is any real number that defines the shift. . j is denoted as 8 

the level number of wavelet. In this paper, the typical Daubechies wavelet family was used with a=2, 9 

and b=1 10 

A
m

pl
it

ud
e

 11 

Figure 3. fourth order basis functions of sym4  12 

Acoustic impulse response measured in pipes can be represented accurately using a limited number of 13 

wavelet basis functions. An acoustic impulse response of the pipe, x ∈ Rn, may be written as a sparse 14 

vector s ∈ Rn (containing mostly zeros) in the form of a transform basis W ∈ Rn×n [12]: 15 

𝜑𝑗,𝑞  (𝑡) = 𝑎𝑗𝜑 (𝑎𝑗(𝑡 − 𝑞𝑏)) (10) 
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As shown in Figure 3, the wavelet matrix W is generated using Symlets wavelet functions, sym4, (i.e. 1 

generated by the Matlab function @wmpdictionary). Symlets are modified version of Daubechies 2 

wavelets with increased symmetry [12]. The sparsest solution �̂� (i.e. the solution represented with a 3 

minimum number of wavelet basis functions) satisfies the following optimization problem [12]:   4 

where  ‖. ‖0 denotes the ℓ0 pseudo-norm, which is the number of the non-zero components of the vector. 5 

This is also referred to as the cardinality of 𝒔 [12]. Effectively, �̂� is the vector which is composed of the 6 

amplitudes of the wavelet basis functions at different levels. 7 

The optimization problem in Eq. (12) is non-convex and its solution is usually found by using a brute-8 

force search [12] which can be computationally expensive. Fortunately, it is possible to relax the 9 

optimization in Eq. (12) to a convex ℓ1-minimization [12]:  10 

where ‖. ‖1denotes the l1-norm, which describes the sum of absolute values of the vector.  11 

A related convex optimization problem is the following: 12 

where 𝜆 > 0 is a parameter that weights the importance of sparsity. The estimated impulse response 13 

can then be represented by: 14 

In this study the SpaRSA algorithm [11] was used to solve Eq. (14). The SpaRSA algorithm provides a 15 

general framework for solving the sparse representation problem [13]. It can be viewed as an accelerated 16 

version of the iterative shrinkage thresholding algorithm [14]. The regularization parameter 𝜆 is usually 17 

set as a specific small constant. The SpaRSA algorithm uses an adaptive continuation technique to 18 

𝒙 = 𝐖𝒔 (11) 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛‖𝒔‖0𝒔  subject to 𝑾𝒔 − 𝒙 = 0 (12) 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛‖𝒔‖1𝒔  subject to 𝑾𝒔 − 𝒙 = 0 (13) 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛  𝒔 {‖𝑾𝒔 − 𝒙‖22 + 𝜆‖𝒔‖1} (14) 

�̂� = 𝑾�̂� (15) 
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optimize and update the value of λ for a more efficient convergence [11]. Key steps in this algorithm 1 

are presented in Table 3 in Appendix I. 2 

Different level of wavelets has different frequency components. Wavelets with higher frequency 3 

components can provide a higher spatial resolution to the problem of condition and/or robot localization. 4 

For example, the fourth order Symlets function, sym4, has 5 different levels, where s1 corresponds to 5 

the lower frequency and s5 to the higher frequency components. Therefore, it is convenient to use the 6 

higher level of wavelet domain vector �̂�  to predict the location of the robot with higher precision. 7 

Furthermore, wavelet domain vector �̂�  can also be used to fit into the SVM trainer to identify the 8 

blockage from junctions. 9 

II.C.  Robot Localization 10 

After the sparse representation of the impulse response, the higher-level wavelet components can be 11 

used to localize the robot position along the pipe. Robot localization is the means by which a robot 12 

estimates its position with respect to the surrounding environment. Localization is required for robot 13 

control and autonomous navigation, reporting the location of conditions detected in a pipe network, and 14 

for mapping unknown parts of the pipe network. Normally, information from sensing of the robot’s 15 

motion and surroundings is input into a localization function. In typical robotic applications, vision and 16 

range-finding sensors such as scanning lidar are popular means of making perceptions, as they are able 17 

to acquire a large amount of information from the arbitrary environment. In the pipe environment, 18 

however, these sensors are limited in scope and only able to observe nearby artefacts due to the confined 19 

space within the cross-section that is very limited compared to a relatively long length of the pipe and 20 

scale of the overall pipe network. This limit in scope means that a localization estimate will accumulate 21 

uncertainty over time, and that the estimate will likely drift from the true robot position. Acoustic echo 22 

sensing is able to perceive more distant artefacts in the pipe environment and offers a means of 23 

perception which will not cause an accumulation of uncertainty. In previous study [3], the robot 24 

localization has been validated with a speaker and single microphone sensing system using the plane 25 

wave below the cut-off frequency. This paper uses the microphone array to extend the frequency range 26 

of the signal to localize the robot and artefacts more precisely.  27 



11 
 

Robot localization typically takes a probabilistic approach [15] where the uncertainty in each 1 

measurement is acknowledged and a localization estimate is the most likely value of the robot’s state in 2 

the probability distribution computed over all possible states. Many robot localization approaches are 3 

derived from a Bayes filter, a mathematical tool that facilitates the incorporation of prior knowledge 4 

and measurements to produce a posterior estimate. A practical implementation of this is the Kalman 5 

filter described below. 6 

The robot is modelled as moving in one dimension along the z-axis of a pipe with the position at the 7 

time t given by: 8 

where ut is the command robot motion and wt is additive error in the motion, drawn from a normal 9 

distribution with standard deviation  Σu,t. After moving, the robot makes an acoustic echo measurement 10 

of the distance to 𝑁 nearby acoustically reflective artefacts, 𝜉𝑡𝑛, described by: 11 

These measurements correspond to artefacts in the pipe environment the positions of which are to be 12 

estimated along with the robot position. Therefore, the state is given by:  13 

The state space model is therefore given by:  14 

where A is the identity matrix and 𝐁 =  [1, 0, 0, … , 0]𝑇.  15 

The Kalman filter estimate is parameterised as a multivariable Gaussian distribution described by the 16 

mean vector μt and covariance matrix Σt. The prediction step of the filter incorporates the motion 17 

information. The predicted mean and covariance are given by: 18 

𝑧𝑡 =  𝑧𝑡−1 +  𝑢𝑡 + 𝑤𝑡 (16) 

𝜉𝑡 =  {𝜉𝑡1, 𝜉𝑡2, … , 𝜉𝑡𝑛, … , 𝜉𝑡𝑁 } (17) 

𝒛𝑡 =  [𝑧𝑡 , 𝑧1, 𝑧2, … , 𝑧𝑚, … , 𝑧𝑀]𝑇 (18) 

𝒛𝑡 = 𝑨𝒛𝑡−1 + 𝑩(𝑢𝑡 + 𝑤𝑡)  (19) 

�̅�𝑡 = 𝑨𝝁𝑡−1 +  𝑩𝑢𝑡 (20) 

�̅�𝑡 = 𝑨𝜮𝑡−1𝑨𝑇 +  𝜮𝑢,𝑡 (21) 
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where Σu,t is the motion uncertainty. 1 

The acoustic echoes are only used to measure the distance to some artefacts in the pipe environment, 2 

and so data association needs to be computed between echo measurements 𝜉𝑡𝑛  and artefacts in the 3 

environment zm. The negative log-likelihood πn,m,t of a match is found for each combination of 4 

measurement and artefact, by computing: 5 

where Cm is the state space output vector which describes the relative direction of the robot and artefact 6 

m, Σξ,t is the measurement uncertainty and 𝜉𝑡𝑚 is the expected measurement for the artefact m. The 7 

smallest value of πn,m,t is found, which corresponds to the most likely match between measurement and 8 

artefact. If the value is larger than a threshold for negative log-likelihood ∏, then it is likely that the 9 

measurement corresponds to a previously unobserved artefact, so a new artefact is added to the estimate 10 𝜉𝑡. If the value is smaller than the threshold, it is likely that the measurement n corresponds to artefact 11 

m.  12 

Once the data association has been computed, the update step of the Kalman filter provides an estimate 13 

and uncertainty using the following equations: 14 

These two steps, prediction and update, are computed at each time point t to recursively estimate the 15 

robot position and position of surrounding artefacts using the previous estimate and new information.  16 

This estimation process can be improved through improved acoustic sensing and processing described 17 

in this paper. When high level wavelet components are used, as described in Section II.B, the 18 

measurement uncertainty, Σξ,t, and subsequent estimate uncertainty, Σt, will be reduced, and the 19 

likelihood of correct data association will be higher,  improving robustness. If classification of each 20 

𝜳𝑛,𝑚,𝑡 =  𝑪𝑚�̅�𝑡𝑪𝑚𝑇 +  𝜮𝜉,𝑡 (22) 𝜋𝑛,𝑚,𝑡 =  (𝜉𝑡𝑛 − 𝜉�̅�𝑚)2𝜳𝑛,𝑚,𝑡−1 (23) 

𝑲𝑛,𝑚,𝑡 =  �̅�𝑡𝑪𝑚𝑇𝜳𝑛,𝑚,𝑡−1 (24) 𝝁𝑡 =  �̅�𝑡 +  𝑲𝑛,𝑚,𝑡  (𝜉𝑡𝑛 − 𝜉�̅�𝑚) (25) 𝜮𝑡 = (𝑰 −  𝑲𝑛,𝑚,𝑡𝑪𝑚)�̅�𝑡 (26) 
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artefact in the environment is possible, as described in Section II.D, it can be incorporated into this 1 

estimation of data association. Again, this can improve the robustness of the estimation process. 2 

II.D.  Support Vector Machine (SVM) classifier 3 

SVM is a special type of feed-forward neural network used in machine learning. Given a set of training 4 

samples consisting of pairs of a co-occurrence feature vector and class of pipe defect labels as (𝑿𝑚, 5 𝑌𝑚), in which the subscript m indexes the lengths of the vectors (𝑌𝑚 ∈ {1,−1}, 𝑿𝑚 ∈ Rn), the training 6 

approach of SVM is to adjust the weights 𝜶 and biases b (b ∈ R) to search for an optimal hyperplane 7 

and maximum margin. The latter is defined as the distance of the closest vectors in both classes to the 8 

hyperplane. In this paper, two different data sets were used to train and test the binary SVM classifier: 9 

(i) the time domain impulse response from the echo (i.e. �̂� in Eq.(15)) is used straightforwardly as Xm; 10 

(ii) the wavelet domain data �̂� (in Eq.(15))  associated with the pipe artefacts (e.g. blockage/junctions) 11 

is applied as the training and testing input. To find the hyperplane, the following quadratic programming 12 

problem was solved [10]: 13 

However, it is difficult to straightforwardly solve Eq. (27). Therefore, the Lagrange function was 14 

introduced: 15 

where 𝜆𝑚 is Lagrange multipliers. A maximum of the Lagrange function L must satisfy the following 16 

conditions by applying a first-order derivation to Eq. (28) respective to b and 𝜶 as: 17 

 18 

min𝜶,𝑏 𝜙(𝜶) = 12 ||𝜶||2
 

𝑠. 𝑡.       𝑌𝑚[𝜶 ∙ 𝑿𝑚 + 𝑏] ≥ 1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1, … , 𝑁 

(27) 

max𝜶 min𝜶,𝑏 𝐿(𝜶, 𝑏, 𝝀) == 12 ||𝜶||2 − ∑ 𝜆𝑚{𝑌𝑚(𝑿𝑚 ∙ 𝜶 + 𝑏) − 1}, (28) 

𝜕𝐿(𝜶, 𝑏, 𝝀)𝜕𝑏 = ∑ 𝜆𝑚𝑌𝑚 = 0             𝜆𝑚 > 0   (29) 

𝜕𝐿(𝜶, 𝑏, 𝝀)𝜕𝜶 = 𝜶 − ∑ 𝑌𝑚𝜆𝑚 𝑿𝑚 = 0             𝜆𝑚 > 0   (30) 
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The patterns 𝑿𝑚 for which 𝜆𝑚> 0 are also called support vectors (SVs) which lie exactly on the margins 1 

and all the remaining training samples satisfy automatically their constraints (Eq. (27)). Substituting the 2 

conditions for Eqs. (29)(30) into the Lagrange function (Eq. (28)), the following dual form is obtained: 3 

From Eqs. (31)(32), the optimal solution for 𝜆𝑚 can be determined. In pattern recognition, a decision 4 

function which correctly classifies the labelled samples (𝑿𝑚, 𝑌𝑚) is defined as: 5 

where: 6 

To make SVM appropriate for real-world decision, radial basis function (RBF) and polynomial kernels 7 

are used to nonlinearly map the input data, Xm: 8 

This paper focuses on the binary classification of blockage in sewer pipes, namely, to identify the 9 

acoustic echo from a blockage and to discriminate it from other pipe artefacts. For a complete binary 10 

classification, a class can be labelled as either +1 or −1 for Ym. On the other hand, the wavelet 11 

components of the artefacts wave pack can be used as the training and testing input Xi for the SVM 12 

classifier. To illustrate the advantage of a wavelet, the time domain artefacts wave pack, Xm, was 13 

obtained through the following process: 14 

1. Acquisition of impulse response: Speaker sent a chirp signal and simultaneously recorded the 15 

response using six microphones. After deconvolution and band-pass filtering (200-3000 Hz), 16 

the six channels impulse response was obtained xm where m=1:6. 17 

max 𝐿𝑝(𝜶, 𝑏, 𝝀) = ∑ 𝜆𝑚 − 12 ∑ 𝑌𝑚𝑌𝑛𝜆𝑚𝜆𝑛〈𝑿𝑚 ∙ 𝑿𝑛〉   (31) 

𝑠. 𝑡.  ∑ 𝜆𝑚𝑌𝑛 = 0; 𝜆𝑛 ≥ 0  (32) 

𝑓𝜶,𝑏(𝑋) = sgn(〈𝜶 ∙ 𝑿 〉 + 𝒃)   (33) 

𝜶 = ∑ 𝜆𝑚𝑌𝑚𝑿𝑚 ;   𝒃 = 𝑌𝒎 − ∑ 𝜆𝑚𝑌𝑚〈𝑿𝑚 ∙ 𝑿𝑚〉 (34) 

RBF:    𝐾(𝑿, 𝑿𝑚) = exp (−||𝑿 − 𝑿𝑚||2/2𝜎2) (35) 

Polynomial:          𝐾(𝑿, 𝑿𝑚) = (𝑿𝑇 ∙ 𝑿𝑚 + 𝛽)𝑑 (36) 
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2. Plane wave construction: Averaging the six-channel impulse response provided the pre-1 

processed plane wave impulse response x.   2 

3. Denoising and feature extraction using wavelets and sparse representation: After generating the 3 

wavelet matrix W using sysm4 level-5 wavelets, plane wave impulse response x was 4 

constructed using sparse representation algorithm (SpaRSA) to obtain the denoised signal �̂� =5 𝑾�̂� and wavelet components �̂� = [�̂�1 �̂�2 �̂�3 �̂�4 �̂�5]𝑇.  6 

4. Localisation: The higher-level wavelet components [�̂�3 �̂�4 �̂�5]𝑇  were used to represent the 7 

higher frequency signal �̂�ℎ = 𝑾[�̂�3 �̂�4 �̂�5]𝑇 and to apply the Hilbert transform to �̂�ℎ, where 8 

the coordinates of the peaks of the envelope were associated with the location of pipe artefacts 9 

referred to the robot. For sequential robotic localization, the measured coordinates were then 10 

be imported to the 𝜉𝑡 for Kalman filter to predict the locations.  11 

5. Classification: The wavelet components (�̂�) associated with the artefacts as the input (Xm) and 12 

the label Ym (blockage uses 1 and non-blockage uses -1) were used for SVM training and testing. 13 

Figure 4 shows the processing steps for denoising, localization and classification.  14 

 15 
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 16 

Figure 4. Diagram of the process for condition detection and localization  17 

III. Simulations 18 

This section discusses the analytical and numerical simulations of the microphone array processing used 19 
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to extract the plane wave from the overall acoustic pressure (Eq. (1)) measured on the microphone array 1 

and to estimate the reflection coefficient for an artefact in the pipe. The sensor placement and position 2 

uncertainties due to the robot movement in the pipe is discussed in section III.1. This can provide 3 

evidence in support of the adopted sensor placement strategy for the plane wave reconstruction. The 4 

reflection coefficient from blockage and lateral connections will be obtained from numerical 5 

simulations to validate the plane wave reconstruction method proposed in the paper via comparison 6 

with the experimental results in the following section.  7 

III.A. Microphone array for plane wave reconstruction 8 

A numerical simulation was implemented based on the transfer function described by Eq. (5). The 9 

excitation point source was located close to the pipe wall so that all the acoustic modes were excited. 10 

The setup used in this numerical simulation is shown in Figure 5(a). The six virtual microphones were 11 

positioned circumferentially and equidistantly spaced at 0.628R. At this radial position 𝐽0(𝑘01𝑟) = 0, 12 

so that the amplitude of the first axisymmetric mode is equal to zero as illustrated in Figure 2. However, 13 

the microphones may not be at the ideal positions in a practical situation, e.g. when the robot platform 14 

cannot be perfectly located. Therefore, a simulation using slightly shifted microphones (the centres of 15 

the six microphones were shifted at a distance of 0.02R) was also implemented (see Figure 5(b)).  16 

As shown in Figure 5(c), averaging the acoustic sound pressures predicted for the six-microphone array 17 

removes the higher modes over the frequency range of 0 - 5kHz (within 1dB fluctuation for plane wave 18 

mode) if the microphones were ideally positioned circumferentially at 0.628R. When the sensors shifted 19 

slightly at the distance of 0.02R, the first four modes were cancelled significantly over the frequency 20 

range 0 - 3.7kHz (within 1.5dB fluctuation) apart from the first eigen-frequency around 1.3kHz. At 21 

higher frequencies, the spatial information collected by six microphones tends to be more sensitive to 22 

the shifted distance, resulting in a more significant error in the plane wave reconstruction. In this case 23 

the fluctuation in the mode (4, 0) and mode (5, 0) is larger than 3dB as shown in Figure 5. Furthermore, 24 

it is also observed from additional simulations that the plane wave reconstruction error tends to increase 25 

with the microphone shift distance, although the dependence of the error on the microphone shift 26 

distance it is not discussed in detail in this paper. 27 
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Figure 5. (a) a diagram of the simulation setup with the point source excitation and 6 microphone array; 2 

(b) a diagram explaining the simulated microphone array shift; (c) a comparison of the frequency 3 

response function between a single microphone and averaged from the six microphones estimated at 4 

the ideal or shifted positions 5 

III.B. Reflection coefficient  6 

In this paper, the acoustic wave reflection from a blockage or lateral junction was studied using the 7 

finite element method (FEM) available in commercial software COMSOL. Figure 6 shows the 8 

simulation setup for sound propagation in the presence of a blockage and lateral connection. The pipe 9 

diameter was 0.15m which is consistent with that used in the experiments. The height of the blockage 10 

was set as 0.6 times the pipe diameter, i.e. h/R=1.2 and it was a diameter long (see Figure 5(a)). The 11 

maximum mesh size in this numerical study was below 9.5mm which corresponded to 1/12 of the 12 

acoustic wavelength at 3kHz. Plane wave excitation was used in the simulations. A Perfectly Matched 13 

Layer (PML) was set up at the ends of the pipe to absorb sound to simulate an infinite pipe length. The 14 
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surface of the blockage in this study was assumed solid, i.e. its acoustic characteristic impedance was 1 

much larger than that of air (𝑍𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 ≫ 𝑍𝑎𝑖𝑟). The pipe wall was also assumed as rigid. 2 

 3 
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Figure 6. Illustration of the simulation using FE modelling for a pipe with: a) a blockage (h/R=1.2); 6 

and (b) a 90o lateral connection 7 

As discussed in Section II.1, the sound pressure in the plane wave mode was predicted by Eq. (9) using 8 

2D integration over the cross-section. Since the incident and reflected plane wave interferes with each 9 

other resulting in the fluctuation of sound amplitude in z-axis. Using the peak and trough value of the 10 

fluctuating acoustic pressure at different axial coordinates, the reflection coefficient can be estimated 11 

from Eq. (8). The 2D integration over the cross-section was implemented repeatedly with 0.005m 12 

intervals and over 1m range.  13 

The sound pressure in the plane wave mode, P00, for three frequencies obtained through the simulation 14 

and integration in Eq. (9) is shown in Figure 7. These frequencies were chosen to be between the eigen-15 

frequencies and to illustrate the dependence of the sound pressure as a function of the axial direction. 16 
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Note that the curves shown in Figure 7 can be used to determine the amplitude and phase of the complex 1 

reflection coefficient for the plane wave mode at these particular frequencies, although only the 2 

amplitude of the reflection coefficient is discussed in this paper (see Eqs. (6-9)).  3 

It is also worth noting that, although the incident wave was a plane wave, the reflection contains higher 4 

modes due to the wave scattering at the artefacts (see Figure 6). There is also a complex relation between 5 

the mode number and modal excitation coefficients depending on the nature of an artefact. Using the 6 

integral from Eq. (9), the higher-order modes can then be cancelled as discussed in Section III.A. 7 

Therefore, the amplitude of P00 is a combination of the direct and reflected plane waves. It is frequency 8 

dependent because of the complexity of Eq. (5) and integral (9). The modal pressure oscillates as a 9 

function of z with the period determined by the wavelength. As shown in Figure 7, the amplitude of the 10 

plane wave mode at 1kHz (below the first eigen-frequency for the 0.15 m diameter pipe, f<f10) over the 11 

axial direction is significantly higher than the amplitude of the 2 kHz wave (between the first and second 12 

eigenfrequency: f10< f<f20). This can be understood intuitively that a part of the plane wave excitation 13 

energy is converted into the higher modes after scattering from the blockage.  14 
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Figure 7. The absolute value of the acoustic pressure of the plane wave mode at three different 16 

frequencies as a function of the axial distance in the pipe with a blockage (h/R=1.2) 17 

The acoustic reflection coefficient can be calculated from Eq. (8) using the predicted spectra of 𝑃00. 18 
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The reflection coefficient simulation results are discussed in the Section V and compared against the 1 

experimental data. 2 

IV. Experimental setup 3 

IV.A. Robotic platform 4 

The acoustic sensing system used in this work consisted of a loudspeaker, six-microphone array and 5 

processor (including power amplifier for loudspeaker, ADC, DAC and Raspberry Pi 4 for data 6 

acquisition) as shown in Figure 8. This system was installed on a remotely controlled robot (iRobot 7 

Looj 330 by iRobot). The sampling rate was 16kHz. A band-pass filter with the frequency response of 8 

200 - 3000Hz was used to reduce noise. A 100 – 4000Hz sweep sine with 10s duration was used as the 9 

excitation signal. The speaker and microphone array were located at the centre of the pipe within 5mm 10 

positional error initially, although this could change due to the robot movement inside the pipe. The 11 

radial coordinates of the microphone array were around 60 mm from the pipe centre (see also Figure 12 

5(a)). The microphone type used in this test was MSM321A3729H9CP by MEMSensing Microsystems 13 

Co., Ltd., and the speaker (Visaton 2242) size was 32mm diameter driven with a 3W power supply.  14 

Speaker

Microphone array

Raspberry Pi processor

Robotic platform

 15 

Figure 8. Robotic platform and acoustic sensing system  16 

IV.B. Pipe network 17 

In this work, different sizes of blockages were used in a 150 mm diameter PCV pipe laid in the iCAIR 18 

laboratory at the University of Sheffield. These blockages are described by the ratio of the height of the 19 

blockage to the pipe radius ℎ/𝑅 = 0, 0.4, 0.8, 1.2, 1.6 and 2 as shown in Figure 9(a). Figure 9(b) shows 20 

an impression of a sandbag blockage in the 150 mm pipe. Other kinds of blockages were also used in 21 
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the experiment, e.g. acoustic absorbent foam and plastic block as shown in Figure 9(c) and (d), 1 

respectively.  In order to simulate a full 100% blockage, a heavy wooden board was put at the end of 2 

the pipe. Efforts were made to seal the circumferential gap between the pipe and board. The straight 3 

pipe was constructed from several pipe sections connected with joints at different angles as illustrated 4 

in Figure 9(e) and (f). The pipes were not perfectly joined and joints were not perfectly sealed, so some 5 

energy in the acoustic wave was able to reflect and leak out due to the discontinuity at a joint. 6 

        

a) b)

e) f)

c) d)

 7 

Figure 9. Blockage and lateral junctions simulated in the iCAIR laboratory: (a) different size of 8 

concrete blockages; (b) sandbag blockage in the pipe; (c) foam blockage; (d) plastic blockages 3D 9 

printed; (e) 90-degree lateral connection; (e) 45/135-degree lateral connection. 10 

V. Results 11 

V.A.  Reconstruction of plane wave and denoising using sparse representation 12 

The impulse response measured using the acoustic system in the pipe with a blockage and lateral 13 

connection is shown in Figure 10 and Figure 11, respectively. Note that time domain impulse response 14 

was converted into the distance domain response by multiplying the time by sound velocity (343m/s). 15 
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For a single microphone, the wave dispersion into the higher-order modes significantly complicates the 1 

impulse response causing high frequency noise in the data. This noise can cause difficulties in 2 

identifying of the condition, particularly when then the condition is a small blockage, e.g. ℎ/𝑅=0.2 as 3 

shown in Figure 10. Averaging the six-microphone data removes the higher-order modes and provides 4 

a cleaner signal than that obtained on a single microphone. This is consistent with the theoretical study 5 

presented in Section II.1. Sparse representation cleans up the data further making it more convenient to 6 

apply the localisation and classification algorithms detailed in section II. This is even more evident in 7 

the case of the data obtained for the pipe with a lateral connection as illustrated in Figure 11. 8 

 9 
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Figure 10. Impulse response measured in a straight pipe with blockage (h/R=0.2) located at 4.1m 11 

away from the robot 12 
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Figure 11. Impulse response measured in a straight pipe with 90o lateral connection located at 4.1m 2 

away from the robot 3 

 4 

V.B.  Reflection coefficient from blockages and lateral connections 5 

As discussed in Section II.1, the amplitude of the reflection coefficient from a blockage and lateral 6 

connection for the plane wave mode can be estimated from Eq. (8). The simulation results for the 7 

reflection coefficient were obtained based on the FE modelling in COMSOL (see Section III). For 8 

experimental measurements, the impulse response from the blockage and lateral connection (e.g. see 9 

the first echo pulse in Figure 10 and Figure 11, respectively) were extracted using time windowing, 10 

zero-padded and transferred into the frequency domain. A comparison between the simulation results 11 

and measurements of the reflection coefficient spectra from blockage and lateral connection with 12 

different setups are shown in Figure 12-14. The measured data were obtained from the denoised plane 13 

wave echo using the sparse representation algorithm described in Section V.1.  14 

Figure 12 presents the reflection coefficient from blockages with different sizes (0.2 ≤ ℎ2𝑅 ≤ 0.8, see 15 

Figure 9(a)) obtained from the simulation and experiments. The full blockage was used as a reference 16 

where all the other reflection coefficient were normalized by the full blockage echo obtained 17 

experimentally. The simulated results had less than 0.06 average discrepancy with the measurement 18 
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over the frequency range 200-3000Hz. As shown in Figure 12, the acoustic reflection becomes stronger 1 

when the blockage size increases. This information can be used to estimate the size of the blockage. 2 

Furthermore, the acoustic reflection coefficient becomes larger when the frequency approaches the first 3 

cut-off frequency. These properties of the frequency domain spectra can be used to classify blockages 4 

from other artefacts such as junctions. 5 
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Figure 12. A comparison of the amplitude of the predicted and measured reflection coefficient from a 7 

blockages of different size (h/2R = 20%, 40%, 60%, 80%, 100%), dashed vertical lines represent the 8 

cut-off frequencies. 9 

Figure 13 shows the predicted and measured acoustic reflection coefficient spectra from the lateral 10 

connection of different diameter attached to the main pipe perpendicularly. The 150 mm diameter 11 

branch lateral connection results in a higher reflection coefficient than the 100 mm diameter branch. 12 

The lateral connection works like a high-pass filter that allows for the propagation of higher frequency 13 

sound waves through the lateral connection where less reflection observed. The reflection coefficient 14 

from a lateral connection drops significantly as the frequency of sound approaches the first cut-off 15 

frequency. This highlights the importance of extending the frequency range in the proposed analysis to 16 

enable to localize and classify conditions beyond a lateral connection.  17 
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Figure 13. A comparison of the amplitude of reflection coefficient from 90o lateral with different 2 

branch size between the simulation and measurement 3 

Figure 14 shows that the predicted and measured acoustic reflection coefficient from the lateral 4 

connection installed at different angles. An increase in the angle of the lateral connection results reduces 5 

the sound pressure in the reflected plane wave mode over the frequency range 200-3000Hz. For a lateral 6 

connection the reflection coefficient reduces significantly as the frequency of sound approaches the first 7 

cut-off frequency. This slope in the frequency-dependent reflection coefficient becomes steeper when 8 

the lateral angle gets smaller. At higher frequencies beyond the first cut-off frequency, the reflection 9 

coefficient for the lateral connection with an increased angle tends to develop a local peak and beyond 10 

which it decrease gradually.  For example, in the case of a 100mm lateral connected at 90o the measured 11 

reflection coefficient increases until reaching a peak around 2kHz then decreases gradually to almost 12 

zero at 2.7kHz (see Figure 13).  13 

 14 
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Figure 14. Comparison of the amplitude of reflection coefficient from a 45o/135o lateral (100mm 2 

branch) with different angle between the simulation and measurement 3 

This section provides the knowledgebase for further identification of blockages and lateral connections 4 

according to their acoustic reflection properties. The close agreement (less than 0.06 error on average) 5 

between the simulated and measured reflection coefficient for blockages and lateral connections in the 6 

frequency domain (300-3000Hz) also validates the signal processing methods of sparse representation. 7 

The denoised blockage/lateral signal is useful for the localization and classification algorithms.  8 

V.C.  Robotic localization for blockage/lateral connections 9 

After the reconstruction of plane wave mode using multiple microphone processing and sparse 10 

representation method, a robot can process the denoised signal to localize its position with respect to a 11 

blockage or lateral connection. In the previous work [3] the Hilbert transform was used to obtain the 12 

envelope of the time domain impulse response where the coordinates of the peaks of the envelope 13 

correspond to the relative distance between the pipe artefacts and robot. In this paper, high frequency 14 

components of the plane wave impulse response were used for a more precise acoustic localization 15 

achieved with microphone array processing. This was accomplished by using the envelope of the 16 

higher-level wavelet representation of the impulse response.  17 
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As shown in Figure 15(a), the original plane wave impulse response x after the averaging from six-1 

microphone data can be sparse represented and denoised using wavelets to obtain a clearer signal �̂� for 2 

post-processing. Wavelet components (�̂� = [�̂�1 �̂�2 �̂�3 �̂�4 �̂�5]𝑇) and their representation (�̂� = 𝑾�̂�) for 3 

the impulse response are shown in Figure 15(b). Highest-level wavelet components �̂�5 are zero in this 4 

signal after the shrinkage from sparse representation algorithm. The third and fourth levels of wavelet 5 

representation shows higher resolution in the time domain data than the lower levels (see Figure 15). 6 

This is because the wavelet components  �̂�3, �̂�4 correspond to the amplitude of the higher frequency 7 

signal. After the representation, 𝑾�̂�3 and 𝑾�̂�4 contains the acoustic features wave packs with shorter 8 

duration in the time domain, whereas the lower frequency representations, i.e. 𝑾�̂�1 and 𝑾�̂�2 provide 9 

wider wave packs. Therefore, in this work the higher frequency representations (𝑾�̂�3 + 𝑾�̂�4 ) were 10 

used to estimate the location of artefacts in the pipe. Specifically, the locations of artefacts were 11 

determined using the coordinates of the peaks of the envelope of the signal at high frequencies 𝑾�̂�3 +12 𝑾�̂�4. The envelope of the signal 𝑾�̂�3 + 𝑾�̂�4 was calculated using the magnitude of its analytic signal, 13 

which was computed by filtering 𝑾�̂�3 + 𝑾�̂�4  with a Hilbert FIR filter of five points length [16] 14 

(implemented using the function @envelope in Matlab). The envelope results are shown in Figure 16.  15 

The blockage was located at 4m away from the robot with 0.5% prediction error using wavelet 16 

representation, whereas the localization error was 4.2% with when the impulse response was used. More 17 

experiments were carried out using different size of blockages and lateral connections. The prediction 18 

error of higher-level wavelets representation was below 0.7%. This demonstrates an advantage of using 19 

wavelets for the robotic localization with higher accuracy and precision.  20 

Although the pipe artefacts can be localized with respect to the position of the robot, the directions of 21 

echo pulses are unknown. Sound intensity measurement can be a solution to determine whether the echo 22 

comes from front or back of the robot [17]. This paper takes account of the robot position uncertainty 23 

into consideration to use the sequential measurement for the localization of artefacts and pipe mapping. 24 

The localization measurement using wavelet can be applied to this sequential robotic localization using 25 

the Kalman filter as discussed in Section II.3, where the robot moves in the pipe and takes the acoustic 26 

measurement sequentially every several meters (i.e. every 2m in this paper).  27 
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Figure 15. The wavelet components for the impulse response used for the localization in a pipe with a 2 

blockage (h/2R=0.6) at 4m. 3 
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Figure 16. The envelope of: (a) the impulse response; and (b) the wavelet representation at higher-5 

level (Ws3+Ws4) 6 
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V.D. Sequential Robot Localization 1 

Photographs of the robotic localization test rig are shown in Figure 9 and Figure 17(a) illustrates this 2 

rig schematically. In this experiment a heavy wooden board was installed at the far end of the pipe to 3 

represent a full blockage. The robot was moved towards the lateral connection and stopped every 2m 4 

to measure the impulse response. The measured impulse responses are shown in Figure 17 (b) and (c) 5 

with and without the sparse representation method, respectively. The sparse representation method 6 

removes a significant amount of background noise including dispersive higher modes and some 7 

unwanted reflections from the pipe joints.  8 
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Figure 17. The robotic sensing system in a pipe network for the localization of blockage/lateral 10 

connection: (a) an illustration of the experimental system; (b) 6-microphone average impulse 11 

responses when robot was at different positions, without sparse representation processing; (c) the 12 

impulse responses after the averaging of 6 microphone data and with sparse representation process 13 

when robot was at different positions in the pipe. 14 

Using the acoustic echoes reflecting from different features in the environment, the robot can estimate 15 

its position while it moves along the pipe. Using the process described in Section II.4, an estimate of 16 



30 
 

the robot’s position can be made by combining the prior estimate of the robot’s position with traditional 1 

odometry and with new acoustic information obtained from the reported measurements. The uncertainty 2 

in new information is incorporated into the estimate, so that the process is designed to have robustness 3 

to noise in measurements.  However, the measurement noise does have an effect on the precision of the 4 

estimate, which is investigated here. 5 

Figure 18 shows the results from the simulation of the variation in the mean estimate error for the 6 

robot’s trajectory (over 100 trajectories) along a pipe obtained for a range of measurement noise levels. 7 

This measurement noise was the standard deviation of the Gaussian noise added to each continuous 8 

value of distance measurement found from an acoustic echo. For comparison, the estimate made with 9 

traditional odometry without using acoustics is also shown. This result illustrates the impact of the 10 

uncertainty in robot motion along the pipe. As the acoustic measurement precision increases, the 11 

measurement uncertainty decreases, and the median estimate error is seen to decrease from close to the 12 

benchmark estimate error of 0.6 metres at 1 metre of measurement uncertainty to 0.25 metres at 0.1 13 

metres of measurement uncertainty. This illustrates the strong impact of improved acoustic echo 14 

measurement precision on robot localization that can be achieved using the approaches described in this 15 

paper. 16 
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Figure 18. Localization error per time step with varying measurement noise 18 

 19 
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V.E. Classification of blockages and junctions 1 

In this work, the two classes of pipe artefacts were identified: (i) a blockage; and (ii) a lateral connection. 2 

The blockages (35 different types in total) shown in Figure 9 were used for the training and testing of 3 

the SVM model. Junctions (25 different types in total) included pipe joints, lateral connections, T-4 

junction and corner junction. As discussed in Section II.4, the time domain wave packs �̂� were used 5 

directly as input (Xi) for the training and testing. Wavelet components (�̂�) associated with the artefacts 6 

were also used as the input (Xi) where the classifier was expressed as a wavelet SVM classifier. In this 7 

study, cross-validation was used with 5 folds, i.e. groups that data samples are split into for the 8 

evaluation of SVM modelling to protect against overfitting via data partitioning. 9 

For the wavelet based SVM classifier, the accuracy of the blockage detection in front of the robot at the 10 

first echo was 88% (53/60) based on the provided cases as shown with the confusion matrix in Table 1. 11 

The time domain SVM classifier enabled us to achieve 78% (47/60) accuracy based on the provided 12 

cases. It’s worth noting that a linear SVM was also implemented in this study with 65% (39/60) and 13 

53% (32/60) accuracy using the wavelet components and time domain data, respectively. The detailed 14 

accuracy, precision, recall and F1 score [12] for these four classifiers are shown in Table 2. These results 15 

provide the evidence that using wavelet components and non-linear kernel (RBF) improves the 16 

classification accuracy than using linear kernel and raw time domain data.  17 

Table 1. Confusion matrix of the wavelet SVM classifier from the testing data, TP: true positive, FP: false positive, FN: false 18 

negative, TN: true negative. 19 

 Predicted blockage Predicted junction  

Actual blockage TP=31 FP=4 35 

Actual junction FN=3 TN=22 25 

 34 26  

Table 2. Comparison of time domain linear SVM, wavelet linear SVM, time-domain RBF SVM, and wavelet RBF SVM: 20 

Metric 
Time domain 

Linear SVM 

Wavelet  

Linear SVM 

Time domain  

RBF SVM 

Wavelet  

RBF SVM 
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Accuracy 53% 65% 78% 88% 

Precision 0.571 0.686 0.829 0.886 

Recall 0.625 0.615 0.806 0.912 

F1 score 0.597 0.649 0.817 0.899 

 1 

Eight different settings of pipe network have been used as the demonstration examples, which are shown 2 

in Figure 19. In Figure 19, time domain SVM classifier can estimate the first artefacts close to the robot 3 

accurately, apart from a small blockage (blockage 1) which presents smaller reflection energy. Whereas, 4 

SVM model using the wavelet components as the training and testing data, shows more accurate (10% 5 

accuracy improvement, particularly for small blockages) classification result than the time domain 6 

SVM classifier. Furthermore, the reflection from joints/lateral connections 7 m behind the robot can 7 

also be predicted by wavelet-SVM classifier with around 92% accuracy. However, the time domain 8 

SVM enabled us to achieve only 50% prediction accuracy. This provides the evidence that the wavelet 9 

method, which takes advantage of the sparsity of the impulse response, can be used to improve the 10 

prediction accuracy in comparison to the time domain SVM classification method. 11 
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 12 

Figure 19. A comparison of the SVM classifier test between time domain impulse response and 13 

wavelet components  14 
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Although the prediction using wavelet-SVM classifier tends to be accurate in the testing examples 1 

(Figure 19), there are some cases in the experiment resulting in error classifications: 2 

1. Small blockages or sound absorbent blockage materials (e.g. acoustic absorption foam in this 3 

study see Figure 9(c)). This is because these kinds of blockages do not reflect enough acoustic 4 

energy that leads to a negligibly small amplitude of their impulse response and distortion in the 5 

assumed reflection coefficient spectra. The smallest successful blockage identified in this work 6 

using wavelet-SVM classifier was 20% blockage (blockage 1 in Figure 19).  7 

2. Blockages located close to a junction (<1 m). The acoustic echo from blockage overlaps with 8 

the reflection from the junction or another artefact making it difficult to separate multiple 9 

reflections and to classify each of them. 10 

3. A robot located too close to the blockage or junction (<1m). This is similar as in case 2 where 11 

the multiple reflections occur and overlap. 12 

4. Blockages located behind any artefacts. For example, if the blockage is behind a lateral 13 

connection, then the reflected signal can be colored by the presence of this lateral connection. 14 

As shown in Figure 19, the lateral connection after the blockage 3 is mistakenly classified.   15 

This classification methods provided in this paper use limited number of blockage and lateral 16 

connection cases simulated in the laboratory. More experimental data and realistic environmental 17 

testing will be needed to extend this method for multiple classification of different types of blockages 18 

and junctions. 19 

VI. Conclusions 20 

This paper proposed a new acoustic method to simultaneously detect, localize and identify the 21 

conditions in an air-filled pipe. Compared with previous studies, the main novel contributions of this 22 

paper are: (i) the use of a microphone array to extend the usable acoustic frequency range to estimate 23 

the reflection coefficient from blockages and lateral connections; (ii) a robust regularization method of 24 

sparse representation based on wavelets basis function adapted to reduce the background noise in the 25 

acoustical data; (iii) the use of wavelet components to localize and classify the blockages.  26 
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In particular, multiple microphones have been used to reconstruct the plane wave mode beyond the first 1 

three eigen-frequencies to support more accurate condition detection, localisation and classification. 2 

Numerical and experimental results for the modal reflection coefficient from a blockage and lateral 3 

connection have been predicted and compared with measurements. This information has been used to 4 

support condition detection and classification.  5 

Wavelet basis functions have been used to sparsely represent the plane wave mode impulse response 6 

for the condition detection and classification using the 𝑙1-norm regularization method. The higher-level 7 

wavelet functions referring to the higher frequency components of the impulse response have been used 8 

to localize the robot and blockage/lateral connection with a higher resolution and accuracy. It has been 9 

shown that the wavelet components can also be used to train and to test the SVM classifier for the 10 

blockage identification with higher accuracy than using the time-domain SVM classifier. 11 

 12 
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VIII. Appendix I. 21 

Table 3. The Algorithm of Sparse Reconstruction by Separable Approximation (SpaRSA [18]) for l1-22 

norm regularization   23 

 

Task: To solve the problem �̂� = arg min 12 ‖𝐖𝒔 − 𝒙‖22 + 𝜆‖𝒔‖1 

Input: Response signal 𝒆, wavelet dictionary 𝐖, parameter 𝜆 = 0.001 
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