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A B S T R A C T   

Climate change is predicted to increase rainfall intensity in tropical regions. Convection permitting (CP) climate 
models have been developed to address deficiencies in conventional climate models that use parameterised 
convection. However, to date, precipitation projections from CP climate models have not been used in 
conjunction with hydrological models to explore potential impacts of explicit modelling of convective rainfall on 
river flows in the tropics. Here we apply the outputs of a continental scale CP climate model as inputs to lumped 
rainfall-runoff models in Africa for the first time. Applied to five catchments in the Lake Victoria Basin, we show 
that the CP climate model produces greater river flows than an equivalent model using parameterised convection 
in both the current and future (c. 2100) climate. However, the location of the catchments near to Lake Victoria 
results in limited changes in extreme rainfall and river flows relative to changes in mean rainfall and river flows. 
Application of CP model rainfall data from an area where rainfall extremes change more than the change in mean 
rainfall to the rainfall-runoff model does not result in significant changes in river flows. Instead, this is shown to 
be a result of the rainfall-runoff model structure and parameterisation, which we posit is due to large-scale 
storage in the catchments associated with wetland cover, that buffers the impact of rainfall extremes. Based 
on an assessment of hydrological attributes (wetland coverage, water table depth, topography, precipitation, 
evapotranspiration and river flow) using global-scale datasets for the catchments in this research, this buffering 
may be extensive across humid regions. Application of CP climate model data to lumped catchment models in 
these areas are unlikely to result in significant increases in extreme river flows relative to increases in mean 
flows.   

1. Introduction 

Climate change is predicted to result in increasing rainfall intensity 
in sub-Saharan Africa (Dunning et al., 2018), with these increases pre-
dicted to affect water resources (Cuthbert et al., 2019; Ngoran et al., 
2015; Taylor et al., 2013). The impacts of climate change on water re-
sources have been assessed extensively globally (see reviews by Ataw-
neh et al. (2021); Garrote (2017)) including in sub-Saharan Africa 
(Kusangaya et al., 2014; Ngoran et al., 2015). Conventional approaches 
(Fowler et al., 2007) to the assessment of the impacts of climate change 
on water resources consist of the use of downscaled meteorological data 

from coarse scale (horizontal resolution > 100 km) global circulation 
models (GCMs, e.g CMIP5 (Taylor et al., 2012)) under current and future 
climate to hydrological models. These approaches are limited by the 
extent to which GCMs can reliably simulate the climate physics of an 
area of interest. In tropical continental regions such as sub-Saharan 
Africa, GCMs are known to exhibit large errors in precipitation associ-
ated with the representation of convective rainfall (Bock et al., 2011). 
GCMs parameterise convective rainfall resulting in too much light daily 
rainfall and too little intense rainfall (Dirmeyer et al., 2012; Stephens 
et al., 2010), which is a significant deficiency in tropical areas where 
convective systems can be c. 75 % of total rainfall (Roca et al., 2014). 
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In order to address the deficiency of parameterised convection in 
GCMs, “convection-permitting” climate models (CPMs) have been 
developed. These models are run at kilometre-scale grid resolution, with 
convection represented explicitly on the model grid (Kendon et al., 
2021). CPMs have been shown to produce significant improvements in 
model performance in comparison to conventional parameterised 
models in both small scale rainfall characteristics (e.g. intensity, diurnal 
cycles) and large-scale circulation in Africa (Senior et al., 2021), with 
improvements also observed in Europe (Berthou et al., 2020) and the 
USA (Liu et al., 2017). The use of convection permitting models in 
operational rainfall forecasting is now well established (Clark et al., 
2016). Rainfall forecasts have also been translated into forecasts of flash 
flooding in the UK (Golding et al., 2016), Mediterranean (Vincendon 
et al., 2011) and USA (Qing et al., 2020; Wang and Wang, 2019; Zhang 
et al., 2021). Recently, convection permitting models have been used to 
explore the impacts of climate change on short duration extremes in 
precipitation, with continental scale CP projections in Africa producing 
greater future increases in 3 h and daily precipitation than para-
meterised models (Kendon et al., 2017; Kendon et al., 2019). This is due 
at least in part to greater intensification of the storm updrafts, which are 
not explicitly modelled in standard, parameterised models (Jackson 
et al., 2020). As convection-permitting models give greater intensifica-
tion of extreme rainfall under climate change through better capturing 
the dynamics of storms and their couplings with larger scales, we 
therefore expect use of convection-permitting model projections of 
rainfall to affect projections of hydrological flows. The impacts of 
climate change based on CP projections on river flows based on 
distributed hydrological models have been evaluated in temperate 

climates such as the UK and northern and alpine Europe (Kay, 2022; Kay 
and Davies, 2008; Reszler et al., 2018; Schaller et al., 2020) and semiarid 
Texas (Wang and Wang, 2019). Recently Miller et al. (2022) used CP 
projections to develop design storms to feed into an urban flood model in 
Burkina Faso, West Africa. To date, however, no research has assessed 
how future changes in precipitation produced by convection-permitting 
models may affect projected river flows derived from lumped hydro-
logical models in the tropics. Moreover, globally no work has assessed 
how lumped conceptual hydrological model structure and parameter-
isation may affect the propagation of extreme events from CPM pre-
cipitation to hydrological model river flow. 

In this paper, we quantify changes in river flows associated with 
application of convection-permitting climate model data to lumped 
conceptual hydrological models for the first time. We apply precipita-
tion data from a high-resolution convection-permitting climate model 
for Africa to five lumped conceptual hydrological models across the Lake 
Victoria Basin, East Africa, and compare the resulting river flow pro-
jections with projections derived from application of an equivalent 
climate model with parameterised convection. We also undertake a se-
ries of model experiments applying climate model precipitation data 
from a region of known modelled rainfall intensification to each of the 
hydrological models and explore how changes in rainfall intensity 
propagate through the hydrological models. Finally, we consider the 
implications for use of convection-permitting climate model data in 
hydrological modelling studies and water management. 

Fig. 1. Lake Victoria Basin (black), East Africa, and the location of Global Runoff Data Centre (GRDC) catchments (blue) and gauges (red), reproduced with 
permission of GRDC (2011)). Lake Victoria in light blue. Lake Victoria Basin reproduced after Lehner et al. (2008) and Lehner and Grill (2013). The inset map shows 
the location of the study area (red) in the African continent. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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2. Materials and methods 

2.1. Study area and hydroclimatic context 

The study area for this research is the Lake Victoria Basin (LVB), East 
Africa (Fig. 1). The LVB is located at the head of the Nile River Basin and 
has a total area of c. 251,000 km2. The area has an equatorial climate 
with a bimodal rainfall pattern (“long rains” from March to May, and 
“short rains” from October to December). Numerous studies have eval-
uated impacts of climate change on river flows using lumped and semi- 
distributed models in the LVB (Dessu and Melesse, 2013; Gabiri et al., 
2020; Githui et al., 2009; Kingston and Taylor, 2010; Mehdi et al., 2021; 
Taye et al., 2011) and the wider East African region (Meresa and 
Gatachew, 2018; Siam and Eltahir, 2017; van Griensven et al., 2012). 
However, previous studies used downscaled GCM outputs which 
parameterize convection. None have evaluated the impact of explicit 
modelling of convective processes on river flow projections. The LVB is a 
hotspot for severe convective storms (Hanley et al., 2021), and floods 
and landslides associated with such extreme weather events (e.g. the 
2019 short rains (Wainwright et al., 2021a)) have significant socioeco-
nomic consequences. There is large inter-model uncertainty in the re-
gion (Bornemann et al., 2019) and GCMs are known to have significant 
biases to convective rainfall, with both CMIP5 and CMIP6 models shown 
to poorly simulate extreme events (Ayugi et al., 2021) in East Africa. 
Consequently, some workers have developed CPM runs of the regional 
historic climate (Hanley et al., 2021; Van de Walle et al., 2020) for the 
purposes of improved understanding of regional climate and forecasting. 
At climate change timescales, CPM runs have been developed at the 
continental scale in Africa (Kendon et al. (2019); Stratton et al. (2018), 
and used in this research). These have been evaluated in East Africa (and 
the LVB in particular) and have been shown to improve simulations of 
rainfall intensity and the diurnal cycle (Finney et al., 2019; Finney et al., 
2020). 

2.2. Hydrological model development 

2.2.1. Model code 
The hydrological model used in this research was the lumped con-

ceptual hydrological model GR4J (Perrin et al., 2003). GR4J has been 
used extensively for streamflow simulation worldwide and has been 
shown to perform, on average, well over a wide range of catchment 
conditions whilst remaining parsimonious (Perrin et al., 2003; Westra 
et al., 2014). GR4J has also been used in sub-Saharan Africa in particular 
(Bodian et al., 2018; Kodja et al., 2020; Le Lay et al., 2007). The 
structure of GR4J is shown in Fig. 2. The model runs on a daily timestep 
is driven by single time series of precipitation (P) and potential evapo-
transpiration (E). The model consists of two stores (“production” and 
“routing”) and four parameters (x1–x4). Net rainfall (Pn), actual evapo-
transpiration (Es) and net evapotranspiration (En) are calculated from 
the balance on P and E. A fraction of Pn, Ps, then is transferred to the 
production store, which has a maximum capacity x1 and level S. 
Percolation out of the production store, PERC, is added to Pn-Ps to form 
the water quantity reaching the routing part of the model, Pr. The 
routing store algorithms divide Pr into direct and indirect flow compo-
nents using unit hydrograph approaches (UH1 and UH2, with the time 
base as parameter x4) to spread effective rainfall over several successive 
timesteps to produce hydrograms Q9 and Q1. Both the direct and indi-
rect flow components via the routing store (maximum capacity param-
eter x3, level R) account for groundwater exchange using parameter x2, 
and resulting flow components (Qr and Qd) are combined to produce the 
total streamflow Q. For more information regarding the model structure 
of GR4J, the reader is referred to Perrin et al. (2003). 

2.2.2. River flow observations, driving data and model calibration 
In order to test the impact of convection-permitting climate model 

data on river flows, GR4J was run on a daily timestep. In order to 

calibrate GR4J’s current climate, we therefore extracted all daily river 
flow data in the Global Runoff Data Centre (GRDC, 56,068 Koblenz, 
Germany) for a bounding box covering the LVB (28-37◦E, 5◦S – 4◦N). 
This consisted of daily river flow data for five catchments in the LVB, as 
shown in Fig. 1. A summary of metadata for each of the catchments is 

Fig. 2. Structure of GR4J. Reproduced after Perrin et al. (2003) with permis-
sion from Elsevier. Meaning of acronyms are included in the text. 

Table 1 
Summary of metadata for each of the catchments used in this research.  

Catchment 
ID 

River 
name 

Country Catchment 
size (km2) 

Number of 
data 
points 

Start/ 
end 
dates 

1269200 MAGOGO Tanzania 1187 730 1978- 
01-01: 
1979- 
12-31 

1270900 UPPER 
NGONO 

Tanzania 1161 730 1978- 
01-01: 
1979- 
12-31 

1769050 AWACH 
KABOUN 

Kenya 540 1096 1978- 
01-01: 
1980- 
12-31 

1769100 NYANDO Kenya 2625 1096 1978- 
01-01: 
1980- 
12-31 

1769200 NYANDO Kenya 1419 1065 1978- 
02-01: 
1980- 
12-31  
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shown in Table 1. 
For each of the five catchments we developed a GR4J model instance 

by adjusting its parameters using the R Package AirGR (Coron et al., 
2017) (referred to as “each GR4J model” herein). Each GR4J model 
requires single time series of precipitation and potential evapotranspi-
ration (PET) as driving datasets. We extracted historical (1958–2001) 
daily rainfall time series from the WATCH forcing dataset (Weedon 
et al., 2011), taking the spatial mean of all grid cells within each 
catchment. We also extracted temperature data which was used to 
calculate PET using the Thornthwaite (1948) method. Each GR4J model 
was calibrated using the full river flow time series, which has been 
shown to be more robust than calibration and validation using a split- 
sample approach (Arsenault et al., 2018). The model was calibrated 
using the default range of parameters and the built in steepest descent 
local slope procedure (Coron et al., 2017) to optimise the Kling-Gupta 
Efficiency (KGE) (Gupta et al., 2009). The KGE is a calculated as: 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σsim

σobs
− 1

)2

+

(
μsim

μobs
− 1

)2
√

Where r is the linear correlation between observations and simulations, 
σsim and σobs are the standard deviations in the simulations and obser-
vations respectively, and µsim and µobs are the means of the simulations 
and observations respectively. The KGE has an “ideal” value at unity. It 
should be noted that for our application the use of population-based 
optimization algorithms which presumably have better global search 
capabilities did not outperform the default local approach in GR4J. The 
KGE was chosen instead of other criteria, such as the Nash-Sutcliffe 
Efficiency, as this research focusses on changes in extreme rainfall and 
river flows. In such cases, the KGE tends to constrain the underestima-
tion of uncommon flow events in simulated runoff (Gupta et al., 2009). 

2.3. Application of climate model experimental data to hydrological 
models 

For each of the calibrated GR4J models, we applied data from two 
climate model experiments (Stratton et al., 2018) developed with the 
specific aim of evaluating the impact of explicit modelling of convection: 
(1) “R25”, a 25 km resolution climate model over Africa with para-
meterised convection and (2) “CP4”, a finer 4 km resolution climate 
model over Africa which allows structures recognizable as convective 
clouds to form. The two climate models provide 10 year time series of 
daily rainfall and temperature for a historic (1997–2007) and future (c. 
2100) period (Finney et al., 2020; Kendon et al., 2019). CP4 is the first 
convection-permitting multiyear regional climate simulation on an 
Africa-wide domain (Senior et al., 2021). The 25 km resolution of R25 
reflects the global 25 km AMIP simulation used as a boundary condition 
for both CP4 and R25. The 4 km resolution for CP4 was used as a 
compromise between domain size (the African continent), computa-
tional cost and the ability of the model to resolve deep convection 
(Stratton et al., 2018). The length of time series produced by CP4 and 
R25 was a balance between computational demands and the need to 
generate sufficient data to evaluate the impact of resolving convection. 
Full information on the CP4 and R25 model experimental design can be 
found in Stratton et al. (2018). A number of previous papers are avail-
able which evaluate CP4 and R25 model results (Finney et al., 2019; 
Finney et al., 2020; Kendon et al., 2019; Senior et al., 2021) and use 
these results for rainfall downscaling (Wilby et al., 2022). 

To directly test the impact of explicit modelling of convective pre-
cipitation on predicted river flows, we made the deliberate decision not 
to bias-correct or downscale the CP4 and R25 data. Use and evaluation 
of CP4 and R25 data in this manner has an additional benefit of 
informing decisions on the value of bias correction of CPM data and the 
level of sophistication used in future studies. Notwithstanding that the 
purpose of this paper is to assess the impact of explicit modelling of 
convective precipitation, it should be noted that previous studies have 

evaluated CP4 and R25 against observations and these have shown that 
both simulations capture many broad features of precipitation across 
east Africa. These include the biannual progression of the tropic rain-
band, the contrasting rainfall between the African Rift and the Horn of 
Africa (Finney et al., 2019), the interannual variability in the peak of the 
short rains and the balance of precipitation between long and short rains 
(Wainwright et al., 2021b). The 4 km CP4 outputs were regridded using 
area-weighted, bi-linear interpolation to 25 km. Regridding CP4 allows 
for a comparison with R25 on the basis of explicit and parametrised 
convection, opposed to differences in resolution. The results presented 
are representative of rainfall statistics on the scale of the R25 model 
(Finney et al., 2019). Spatial mean daily time series for each catchment 
in Fig. 1 were extracted and applied to each GR4J model. 

Projected changes in both mean and extreme precipitation from CP4 
have been shown to be spatially variable both at the continental scale 
(Kendon et al., 2019) and also in East Africa in particular (Finney et al., 
2020). To evaluate how changes in precipitation propagate through 
each of the GR4J models developed in this research, we conducted a 
sensitivity experiment by applying the same set of CP4 driving data to 
each GR4J model. CP4 precipitation and temperature data was used 
from an area of known precipitation intensification to each of the GR4J 
models. For each 25 km grid cell, we first calculated the ratio of the 
changes in daily extreme precipitation (defined as the 95th percentile of 
all days) to changes in daily mean precipitation between the historic and 
future CP4 runs, as follows: 

Δ95/Δmean =
95future/95historic

meanfuture/meanhistoric 

The resulting ratio (referred to as Δ95/Δmean herein) is shown in 
Fig. 3. The spatial distribution of the Δ95/Δmean metric explicitly 
shows how modelled precipitation may intensify over a region. Where 
Δ95/Δmean > 1, the change in the extreme (as defined by the 95th 
percentile) is greater than the change in the mean. Where Δ95/Δmean 
< 1, the change in the mean is greater than the change in the extreme. 
The 95th percentile was used as this has been used extensively in the 
analysis of extremes in precipitation (Christensen and Christensen, 
2003) in additional to inland fluvial (Wu et al., 2012), groundwater 
(Ascott et al., 2017) and coastal flooding (Pirazzoli et al., 2006). We 
selected a bounding box (34.37–34.90 ◦W, 0.82–1.36 ◦S, blue dashed 
line in Fig. 3) where Δ95/Δmean > 1 and extracted and applied the 

Fig. 3. Δ95/Δmean (unitless) for CP4 precipitation across the LVB region. Blue 
colours indicate where Δ95/Δmean is > 1 (i.e. the change in the extreme (as 
indicated by the 95th percentile) is greater than the change in the mean). Red 
colours indicate where Δ95/Δmean is < 1 (i.e. the change in the mean is 
greater than the change in the extreme). Catchments are shown by the solid 
blue lines and the area of intensifying rainfall used in the hydrological model 
experiments is shown by the dashed blue line. Thin and thick black lines are 
country and lake (principally Lake Victoria) boundaries respectively. 
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precipitation and temperature data to each of the hydrological models. 

2.4. Analysis of model results 

We first evaluated the calibrated historic river flow through visual 
inspection of the time series and KGE values. We then evaluated the river 
flow projections generated by the application of the catchment-specific 
meteorological data from CP4 and R25. This was first done visually 
through plotting of river flow quantiles and boxplots for each hydro-
logical model. We then calculated if there are statistically significant 
differences between modelled river flows produced by GR4J using data 
from: (1) CP4-Future and CP4-Historical, (2) R25-Future and R25- 
Historical, (3) CP4-Future and R25-Future, (4) CP4-Historical and 
R25-Historical. For each of these comparisons we undertook a two- 
sample t test (Webster and Oliver, 1990) and a two-sample Kolmo-
gorov-Smirnov test (Conover, 1999) to determine if there were signifi-
cant differences in the mean and distribution of river flows respectively. 
We then calculated Δ95/Δmean for each model for precipitation and 
river flow. For the GR4J model experiment runs, we calculated and 
plotted river flow quantiles and boxplots and then calculated Δ95/ 
Δmean for precipitation, river flow and the hydrological model inter-
mediate terms PERC, Q9 and Qr (Fig. 2). All analysis was conducted 

using the statistical computing environment R (R Development Core 
Team, 2016). 

3. Results 

3.1. Hydrological model calibration 

Fig. 4 shows the observed and modelled historic river flows produced 
by GR4J for each of the catchments in this research. The calibrated 
model parameter sets and resulting KGE values are reported in Table 2. 
Across the five catchments, observational data for daily river flows are 

Fig. 4. Observed and modelled river flows for the five catchments used in this research. Data are presented as time series (left, observed in black dots and modelled in 
blue lines) and scatterplots (right, black line is the 1:1 line, text in grey boxes are catchment IDs corresponding to Fig. 1 and Table 1). Observed data provided by The 
Global Runoff Data Centre, 56,068 Koblenz, Germany. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Calibrated model parameters (x1–x4, see Fig. 2) for each catchment and Kling- 
Gupta Efficiency (KGE).  

Catchment ID x1 x2 x3 x4 KGE 

1269200  60.62  − 30.41  146.83  2.30  0.60 
1270900  295.89  1.66  615.56  20.00  0.81 
1769050  114.56  − 29.96  667.54  2.38  0.43 
1769100  411.43  − 36.84  215.97  1.16  0.46 
1769200  64.31  − 45.03  335.67  2.40  0.45  
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sparse, with data only available in the 1970s-1980s. The implications of 
this are discussed further in section 4.3. When driven using historical 
WATCH forcing data, the GR4J catchment models appear to replicate 
the timing and magnitude of the observed river flow peaks and re-
cessions reasonably well (Fig. 4). At low to moderate river flows (0–5 
mm/day) the GR4J catchment models appear neither systematically 
over nor underpredicting river flows, whilst at higher river flows (5 – 15 
mm/day) the models appear to slightly underestimate peak flows. Using 
the mean observed flow as a benchmark, the KGE values for each model 
are moderately good (Table 2), and within the range of values (− 0.41 <
KGE ≤ 1) that could be considered “reasonable” (Knoben et al., 2019). 

3.2. River flow projections for each catchment derived from application of 
CP4 and R25 data 

Fig. 5 shows river flow quantiles produced by GR4J for each of the 
catchments when applying the historic and future CP4 and R25 data. 
The same results are presented as boxplots in Figure S2. It can be 
observed that across the river flow quantiles, application of the future 
model runs of CP4 and R25 to GR4J produces greater river flows than 
the historic model runs. With the exception of catchment 1269200 
(Fig. 5 panel a), application of CP4 data also produces greater river flows 
than application of R25 to GR4J (Fig. 5). In catchment 1269200 R25- 

Fig. 5. River flow quantiles (y-axis log scale) for each catchment for historic and future CP4 and R25 model runs. Panel f shows the locations of the catchments (blue 
lines) in the context of Lake Victoria and country boundaries (black lines). Catchment IDs correspond to those shown in Fig. 1 and Table 1. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Historic produces greater river flows than R25-Future and CP4 runs for 
quantiles 0–0.5, before the R25 runs begin to converge between quan-
tiles 0.5 and 1. The R25-Future run in catchment 1270900 (Fig. 5 panel 
b) produced zero flow for quantiles 0–0.5. 

For all catchments there were significant (p < 0.01) differences in the 
mean (based on two sample t-test) and distribution (based on two 
sample Kolmogorov-Smirnov test) of river flows between runs driven by 
(1) CP4-Future and CP4-Historical, (2) R25-Future and R25-Historical, 
(3) CP4-Future and R25-Future, (4) CP4-Historical and R25-Historical. 

Table 3 shows Δ95/Δmean for CP4 and R25 for each of the five 
catchments. With the exception of catchment 1270900, for all other 
catchments and both CP4 and R25, Δ95/Δmean is greater for precipi-
tation than for river flow. 

3.3. GR4J model experiment results 

Fig. 6 shows river flow quantiles when CP4 data for the box where 
rainfall intensifies (Fig. 3) is applied to each of the GR4J models (see also 
Figure S3). It can be observed that application of CP4 data to GR4J re-
sults in greater river flows than R25. Table 4 shows Δ95/Δmean for 
precipitation, river flow and model intermediate terms for each of the 
GR4J models. Δ95/Δmean is greater for P, PERC and Q9 than for Qr and 
Q. 

4. Discussion 

4.1. Impacts of convection permitting climate model runs on river flows 
and the role of lumped hydrological model structure 

When applying data from the climate model experiments to each 
lumped catchment model, the future runs result in greater river flows 
than the historic runs (Fig. 5), with significantly different (p < 0.01) 
river flow means and distributions. Apart from one catchment 
(1269200), application of CP4 data resulted in greater river flows than 
application of R25 data (see Fig. 5 panel a). For all catchments appli-
cation of CP4 data resulted in significantly different (p < 0.01) river flow 
means and distributions in comparison to application of R25. We suggest 
that the differences between the catchments in modelled river flows are 
likely primarily due to small-scale chaotic variability in sampling of 
convective precipitation events around the LVB, more than physical 
differences in surface forcing, such as topography and land use, lakeside 
features (Rowell and Berthou, 2022). Longer, or ensemble, climate 
simulations would better discriminate the impact of heterogeneous 
surface features. For CP4, with the exception of low flows (<quantile 
0.4) at catchment 1269200, projected increases in river flows occur 
across all quantiles for all catchments (Fig. 5, Figure S1 in Supplemen-
tary Material), reflecting an increase in mean precipitation, but with 
limited increases in extreme flows relative to changes in mean flows, 
despite the similarity of increases in mean and extreme precipitation 
(Table 3). When applying CP4 data from an area where increases in 
extreme precipitation are greater than increases in the mean, the same 
also occurs (Table 4). Why are increases in extreme precipitation rela-
tive to increases in the mean precipitation not propagating to changes in 
river flows? The changes in Δ95/Δmean in different terms of GR4J 

(Table 4) suggest this is the result of the hydrological model structure 
used in this research. Δ95/Δmean decreases substantially between the 
terms Q9 and Qr (Table 4), which is associated with the routing store and 
groundwater exchange components of the model (Fig. 2). We posit that 
the storage dynamics in the routing store (Fig. 2) result in a dampening 
of extreme precipitation events. Moreover, in four out of five of the 
calibrated catchment models developed in this research, the ground-
water exchange parameter is negative (Table 2), which results in the 
model losing excess water during extreme precipitation events. These 
storage dynamics are common across many lumped hydrological 
modelling approaches (e.g. HBV (Bergström, 1995), HEC-HMS (Gyawali 
and Watkins, 2013), NAM (DHI, 2008)) and thus similar results would 
be anticipated if the CP4 and R25 precipitation data were applied to 
such models. 

What physical processes are likely to be leading the dampening of 
extreme precipitation events in reality? Whilst the structure and 
parameter sets of lumped conceptual models such as GR4J have limited 
physical basis (Perrin et al., 2003), some insight can be gained from the 
attributes of the catchments used in this research. The catchments are 
reported to have notable wetland coverage (mean 30% of land use), 
shallow water tables (mean depth 1.5 m below ground level) and surface 
topography (mean slope 2.82◦), with annual precipitation (mean 1400 
mm) and AET (mean 1130 mm) being much greater than river flow 
(mean 314 mm) (Linke et al., 2019). It is therefore likely that at the 
catchment scale, storage and evaporative losses from wetlands and 
shallow groundwater storage will dampen the impacts of increases in 
extreme precipitation on catchment outflows. Such catchment attributes 
are likely to be globally common. Fig. 7 shows the global distribution of 
shallow water tables (panel a), wetlands (panel b), and where runoff is 
<25 % of precipitation (panel c). There are large areas of the Americas, 
Europe, Asia and Africa where shallow water tables and wetland 
coverage may result in dampening of extreme precipitation events at the 
catchment scale. 

4.2. Implications for water management 

The changes in rainfall and river flow distribution predicted by 
application of CP4 and R25 data have significant implications for both 
water resources and flood risk management under future climate 
change. Whilst no significant increases in extremes relative to increases 
in mean river flows were projected for these LVB catchments, applica-
tion of CP4 still resulted in greater predicted river flows than application 
of R25 in the future model runs in four out of five catchments. Such 
sensitivities – likely location-specific – should be borne in mind when 
evaluating the impacts of climate change on river flows by applying the 
output of conventional climate models which parameterise convection 
(e.g. CMIP5 (Taylor et al., 2012)). 

Increases in extreme precipitation relative to increases in mean 
precipitation shown in CP4 (blue in Fig. 3) is likely to affect projections 
of future flooding. It is anticipated that Δ95/Δmean associated with CP4 
precipitation would propagate more extensively though a high temporal 
and spatial resolution flood inundation model (e.g. Yu and Lane (2006)) 
due to the distributed nature of such modelling approaches. 

4.3. Limitations and further work 

There are a number of limitations to this research which could be 
addressed by further work. These are outlined below. The observed river 
flow time series used in the model calibration are short and from the 
1970s and 1980s. These are the only publicly available daily river flow 
data in the Lake Victoria Basin, and this paucity of observational data is 
present across much of Africa (Tramblay et al., 2021). Similarly, we used 
a reanalysis based set of driving data to calibrate the hydrological 
models (Weedon et al., 2011), which may have contributed to the un-
derestimation of peak flows by the calibrated GR4J catchment models. 
In addition to new river flow and precipitation observations, further 

Table 3 
Modelled changes in extreme precipitation (P) and river flow (Q) relative to the 
mean (Δ95/Δmean) for CP4 and R25 for the five catchments used in this 
research.   

CP4 R25 
Catchment ID P Q P Q 

1269200  0.96  0.89  0.96  0.90 
1270900  0.99  1.02  1.00  1.31 
1769050  1.05  0.95  0.99  0.79 
1769100  0.97  0.71  1.01  0.81 
1769200  0.92  0.68  0.96  0.75  
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historic data rescue and dissemination to develop improved hydrologi-
cal models would be beneficial. 

This research has evaluated the impact of explicit modelling of 
convective rainfall on river flow projections from lumped hydrological 
models for the first time, applied to a small number of catchments in the 
LVB and only using one lumped hydrological model, GR4J. Exploring 
the propagation of Δ95/Δmean through hydrological models of varying 
levels of complexity (lumped vs distributed, shorter timesteps) would be 
of benefit. This could include semi-distributed hydrological models (e.g. 
SWAT, which has been commonly used in East Africa (van Griensven 
et al., 2012)) as well as flood models (e.g. Miller et al. (2022)). Similarly, 

Fig. 6. River flow quantiles (y-axis log scale) for catchment models driven by CP4 data for the box shown in Fig. 3. Panel f shows the locations of the catchments 
(blue lines) in the context of Lake Victoria and country boundaries (black lines). Catchment IDs correspond to those shown in Fig. 1 and Table 1. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Modelled changes in extreme precipitation (P), model terms (see Fig. 2) PERC, 
Q9, Qr, and river flow (Q) relative to the mean (Δ95/Δmean) for the catchment 
model driven by CP4 data for the box in Fig. 3.  

Catchment ID P PERC Q9 Qr Q 

1269200  1.09  1.27  1.10  1.06  1.06 
1270900  1.09  1.13  1.08  0.98  0.99 
1769050  1.09  1.23  1.08  0.99  0.99 
1769100  1.09  1.08  1.12  1.03  1.03 
1769200  1.09  1.27  1.05  1.04  1.04  
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understanding propagation of Δ95/Δmean in catchments with varying 
hydrological attributes and projections of precipitation extremes would 
support an assessment of how useful CPM data are across different types 
of hydrological impact studies. This would require application of CPM 
data to hydrological models in areas where Δ95/Δmean for precipita-
tion ≫ 1, as well as across catchments with varying degrees of baseflow 
contribution. Whilst CPMs improve the model performance for high 
intensity convective precipitation events, CPMs have also been shown to 
affect dry spell length in some African regions (Kendon et al., 2019). It 
would therefore be beneficial to undertake a complementary analysis 
with a focus on dry periods and low flow metrics. 

In this study, only 10 years of weather data for the historic and future 
climate have been produced, and CP4 and R25 are simulations based on 
one GCM (the Met Office UM (Stratton et al., 2018)). The application of 
CP4 and R25 data to GR4J in this study also does not consider future 
land use change, which has been shown to have a potentially significant 
effect on water balance partitioning in the region (Gabiri et al., 2020; 
Näschen et al., 2019). The use of uncorrected climate model output as 
inputs to GR4J was intentional for this study for the purpose of evalu-
ating the impact of explicit modelling of convective rainfall. However, in 

conjunction with the limitations above, the CP4 and R25 data cannot be 
used for climate change adaptation studies or planning at this time. 
Given that the character of precipitation time series (e.g. amplitude of 
extremes, duration of wet spells and dry spells) is important, any bias 
correction or downscaling of CPM data for such studies may need to 
consider the use of more sophisticated methods (quantile–quantile 
mapping, correction of dry day counts (e.g. Famien et al. (2018)), pro-
cess based scaling of rainfall (e.g. Klein et al. (2021))) than simple ap-
proaches (e.g. delta change). Further work is required to assess how 
variability between convection permitting and non-convection permit-
ting versions of the same GCM compares with variability between GCMs 
(e.g. within CMIP5 (Taylor et al., 2012)). Quantifying the balance of 
impacts of climate change on river flows from application of precipita-
tion data from CPMs versus the impacts of future land use change would 
also be beneficial. 

5. Conclusions 

In this research we apply the outputs of a continental scale convec-
tion permitting (CP) climate model to five lumped rainfall-runoff models 

Fig. 7. Global maps of shallow water tables (panel a, modified after Fan et al. (2017)), wetlands (panel b, modified after Tootchi et al. (2019)) and runoff coefficient 
(panel c, modified after Beck et al. (2015)). 
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in Africa for the first time. Application of a CP model produced greater 
river flows than an equivalent model using parameterised convection in 
both the current and future (c. 2100) climate in four of the five catch-
ments. The location of the catchments near Lake Victoria resulted in 
unusually small changes in extreme rainfall relative to mean rainfall, 
likely explaining the small changes in extreme river flows relative to 
their mean change. The regional atmospheric physics causing this in-
dependence of future change on storm intensity requires further 
research. 

Application of CP model rainfall data from an area where rainfall 
extremes change more than the change in mean rainfall to the rainfall- 
runoff model did not result in significant changes in river flows. This 
is shown to be a result of the rainfall-runoff model structure and 
parameterisation, which is likely to be due to large-scale storage in the 
catchments associated with wetland cover and groundwater storage, 
which buffers the impact of rainfall extremes. The hydrological condi-
tions in which this buffering occurs are shown to be extensive across 
humid regions. Application of CP climate model data to lumped catch-
ment models in these areas are unlikely to result in significant increases 
in extreme river flows relative to increases in mean flows. 

Data availability statement 

The GR4J model is available via the airGR package (Coron et al., 2017) 
in R (R Development Core Team, 2016). Daily river flow data in the Lake 
Victoria Basin are available from the Global Runoff Data Centre 
https://www.bafg.de/GRDC/EN/Home/homepage_node.html, GRDC, 
56068 Koblenz, Germany) for non-commercial use only. Daily rainfall and 
temperature data from the WATCH forcing dataset (Weedon et al., 2011) 
are available at https://catalogue.ceh.ac.uk/documents/ba6e8ddd-22a9- 
457d-acf4-d63cd34f2dda. Mapping of the Lake Victoria Basin in Fig. 1 in-
corporates data from the HydroSHEDS version 1 database which is © World 
Wildlife Fund, Inc. (2006–2022) and has been used herein under license. 
WWF has not evaluated the data as altered and incorporated within this 
paper, and therefore gives no warranty regarding its accuracy, complete-
ness, currency or suitability for any particular purpose. Portions of the 
HydroSHEDS v1 database incorporate data which are the intellectual 
property rights of © USGS (2006–2008), NASA (2000–2005), ESRI 
(1992–1998), CIAT (2004–2006), UNEP-WCMC (1993), WWF (2004), 
Commonwealth of Australia (2007), and Her Royal Majesty and the British 
Crown and are used under license. The HydroSHEDS v1 database and more 
information are available at https://www.hydrosheds.org. Data from the 
two climate model experiments (“CP4” and “R25”, Stratton et al. (2018)) 
are available from https://catalogue.ceda.ac.uk/uuid/a6114f2319b34a 
58964dfa5305652fc6. 
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A bias-corrected CMIP5 dataset for Africa using the CDF-t method – a contribution to 
agricultural impact studies. Earth Syst. Dynam. 9 (1), 313–338. https://doi.org/ 
10.5194/esd-9-313-2018. 
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Houndénou, C., 2020. Calibration of the hydrological model GR4J from potential 
evapotranspiration estimates by the Penman-Monteith and Oudin methods in the 
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