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Abstract
Purpose of Review An overview of how the treatment landscape of axial spondyloarthritis (axSpA) has shaped our under-
standing of the disease.
Recent Findings Prior to the millennium, non-steroidal anti-inflammatory drugs (NSAIDs) were the only treatment for 
axSpA, yet only 30% of patients responded and many developed side effects. In 2003, the first biological disease-modifying 
drug (bDMARD) was licensed for axSpA which substantially improved outcomes in comparison to NSAIDs. In 2022, there 
are now several bDMARDs for axSpA; however, they too are not universally efficacious in treating axial inflammation and 
may have deleterious effects on extramusculoskeletal manifestations. Nevertheless, successful or not, each bDMARD gives 
invaluable insight into axSpA immunobiology.
Summary This review discusses how much we have learned from the use of bDMARDs in axSpA, how this has redefined our 
understanding of the disease, and how we might use this knowledge to develop new and better treatments for axSpA in the future.

Keywords Axial spondyloarthritis · Ankylosing spondylitis · Biological disease-modifying antirheumatic drugs 
(bDMARDs) · Therapeutics

Introduction

Axial spondyloarthritis [axSpA; formerly ankylosing 
spondylitis(AS)] is an inflammatory arthritis affecting primar-
ily the sacroiliac joints (SIJs) and spine, and is considered to 
be the prototype of a group of clinically and genetically related 
diseases called the seronegative spondyloarthropathies (SpA). 
The wider SpA family now includes radiographic-axSpA 
(r-axSpA/AS), non-radiographic(nr)-axSpA, psoriatic arthritis 
(PsA), reactive arthritis and enteropathic arthritis [1]. Clini-
cal features include inflammatory back pain with or without 
peripheral manifestations (arthritis, enthesitis and dactylitis), 
and extra-musculoskeletal manifestations [uveitis, psoriasis and 

inflammatory bowel disease (IBD)]. Historically, the diagno-
sis depended on the presence of characteristic bone changes 
of the sacroiliac joints and/or spine on plain film X-rays [2]; 
however, in recent decades MRI has enabled the detection of 
spinal inflammation without bony disease. Accordingly, in 
2011, The Ankylosing Spondylitis Association (ASAS) pub-
lished new classification criteria distinguishing between those 
with prototypical plain film changes (r-axSpA) and those with 
only clinical and/or MRI features of the disease (nr-axSpA) [3].

The first-line treatment for axSpA is non-steroidal anti-
inflammatory drugs (NSAIDs) or cyclooxygenase 2(COX-2) 
inhibitors [4]; however, approximately a third of patients 
fail to respond or are intolerant to these agents [5, 6]. In 
spite of this, NSAIDs/ COX-2 inhibitors remained the only 
pharmacological options for patients for decades, until 2003, 
when the first biological disease-modifying anti-rheumatic 
drug (bDMARD), the TNFα inhibitor (TNFi) etanercept, 
received marketing authorisation for r-axSpA [7]. Since 
then, several biologics have been added to the therapeutic 
arsenal, which now includes five TNFis (etanercept, inf-
liximab, adalimumab, golimumab, certolizumab and their 
biosimilars), two IL-17A inhibitors (secukinumab and ixeki-
zumab), and two Janus Kinase inhibitors (JAKi) (tofacitinib 
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and upadacitinib) [8–13]. Other agents in development and/
or close to receiving market authorisation include broda-
lumab (IL-17 receptor blocker) [14], bimekizumab (IL-
17A + IL-17F inhibitor) [15–18], namilumab ([granulocyte-
macrophage colony-stimulating factor (GM-CSF)] inhibitor) 
[19] and filgotinib (JAKi) [20]. Contrastingly, IL-23 inhibi-
tors were unsuccessful in Phase III trials, despite the positive 
result in early open-label studies [21–24].

Before reading this review, it is useful for the reader to 
appreciate some important caveats about drug development 
and discovery in axSpA. Most early bDMARDs and their 
molecular targets were conceptualised in other immune-
mediated inflammatory diseases (IMIDs) and extrapolated to 
axSpA. The TNFis were first trialled in axSpA on the prem-
ise that axSpA might share common inflammatory pathways 
with rheumatoid arthritis (RA) given the emerging evidence 
of inflammatory lesions on the SIJ [25]. Molecular studies 
then followed identifying other cytokines including IL-1 
and IL-6 in the serum of axSpA patients [26–28]. Yet, evi-
dence for IL-1 inhibition in axSpA is limited with only two 
small open-label studies performed in ankylosing spondylitis 
(r-axSpA) in the mid-2000s [29, 30]. Later, Phase II/III trials 
of tocilizumab and sarilumab (IL-6is) failed to reach their 
endpoints [31, 32], despite real-world evidence suggesting 
that IL-6i may have a role in a subset of synovial-driven 
refractory spondyloarthritis [33].

Detailed studies of the molecular biology of axSpA came a 
little later leading to large Phase III trials with agents such as 
IL-17is, IL-23is and JAKis, opening up new and exciting drug 
development opportunities specific to this disease [34]. How-
ever, it is important to note that the majority of drug develop-
ment is based on studies of established r-axSpA/AS, derived 
from pre-clinical models or from studies in other IMIDs; with 
more work needed to explore differences between these and 
real-world clinical models [35]. Finally, cellular immunity 
(the target for all bDMARDs) is only a small piece of the 
puzzle, since the pathogenesis of axSpA is also shaped by a 
number of other mechanical, environmental and genetic fac-
tors that could not possibly be covered in this focused review 
on therapeutics [36–38]. Figure 1 provides an overview of 
the current understanding of the molecular mechanisms of 
axSpA in relation to existing bDMARDs. The rest of this 
review details exactly how our understanding of molecular 
mechanisms in axSpA has been shaped by bDMARDs.

TNF Inhibitors

TNFα is a pleiotropic cytokine with a plethora of direct and 
indirect effects on both innate and adaptive immunity [39]. 
The main cellular sources of TNFα in axSpA are mono-
cytes/macrophages, but it may also be produced by natural 
killer (NK) cells, T cells, neutrophils and tissue-resident 

non-immune cells such as fibroblasts [40, 41]. In axSpA, 
TNFα contributes to pathology primarily via modulation of 
innate immune responses and, to a lesser extent, Th1 and Th17 
signalling (Fig. 1) [42–45]. The net effect of these actions is 
increased production of IL-1, IL-6 and other pro-inflamma-
tory mediators, recruitment of adaptive immune cells (T and 
B cells) and macrophages, Th1 polarisation of CD4 + T cells, 
tissue inflammation and ultimately propagation of the immune 
response [44]. In addition, the majority of axSpA patients 
are positive for the HLA-B27 allele (up to 90% in some stud-
ies) [46, 47]. In vitro, axSpA patients have high levels of NK 
and CD4 + T cells expressing KIR3DL2 which is capable of 
recognising HLA-B27 homodimers expressed on the surface 
of cells triggering activation and release of IFNy, TNFα and 
IL-17 [48, 49]. IL-17 works synergistically with TNFα to 
promote the release of downstream inflammatory mediators 
and modulate bone metabolism [44, 50], as well as contribut-
ing to the pathogenesis of axSpA via other TNF-independent 
mechanisms (discussed later in this review).

Given the above, it is unsurprising that TNFis are effec-
tive for axSpA. However, the response is not ubiquitous, and 
over a third of patients experience non-response (NR) to 
their first TNFi [51, 52]. Possible explanations include non-
compliance with treatment, individual differences in drug 
metabolism, pharmacodynamics and pharmacokinetics or 
the development of anti-drug antibodies [53, 54]. Several 
studies from a decade ago linked HLA-B27 misfolding with 
downstream TNFα production [55]; an observation that was 
then confirmed in a recent meta-analysis showing HLA-
B27 positivity was associated with improved BASDAI50 
response to TNFis compared with HLA-B27 negative disease 
[56]. Furthermore, a smaller study showed a significantly 
improved response in HLA-B27 allele homozygous individu-
als compared with heterozygous [57]. On the other hand, 
there have been no clinically significant differences reported 
for bDMARD response rates between r-axSpA and nr-axSpA 
for any of the different biologic agents to date (Table 1) [58].

Following TNFi NR, the National Institute of Clinical 
Excellence (NICE) allows the use of a second TNFi or 
an IL-17i in axSpA [8]. Whilst some axSpA patients will 
respond to a second TNFi, overall response rates to a sec-
ond bDMARD (TNFi or IL-17i) are lower [59], pointing to 
a possible change in an individual’s immune environment, 
and those rates of NR may be worse for those with primary 
NR compared with secondary NR. Manica et al. showed 
no difference in Ankylosing Spondylitis Disease Activity 
Score Clinically Important Improvement (ASDAS-CII) for 
the second TNFi between those with primary NR versus 
secondary NR to their first TNFi; however, there was a dif-
ference when the more stringent ASDAS inactive disease 
(ASDAS-ID) outcome measure was used [60]. The under-
lying molecular basis for bDMARD NR in axSpA remains 
poorly characterised.
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Another indication supporting that an individual’s 
immunobiology can change with treatment, and/or with 
the duration of disease, is the observation of NR after re-
challenge with the same bDMARD following an interrup-
tion to treatment, e.g. for surgery or whilst receiving treat-
ment for a concurrent infection [61]. Infections themselves 
may prime the immune system and can be a trigger for new 
autoimmune disease or change in the manifestations of an 
existing one; the classic example being reactive arthritis 
[62]. The infectious challenge to the immune system can 
result in loss of efficacy even in patients with years of good 
response.

Given the above, it was suggested that combining 
bDMARD therapies might be more efficacious in some 
patients; a theory tested by Hammoura et al. who used a 
murine model to test whether dual inhibition of IL-17 and 
TNFi would be superior to TNFi and/or IL-17i. Unfortu-
nately, efficacy was similar across all 3 treatment arms sug-
gesting no additive or synergistic effects of combining differ-
ent classes of bDMARD treatment [63]. However, all mice 
were treatment-naïve at the time of study entry, and so the 
efficacy of dual-blockade in the setting of primary or sec-
ondary NR to one or more bDMARDs remains unexplored. 
Similar results were found in humans where dual inhibition 

Fig. 1  The two major inflammatory cell types thought to be impli-
cated in axSpA are Th1 and Th17 CD4 + T cells. Naïve T cells are 
polarised to Th17 cells in the presence of IL-23, IL-6 and TGFβ. 
IL-23 may be activated in a number of ways including gut microbi-
ota-host dendritic cell interactions, activation of tissue-resident cells 
due to entheseal stress, unfolded protein response (UPR) in triggered 
by misfolded HLA-B27, or via IL-36 though the mechanisms of the 
latter are poorly understood. IL-23R activation triggers downstream 
JAK/STAT pathway signalling and gene transcription, polarising 
naïve CD4 + T cells to Th17-cells. Th17 cells produce cytokines 
including IL-17 and IL-22 which drive inflammation. Th1 polarisa-
tion is driven by IL-12 which also signals via the JAK/STAT path-
way. Th1 cells produce TNFα, IL-6 and IFNγ which promote inflam-

matory pathways involved in axSpA. As discussed above, IL-6 is also 
required for Th17 cell polarisation. All bDMARDs used in axSpA 
target one or more of these inflammatory pathways, resulting in 
direct and indirect inhibition of inflammatory pathways associated 
with axSpA. Key: ADA, adalimumab; BIM, bimekizumab; BROD, 
brodalumab; CER, certolizumab; ETA, etanercept; GM-CSF, granu-
locyte–macrophage colony-stimulating factor; GOL, golimumab; 
IFNy, interferon-gamma; ILC, innate lymphoid cells; IFX, infliximab; 
IL, interleukin; IXE, ixekizumab; JAK, janus kinase; p, phosphoryla-
tion; SEC, secukinumab; STAT, signal transducers and activators of 
transcription; TNFα, tumour necrosis factor- alpha; TOF, tofacitinib; 
UPA, upadacitinib; UPR, unfolded protein response; γδT, gamma-
delta T cells
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of TNFα and IL-17A with ABT-122 was shown to have a 
similar efficacy and safety profile to that of the TNFi alone 
in trials of rheumatoid arthritis and psoriatic arthritis [64] 
with limited real-life reports of highlighted an enhanced side 
effect risk profile in resistant SpA [65].

TNFis are not universally efficacious across all EMMs, and 
in some cases may even exacerbate them. Notably, etanercept 
has been linked with an increased risk of uveitis [66] as well 
as other ocular complications including intermediate uveitis, 
posterior uveitis, scleritis and very rarely orbital myositis [67]. 
Current recommendations are to avoid etanercept in patients 
who have or who go on to develop uveitis [66]. Yet paradoxi-
cally, other TNFis are the preferred choice of bDMARD for 
uveitis [68]. The explanation for this differential effect could 
lie in the unique mode of action of etanercept when compared 
with other TNFis. Etanercept, a soluble receptor blocker, 
blocks the receptor but does not remove circulating TNFα like 
the other TNFi agents on the market [68] and there are some 
data to suggest its larger molecular weight results in poorer 
intraocular permeability, reducing efficacy [68, 69]. Indeed, 
two RCTs failed to show the superiority of etanercept over pla-
cebo in the treatment of ocular pathologies [70, 71]. However, 
this would not account for the paradoxically increased inci-
dence of uveitis that has also been observed in some studies 
[66]. Perhaps one reason for the difference is that etanercept 
also blocks TNFβ, however in murine models of uveitis TNFβ 
levels are also increased, therefore one would expect this to 
help treat uveitis and not cause it [72]. Another study showed 
that TNF receptor (TNF-R) and TNFα levels were elevated in 
ocular fluids from patients with active uveitis, and blocking the 
TNF-R resulted in an increase in TNFα production by T cell 
populations. The authors therefore postulate that the TNF-R 

might have a regulatory role in uveitis over and above just 
mopping up TNFα [73]. Clearly further research is needed to 
fully understand the reasons for etanercept failure in the treat-
ment of uveitis [74].

IL‑17 Inhibitorsfailure in the treatment of

IL-17 plays an important role in the defence against fun-
gal and certain bacterial pathogens. It was first linked to 
human disease through a model of mouse autoimmune 
encephalitis in 2005 [75], heralding the discovery of IL-17 
pathway dysregulation in several autoimmune and auto-
inflammatory diseases including axSpA [76]. The IL-17 
family includes 6 known cytokines (IL-17A-IL17F) [77]. 
The most important in axSpA are IL-17A and IL-17F 
which form heterodimers capable of activating the IL-
17RA and IL-17RC complex on target cells [78]. Sev-
eral cells are capable of IL-17 including CD4 + T cells, 
CD8 + T cells, mucosal-associated invariant T cells (MAIT 
cells), innate lymphoid cells (ILCs), gamma delta T cells 
(γδT-cells) and invariant natural killer T cells (iNKTs), 
neutrophils, mast cells and eosinophils [78]. Although a 
number of these cells may play a role in IL-17 production 
in axSpA, most IL-17 is thought to be produced by Th17 
cells [79–81]. IL-17 production, in turn, stimulated IL-1β, 
TNFα, IL-6 and IL-23 by synovial fibroblasts, monocytes 
and macrophages generating a positive feedback loop for 
further Th17 cell differentiation [82]. In addition to IL-17, 
Th17 polarised cells produce other cytokines (GM-CSF), 
chemokines (CXCL1, XCL2, CXCL8, CCL20, etc.), anti-
microbial peptidases, matrix metalloproteinases, complement 

Table 1  Summary of licensed 
bDMARDs in axSpA and their 
efficacy on different disease 
features

Key: axSpA  axial spondylarthritis, bDMARD  biological disease-modifying anti-rheumatic drug, nr  non-
radiographic, r radiographic
* Pre-authorisation granted full document to be published Aug 2022
** For treatment of ulcerative colitis only

bDMARD Year 
licensed by 
NICE

License 
(r- and nr- 
axSpA)

Efficacy

Axial disease Peripheral 
disease

Skin psoriasis Uveitis IBD

Etanercept 2003 r- x x x x
Infliximab 2004 r- and nr- x x x x x
Adalimumab 2008 r- and nr- x x x x x
Golimumab 2009 r- x x x x x
Certolizumab 2013 r- and nr- x x x x x
Secukinumab 2016 r- and nr- x x x
Ixekizumab 2021 r- and nr- x x x x**
Upadacitinib r- and nr- x x x x**
Tofacitinib r- and nr- x x x
Bimekizumab 2022* r- and nr-
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and other acute phase reactants [83, 84]. This pro-inflamma-
tory storm ultimately results in dysregulated bone metabo-
lism, axial and peripheral joint inflammation and enthesitis 
in both mouse models and in-vitro studies of peripheral blood 
and tissues from patients with axSpA [78, 85].

Presently, two IL-17A inhibitors, secukinumab and ixeki-
zumab, have been licensed by NICE, the Medicines and 
Healthcare products Regulatory Agency (MHRA) and Food 
and Drug Administration (FDA) for use in axSpA either as 
1st or 2nd line treatment [9, 10, 86–89]. Bimekizumab (an 
IL-17A and IL-17F inhibitor) has also now received pre-
authorisation [16] with results from Phase III trials showing 
similar efficacy to TNFi (Table 1) [90]. Although to date, 
there are no head-to-head comparator studies in axSpA, adal-
imumab was used as a comparator in the COAST-V trial, and 
ixekizumab demonstrated a greater absolute improvement in 
ASAS-40 scores between week 0 and week 16 compared to 
adalimumab, although the study was not powered to detect 
significance [91]. Despite largely similar efficacy on disease 
control overall, there are some important differences with 
regards to EMMs. IL-17 inhibition showed superior efficacy 
on skin psoriasis compared with TNFis, and therefore axSpA 
patients with difficult-to-treat skin psoriasis may warrant 
earlier used IL-17is as opposed to a TNFis [92]. Similarly, 
psoriatic arthritis with a predominantly axial pattern of joint 
involvement may benefit from the early introduction of IL-
17i because conventional non-biological DMARDs, although 
effective for skin psoriasis and peripheral joint inflammation, 
may not effectively treat axial disease [93–95].

Changes of axSpA are present in 10–36% of IBD patients, 
therefore IBD is of major clinical significance in axSpA [96]. 
TNFα is are effective treatment for IBD [97]. However, trials 
have demonstrated an increased incidence of IBD, as well as 
exacerbation of IBD, in axSpA patients treated with IL-17i 
[98]. The same observations were made in studies of IL-17 
is in non-axSpA IBD, with two clinical trials of the IL-17 is 
secukinumab and brodalumab stopped early due to worsen-
ing of IBD symptoms in Crohn’s disease patients [99, 100]. 
These results perplexed experts initially as earlier studies pre-
clinical and genetic studies had demonstrated dysregulation 
of the IL-17/23 axis in IBD [98]. However, studies have since 
also shown that IL-17 inhibition may interfere with dysregu-
lation of the gut epithelial barrier, predisposing to infection 
and inflammation which can, in turn, exacerbate or trigger 
IBD [98]. Additionally, in a murine model of autoimmune 
uveitis, authors demonstrated IL-17A may be important for 
negative feedback of pro-inflammatory Th17 cell responses. 
They showed that IL-17A, through NFκβ, induces IL-24 pro-
duction by Th17 cells, thereby downregulating IL-17F and 
GM-CSF to suppress Th17 cell activity [101]. On the other 
hand, there is evidence that the effects of IL-24 are dose-
dependent, with low doses suppressing Th1 cells and higher 
doses promoting Th1 and Th17 cell activity in the study of 

colorectal cancer [102]. IL-24 also acts on the IL-20 recep-
tors on epithelial cells in the colonic mucosa where it plays a 
regulatory role [103] and high levels of IL-24 have also been 
observed in patients with skin psoriasis and in RA synovial 
fluid [103]. Altogether, these studies suggest a differential 
role for IL-17A, IL-17F and their downstream cytokines 
in the inflammatory process which may be cell- and tissue-
specific, and may account for the lack of efficacy of IL-17is 
in IBD. It also suggests that dual IL-17A/IL-17F inhibition 
may have other effects, and therefore that agents like bime-
kizumab may behave differently to agents that block IL-17A 
only, however more work is needed in this area [104].

IL‑23 Inhibitors

IL-23 is another cytokine which works in conjunction with 
IL-17 in the pathogenesis of axSpA [105]. Structurally, 
IL-23 is a heterodimer complex of two subunits, p40 and 
p19, which when combined interact with the IL-23R on tar-
get cells triggering downstream activation of JAK/STAT sig-
nalling pathways and transcription of several pro-inflamma-
tory mediators including IL-17, IL-22 and TNFα [106, 107]. 
Several animal studies demonstrate the importance of IL-23 
in the pathogenesis of SpA [108–113]. Moreover, IL-23R 
and STAT2/3 risk alleles were reported amongst the non-
HLA-B27 associations for axSpA in a recent meta-analysis 
of ankylosing spondylitis genome-wide association studies 
[114, 115]. Although individual risk effect estimates were 
small, this is true for all non-HLA-B27 risk alleles and does 
not necessarily mean they are not relevant to disease in at 
least some patients, particularly given that functional stud-
ies of the role of IL-23 in axSpA suggest otherwise. IL-23 
and IL-17 levels are elevated in peripheral blood from AS 
patients [116–118], and IL-23 can stimulate IL-17 produc-
tion by a number of cells including CD8 + T cells, γδT-cells 
as well as other lymphoid cell lines [83–85].

Given these findings, and the success of four IL-23 
inhibitors (the p19IL-23 inhibitor risankizumab, the p40IL-
12/23 inhibitor ustekinumab, the p19IL-23 inhibitor IL-23 
inhibitor guselkumab and the p19IL-23 inhibitor tildraki-
zumab) in treating patients with skin psoriasis and/or PsA 
[119–129], many thought IL-23 inhibitors would be a via-
ble treatment option in axSpA. Yet despite early promising 
results from a German open-label study of IL-23 inhibi-
tors, Phase III trials failed to demonstrate efficacy [21–24]. 
These trials used comparable patient groups and similar 
endpoints to other bDMARD trials in axSpA, and therefore, 
lack of efficacy cannot be accounted for simply on the basis 
of trial design [105].

To understand the possible cause for the lack of efficacy 
of IL-23 inhibitors in axSpA requires a deeper understand-
ing of the IL-17/IL-23 signalling pathway and differences 
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that might exist in different tissue compartments and at dif-
ferent time points in the disease trajectory [130]. Recent 
studies on the spinal human enthesis have shown evidence 
of IL-17A production independent of IL-23R expression 
[131]. Furthermore, there are myeloid cells resident in the 
entheses of the spine capable of producing IL-23 in response 
to mechanical stress factors [132]. Other potential sources 
of IL-23 in axSpA that have been proposed include, cel-
lular endoplasmic reticulum stress responses in relation to 
misfolded HLA-B27 proteins, aberrant host response to a 
microbial insult (as observed in reactive arthritis patients) 
and IL-36 production, although there is very little research 
on the latter [133]. Yet robust evidence that any of these 
pathways are clinically important and are active in-vivo, is 
yet to be obtained. Moreover, whilst these theories offer an 
explanation to the original source of IL-23 production, in 
established disease, data suggest that these may no longer 
be important, since Th17 cells can produce IL-17 independ-
ent of IL-23 as discussed above. Furthermore, it raises the 
question of whether IL-23 inhibition may only be of value 
in the very early or pre-clinical disease state, which has yet 
to be defined in axSpA [134].

Alternatively, it is possible that there is a subset of 
patients who continue to show a IL-23-driven disease who 
might benefit from IL-23is, or that certain EMMs are more 
driven by IL-23 than others owing to tissue-specific factors. 
Of even more significant interest is perhaps the fact that IL-
23i, somewhat counterintuitively may be efficacious in axial 
psoriatic arthritis. Post hoc analysis of the axial PsA patient 
subsets from larger PsA trials of IL-23 inhibitors (PSUM-
MIT, DISCOVER1 and DISCOVER2) showed patients still 
felt joint symptoms had improved [105, 120, 124, 125]. The 
caveat to this is that all primary outcome measures used 
in the trials measured disease activity as a whole, which 
includes peripheral disease, skin psoriasis and axial disease. 
Furthermore, no MRI imaging was available to correlate 
symptomatic improvement with objective evidence of a 
reduction in spine/SIJ inflammation on spinal MRI. Nev-
ertheless, this observation is of great interest and there is a 
need for dedicated trials of IL-23i in axial PsA focusing on 
their impact on axial disease specifically.

JAK Inhibitors

Cytokines signal via numerous downstream pathways, one of 
which is the Janus Kinase/ signal transducers and activators 
of transcription (JAK/STAT) [135]. The JAK/STAT family 
includes JAK 1,2,3 and tyrosine kinase 2 (TYK2), which is 
associated with the intracellular aspect of type I/II cytokine 

receptors on the cell surface, including the IL-23R, IL-6R, 
type 1 and type 2 IFN receptors, IL-7R and GM-CSF recep-
tors. When activated, JAKs phosphorylate themselves and 
their receptors, then dephosphorylate after 15–30 min to pre-
vent permanent receptor activation. STAT molecules bind dur-
ing the active state and are phosphorylated, whereupon they 
migrate to the nucleus and bind to target genes promoting tran-
scription. JAKis in commercial use have variable selectivity 
for particular JAK family members, allowing for some degree 
of differential receptor modulation [136]. The two JAKis cur-
rently licensed for the treatment of axSpA; upadacitinib and 
tofacitinib; selectively target JAK1, but also may interact with 
other JAKs, therefore have a broad spectrum of activity on 
the receptor subtypes above. The downstream effect is the 
modulation of several innate and adaptive immune processes 
contributing to axSpA including Th1 and Th17 differentiation, 
growth/maturation of lymphoid cells, and tissue inflammation. 
A detailed review of the specific downstream effects of JAKis 
can be found here [137].

JAKis demonstrated clear efficacy for the treatment of 
axSpA in trials meeting their primary and secondary endpoints 
with similar outcomes as reported in trials of TNFi and IL-17is 
[138–140]. However, as JAKis have only just been authorised 
for the treatment of axSpA, more data are needed to establish 
their efficacy against EMM such as IBD and AU (Table 1) 
and to fully understand their mechanism(s) of effect in axSpA. 
JAKis target several inflammatory pathways, but not all are 
directly involved in axSpA, therefore the mechanism of their 
effect on disease is likely indirect. With this comes the risk of 
further unwanted and/or unanticipated side effects. Indeed, this 
has already been observed in RA, with emerging real-world 
clinical data demonstrating an increased risk of cardiovascu-
lar and thrombotic events in the RA population. Accordingly, 
JAKis should not be used in those at high risk for thrombosis 
or those over the age of 65 [141, 142]. On the other hand, 
JAKis have been in use in RA for a number of years with 
no apparent increase in incidence of IBD, psoriasis or uveitis 
[143]. Furthermore, tofacitinib and upadacitinib are actually 
approved by the FDA, MHRA and NICE for the treatment of 
ulcerative colitis [141, 142, 144–147]. Upadacitinib but not 
tofacitinib, has shown favourable results in Crohn’s disease, 
although regulatory approval for use in Crohn’s disease has 
yet to be granted [148, 149]. Nevertheless, these studies sug-
gest that, like TNFis, JAKi might have beneficial effects on 
both the joints and gut of patients with axSpA and IBD [150]. 
JAKis have been trialled in psoriatic arthritis, but not skin pso-
riasis specifically. Despite this, trial data suggested that the 
improvement in the psoriatic arthritis severity index (PASI) 
reflected the beneficial effect of JAKis on both arthritis and 
skin psoriasis [136].
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Potential Future bDMARDs

As described previously, new bDMARDs are in late-phase 
development, including a novel IL-17R blocker broda-
lumab, with a different mode of action of IL-17 direct 
cytokine inhibition [14]. Similarly, other JAKi may soon 
be licensed, and it will be interesting to see if/how their 
different receptor selectivity impact on the efficacy of 
treatment. Finally, there is also a new class of agent in 
early trial phases, nanilumab, a GM-CSF inhibitor (19). 
The role of GM-CSF was first suggested as working 
upstream of the IL-17/23 inhibitor axis in triggering the 
disease, and early-phase trials have shown some success 
in axSpA and RA [151]. If trials are successful, this could 
one day become another class of bDMARD for axSpA.

Summary

There are now a significant array of biologic and targeted 
synthetic drugs available for the treatment of axSpA, each 
with somewhat divergent effects on axial/peripheral joint 
symptoms and EMMs. TNFis show efficacy for the treat-
ment of axial/peripheral disease, enthesitis, IBD and uveitis 
(except for etanercept). IL-17 inhibitors treat axial/peripheral 
joint symptoms and are particularly useful in the presence of 
concomitant skin psoriasis. On the other hand, they may trig-
ger or exacerbate flares of IBD and are second to TNFis for 
the treatment of uveitis. JAKis have established efficacy on 
peripheral and axial symptoms in trials but effects on EMMs 
are as yet unknown. How and why these differences might 
exist between drugs, and how this divergence relates to the 
underlying molecular pathogenesis, remains unclear. Specific 
studies in pre-clinical and early disease may now be possible 
with increased awareness of the disease, advancing imaging 
methods and the growing use of predictive genomics tech-
nologies across the whole spectrum of IMIDs, and may reveal 
new drug targets that can tell us more about the disease in its 
early stages. At the same time, results of ongoing pharma-
covigilance studies of existing drugs over the coming years 
may reveal new insights into how these treatments affect the 
pathogenesis of axSpA in the short- and long-term, which 
may further change our understanding of the biology of this 
disease throughout its course. Even more valuable will be 
the data on how they impact particular subsets of patients 
(nr- vs r-, HLA-B27 allele positive versus negative, males 
vs. females, etc.) which may account for some differences in 
the observed treatment efficacy. Twenty years of biologics for 
axSpA have already taught us a lot about this disease. With 
well-planned drug development and post-market surveillance, 
the next 20 years are likely to teach us even more.
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