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ABSTRACT

Hydrodynamic and viscoelastic interactions between the turbulent fluid within a channel at Res ¼ 180 and a polymeric phase are investigated
numerically using a multiscale hybrid approach. Direct numerical simulations are performed to predict the continuous phase and Brownian
dynamics simulations using the finitely extensible nonlinear elastic dumbbell approach are carried out to model the trajectories of polymer
extension vectors within the flow, using parallel computations to achieve reasonable computation timeframes on large-scale flows. Upon validat-
ing the polymeric configuration solver against theoretical predictions in equilibrium conditions, with excellent agreement observed, the distribu-
tions of velocity gradient tensor components are analyzed throughout the channel flow wall-normal regions. Impact on polymer stretching is
discussed, with streamwise extension dominant close to the wall, and wall-normal extension driven by high streamwise gradients of wall-normal
velocity. In this case, it is shown that chains already possessing high wall-normal extensions may attempt to orientate more in the streamwise
direction, causing a curling effect. These effects are observed in instantaneous snapshots of polymer extension, and the effects of the bulk
Weissenberg number show that increased WeB leads to more stretched configurations and more streamwise orientated conformities close to the
wall, whereas, in the bulk flow and log-law regions, the polymers tend to trace fluid turbulence structures. Chain orientation angles are also con-
sidered, with WeB demonstrating little influence on the isotropic distributions in the log-law and bulk flow regions. Polymer–fluid coupling is
implemented through a polymer contribution to the viscoelastic stress tensor. The effect of the polymer relaxation time on the turbulent drag
reduction is discussed, with greater Weissenberg numbers leading to more impactful reduction. Finally, the velocity gradient tensor invariants
are calculated for the drag-reduced flows, with polymers having a significant impact on the Q–R phase diagrams, with the presence of polymers
narrowing the range of R values in the wall regions and causing flow structures to become more two-dimensional.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094978

I. INTRODUCTION

Remarkable effects are observed upon the addition of low con-
centrations of high-molecular-weight polymer additives to both
single-phase and multiphase flow systems. Upon historical observation
of this behavior in straight pipes (Toms, 1948), subsequent investiga-
tions into such systems indicate two major mechanisms: alteration of
flow instabilities (Azaiez and Homsy, 1994a; Azaiez and Homsy,
1994b; Kumar and Homsy, 1999; Sureshkumar, 2001; Sadanandan
and Sureshkumar, 2002; Fouxon and Lebedev, 2003; Dubief et al.,
2013; Garg et al., 2018) and induced turbulent drag reduction (DR)
(Lumley, 1969; Nieuwstadt and Den Toonder, 2001; Sher and
Hetsroni, 2008; Berman, 1978; Xi, 2019; Gu et al., 2020; Lumley,
1977). Mechanisms through which turbulence suppression and drag

reduction can be instigated in wall-bounded flows are of interest to
many industries. Practically, systems which would benefit from turbu-
lence control via overcoming the pressure loss associated with skin-
friction drag (Choi et al., 1994) are an ideal complement for the injec-
tion of polymer additives. Even with low O(10) ppm (Lumley, 1973),
the inclusion of dispersed linear chain polymers has been shown to
drastically reduce the frictional drag. Depending on the mechanical
properties of the polymer species, drag reductions relative to
Newtonian flows have been observed as high as 80% (Virk, 1975). The
benefits of such drag reduction mechanisms have been exploited
within many industries over the last half-century, including vastly
improving the performance of oil transport (Yusuf et al., 2012) and
hosing in fire-fighting (Figueredo and Sabadini, 2003). Polymeric flows
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are also of interest to industries dealing with inertial particle transport,
such as water treatment (Edomwonyi-Otu and Adelakun, 2018) and
nuclear waste processing (Lockwood et al., 2021) due to their ability to
flocculate and settle particulates through electrochemical and hydro-
phobic interactions between the phases. In the latter case, more effi-
cient, well-understood, and economic transport methods are
paramount to ensuring the implementation of effective and safe pro-
cess designs for waste management.

Upon initial discovery, many experimental studies were per-
formed in the hope of determining the underpinning physics surround-
ing the dynamics responsible for these useful features. Early findings
indicated that DR effects were primarily caused by the coupling
between the continuous turbulent phase and the polymer extension
and conformity dynamics, with the most effective DR obtained through
the use of long linear flexible-chain species (Virk, 1975). It should be
noted here that despite various polymer–solvent pairs being used in
experimental studies, the onset of DR seems to depend mostly on the
mechanical properties of the polymer (along with the Newtonian flow
properties). Polyethylene oxide (PEO) and polyacrylamide (PAM) are,
in general, the most commonly used species for experimental studies of
DR effects in concentrations of O(10) to O(100) wppm (Owolabi et al.,
2017; Lumley, 1969; Virk, 1975; Xi, 2019).

A particular grey area in the field relates to the way in which pol-
ymers interact with turbulent structures present in wall-bounded
flows, which is important for elucidating and, hence, predicting
bulk-scale dynamics accurately and across industrial timeframes. The
near-wall region (around yþ ¼ 15), in particular, was observed to be
initially affected upon injection of polymers, and attempts at linking
DR mechanisms to turbulent burst events in these regions were made
in early experimental and theoretical studies (Gordon and
Balakrishnan, 1972; Peterlin, 1970). When subject to turbulence in the
near-wall region, polymer chains interact with the fluid fluctuations,
and drag reduction commences within the plane of peak turbulence
energy. Many early studies indicated that polymers and other drag-
reducing additives modify the nature of the turbulent structures within
this region (Oldaker and Tiederman, 1977; Tiederman et al., 1985;
Blackwelder and Kaplan, 1976; Stone and Graham, 2003; Hetsroni
et al., 1997). Another important observation made is that polymers are
capable of redirecting energy between various time- and length scales
(White and Mungal, 2008), subsequently modifying the velocity fluc-
tuations and providing a greatly altered flow through which a second-
ary phase, such as a particulate or droplet phase, may need to be
advected. Recent studies of such flows indicate that the coherent tur-
bulent structures close to the wall lead to increased streamwise turbu-
lence intensities, whereas cross-stream components are reduced (Ilg
et al., 2002; Xi and Graham, 2010). Experimental studies also indicated
that polymeric flow systems can be described based on a single viscos-
ity coefficient as well as a time constant relating to the relaxation time
of the polymer (Seyer and Metzner, 1969; Metzner, 1977). Throughout
these early studies, polymer-induced drag reduction mechanisms were
partitioned into two schools of thought. The first relates to viscous the-
ory (Lumley, 1969), wherein polymers are stretched by turbulence
causing an increase in the effective viscosity in local regions of the
flow. This mainly takes place in the buffer layer where turbulence fluc-
tuations are then suppressed. This leads to an increase in the buffer
layer thickness, and the wall friction is, therefore, reduced (Benzi et al.,
2004). In contrast, the elastic theory (Tabor and De Gennes, 1986)

considers the comparison of elastic energy stored in the polymer chain
to the kinetic energy in the buffer region. Because the viscoelastic
length scale is larger than the flow Kolmogorov length scale, conven-
tional energy cascade mechanisms are inhibited, and so, the buffer
layer thickens (Li et al., 2015; Thais et al., 2013).

In order to better address the fundamental dynamics of
polymer–fluid interaction on scales unresolvable by experimental
methods, various computational tools have been developed in recent
years capable of modeling such processes. Since the direct numerical
simulation (DNS) work of Sureshkumar et al. (1997), various
attempts at modeling the polymeric phase have been attempted to
provide much more detail and resolution of both the flow and poly-
mer conformation fields. In most models, polymer molecules are rep-
resented and treated as elastic dumbbells (two beads connected
together with a nonlinear spring), giving rise to the finitely extensible
nonlinear elastic (FENE) model (Bird et al., 1987). In such models,
the ideal chain representation is employed which ignores nonbonded
interactions between intermediate chain sections such as those arising
from van der Waals and electrostatic forces. Individual polymer
chains within the solution are also considered as sufficiently far apart
that their collisions can be neglected. In most computational studies,
to reduce further complexity, a continuum approach to the polymer
conformation tensor field is often taken via the Peterlin approxima-
tion (Bird et al., 1987), which closes the constitutive equations for the
time evolution of the conformation tensor at a given flow position
and relies upon knowledge of the mean polymer extension within
that local region. Early simulations performed using this technique
obtained a very good qualitative agreement with similar experiments.
In studies of the effect of polymers on viscoelastic turbulent flows, the
streamwise vorticity fluctuations were observed to decrease and the
low-speed streaks within the buffer layer were less densely populated
(Sureshkumar et al., 1997). DR characteristics have been shown to be
parameterized by three key properties (Gupta et al., 2004): the bulk
Reynolds number of the continuous phase, ReB; the Weissenberg
number, Wes, quantifying the ratio of the polymer relaxation time to
the friction flow scale; and the extensibility parameter, b, quantifying
the maximum extensibility of the polymer chain. The polymer con-
formation and, hence, coupled effects also vary depending on the flow
region, as the morphology of turbulence structures varies with wall
distance. Progress toward understanding the notion of maximum
drag reduction (MDR), where system parameters such as polymer
concentration no longer offer beneficial improvements to drag reduc-
tion, was made by Li et al. (2015). They demonstrated that the MDR
asymptote occurs when the ratio of the convective time scale associ-
ated with streamwise vorticity fluctuations and the vortex rotation
timescale is approximately equal.

Although DR is observed when using the Peterlin approximation,
resolution and detail surrounding the specific orientations of polymer
chains are lost, which means that we are unable to study the effect of
polymer orientation and interaction with the local flow structures on
the dynamics and mechanisms which lead to DR. Other alternate
models also fall short, with Oldroyd-B models are incapable of accu-
rately predicting polymers with high Weissenberg numbers and
Giesekus models only evolve the stress tensor, meaning information
surrounding the polymer conformation state is unavailable. Despite
the standard FENE method being computationally intensive, modern
high-performance parallel computation allows calculations to be
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performed in reasonable timeframes. The benefit of increased fidelity
means that these processes can be considered in much greater detail.
In this study, therefore, DNS and the FENE polymer simulation
method are employed in order to more closely study the trajectories of
polymer conformation under the influence of various near-wall coher-
ent turbulence structures.

II. METHODOLOGY
A. Direct numerical simulation

The simulations presented in this article represent polymers
which are dispersed within and transported throughout fully devel-
oped turbulent channel flows. We assume the carrier phase to be a
continuum, incompressible and a viscoelastic fluid which is modeled
within an orthogonal Cartesian domain. The continuous phase
dynamics for the motion of the fluid are governed by the following
conservation equations for mass and momentum, given as follows:

r � u ¼ 0; (1)

@u
@t
þ u � ru ¼ �rp

qF
þ b�0r2uþ 1� bð Þ �0

lp0
r � T þ f PG: (2)

Here, uðx; tÞ is the fluid velocity vector at Cartesian position vector x,
t is the time, p is the fluid pressure, qF is the fluid phase density, b is
the ratio of solvent ðls) to the total zero-shear rate viscosity ð�0Þ, lp0
is the polymer contribution to the total zero-shear solution viscosity,
and T is the viscoelastic contribution to the total stress tensor. As in
previous work, we may non-dimensionalize the above equations using
bulk flow units to obtain

r � u� ¼ 0; (3)

@u�

@t�
þ u� � ru� ¼ �rp� þ b

ReB
r2u� þ 1� bð Þ

bReB
r � T� þ f PG: (4)

Here, u� ¼ u=UB, t� ¼ tUB=d, p� ¼ p=qFUB and T� ¼ T=
ðlp0U2

B=�0Þ with UB the bulk velocity of the Newtonian flow and d the

channel half-height. Finally, ReB ¼ UBd
�0

is the bulk Reynolds number of
the Newtonian flow. The mean flow direction is chosen to be in the pos-
itive x� direction, hence the pressure gradient term takes the form
f PG ¼ ðRes=ReBÞ2ê�x , with ê�x a unit vector aligned with the streamwise
direction. Here, Res is the equivalent shear Reynolds number with
Res ¼ 180 for all cases presented in this study. The domain boundaries
are �7; 7ð Þ in x�, ð�1; 1) in y�, and ð�3; 3Þ in z� with limits enforcing
periodic conditions in the streamwise and spanwise directions (x� and
z�), and no-slip wall boundaries in the wall-normal direction (y�). The
above equations are solved using Nek5000 (Fischer et al., 2008), an effi-
cient highly parallel direct numerical simulation code widely used in
academia and industry. The software employs the spectral element
method developed by Patera (1984) and unites the geometric flexibility
of the finite element method with the excellent numerical stability and
accuracy of spectral methods. The domain is discretized into
27� 18� 23 hexahedral elements, upon which the solution to Eqs. (3)
and (4) is represented as a tensor-product of seventh-order Lagrange
polynomials at each of the Gauss–Lobatto–Legendre (GLL) nodes. For
comparison with finite volume or finite difference techniques, this is
approximately equivalent to 4 � 106 grid points. Further details for the
Newtonian single-phase channel flow calculations can be found in our
previous work (Mortimer et al., 2019). In this work, both Newtonian

flows (where we ignore the non-Newtonian effects and focus purely on
the influence of the fluid on polymer confirmation) and non-
Newtonian flows (where the polymer contribution to the viscoelastic
stress tensor is explicitly calculated) are considered.

B. Calculation of the additional viscoelastic stress
tensor

Assuming knowledge of the viscoelastic contribution to the stress
tensor, T�, at each GLL node, non-Newtonian DNS calculations can
be performed. In addition to Eqs. (3) and (4), the system is supple-
mented by FENE simulations within each unique GLL cell in order to
represent the polymer dynamics. The calculation of polymer extension
trajectories is necessary to couple the local polymer confirmation to
the additional viscoelastic stress tensor, T�. In order to do so,
Brownian dynamics simulations are performed (detailed in Sec. II C).
For a given GLL cell in the simulation, NPOL polymer dumbbells are
simulated, each with end-to-end extension vector Q which is made
dimensionless using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=H�

p
. Here, kB is the Boltzmann constant,

T is the temperature, and H� is the Hookean spring constant. From
the ensemble of NPOL Q vectors, the polymer conformation tensor can
be obtained as c ¼ hQQi. The viscoelastic stress tensor T� can then be
determined using

T� ¼ f c � 1
WeB

: (5)

Here, 1 is the equilibrium unit isotropic tensor state, and WeB is the
bulk Weissenberg number, which is the ratio of the polymer relaxation
time, k, to the bulk fluid timescale d=UB, i.e., WeB ¼ kUB=d. The
function f is the Peterlin function (Peterlin, 1970) determined as

f ¼ L2 � 3
L2 � tr cð Þ

: (6)

Here, L2 is the square of the dimensionless maximum extensibility,
such that tr cð Þ � L2, and is made dimensionless identically to c.

C. Brownian dynamics simulations using the FENE
dumbbell model

The simulations reported in this study use the FENE dumbbell
model to predict trajectories of the end-to-end extension vector Q.
The connector vector satisfies the stochastic differential equation
(€Ottinger, 2012) as follows:

dQ tð Þ ¼ j tð Þ � Q tð Þ � 1
2WeB

FC

� �
dt þ 1ffiffiffiffiffiffiffiffiffi

WeB
p dW tð Þ: (7)

Here, j ¼ ru*T is the velocity gradient tensor transpose and dWðtÞ
is the three-dimensional stochastic Wiener process with mean and
variance (0, dt) representing Brownian motion due to thermal noise
experienced by the polymer chain. FC is the dimensionless spring
force, given by

FC ¼
Q

1� Q2

b

� � ; (8)

where
ffiffiffi
b
p

is the dimensionless maximum extensibility. To numerically
integrate Eq. (7), we use a two-step semi-implicit predictor–corrector
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scheme (€Ottinger, 2012; Gupta et al., 2004). To perform a single time-
step for an extension vector Q; we calculate the predictor step

QNþ1 ¼ QN þ j�N � QN �
1

2WeB
FC;N

� �
dt� þ 1ffiffiffiffiffiffiffiffiffi

WeB
p dW tð ÞN ; (9)

followed by the corrector step:

QNþ1 ¼ QN þ
1
2

j*
Nþ1 � QNþ1 þ j*

N � QN

h i
dt�

� 1
4WeB

F C;Nþ1 þ FC;N

� �
dt� þ 1ffiffiffiffiffiffiffiffiffi

WeB
p dW tð ÞN : (10)

Here, the subscript N refers to the current step in the predictor–
corrector process. The initial conditions for this process use the cur-
rent extension vector and velocity gradient tensor. The corrector step
is repeated until the predicted improvement satisfies an arbitrary error
tolerance, chosen to be �PC ¼ 1� 10�5 in the present simulations.
The magnitude of the resulting vector QNþ1 is then adjusted to satisfy
the equation below, taking the one real root with magnitude less than

the maximum extensibility,
ffiffiffi
b
p

, in order to avoid violated extension
states and ensuring positive definiteness of the conformation tensor

Qj j3 � RHS Qj j2 � b 1þ dt�

4WeB

� �
Qj j þ b RHS ¼ 0: (11)

Equations (7)–(11) are solved on each unique GLL point before each
fluid evolution calculation step takes place using a sub-timestep dt�

determined based on b and WeB. This is then, in effect, a multiscale
simulation technique. The required number of sub-timesteps is inves-
tigated on a case-by-case basis to ensure the conformation tensor is
statistically stationary.

III. RESULTS AND DISCUSSION
A. Newtonian dynamics in equilibrium conditions and
polymer-laden turbulent channel flow at Res5180

Simulations were first performed in equilibrium conditions, that
is to say, under no fluid influence, equivalent to an infinite box where
u�F ¼ 0 everywhere. This is to accomplish two things: first, the

FIG. 1. Temporal evolution of tr QQh i=b in equilibrium conditions (left) and probability distribution of polymer extension Qj j with comparison against the b ¼ 50 FENE results
of Herrchen and €Ottinger (1997) (right).

FIG. 2. Mean streamwise velocity u� (left) and root mean square of velocity fluctuations u0�d;RMS with shear stress u
0�
x u
0�
y (right) for fully developed turbulent channel flow at Res

¼ 180. Results compared to the DNS database of Vreman and Kuerten (2014).
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trajectory calculation technique must be validated, and second, the
effect of the maximum extensibility parameter, b, on the settling time
should be determined. Hundred polymers were injected with each
component of their initial extensibilities chosen randomly between

�0.5 and 0.5. These were then simulated for a total of t� ¼ 20 with
constant time step dt� ¼ 0:001. The left plot in Fig. 1 illustrates the
time evolution of the trace of the conformation tensor (normalized by
b) for b ¼ 10; 50; and 100, a typical range chosen to be similar to

FIG. 3. Probability distribution function (PDF) of components of velocity gradient tensor for fully developed unladen turbulent channel flow at Res ¼ 180. Regional dependence
is illustrated.
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those studied in both simulations and experiments in previous work
(Gupta et al., 2004; Teng et al., 2018; Wedgewood and €Ottinger, 1988).
It is observed that the mean extension squared (relative to the maxi-
mum extension squared) reached equilibrium after t� ¼ 5 in all cases,
with increased b exhibiting lower relative extensibilities as expected.
The right plot in Fig. 1 demonstrates the probability distribution for a
specific extension, jQj, sampled at t� ¼ 20. The results for b ¼ 50 are
compared to those obtained theoretically by Herrchen and €Ottinger
(1997) using the FENE radial equilibrium distribution function with
excellent agreement obtained. Reducing the maximum extensibility
parameter shifts the distribution to lower extensions, whereas doubling
it has a very little effect. For this reason, b ¼ 50 is chosen for the sub-
sequent simulations performed under non-equilibrium conditions.

The simulations performed in the remainder of this study all take
place within a turbulent channel flow, driven using a constant pressure
gradient ensuring a bulk Reynolds number, ReB ¼ 2800, which corre-
sponds to a shear Reynolds number, Res ¼ 180. The details of the sim-
ulation setup and parameters for the Newtonian single-phase flow are
found in Sec. II. The unladen continuous phase was simulated until
the first- and second-order velocity field moments were statistically
stationary, the results of which can be found in Fig. 2.

The left plot illustrates the mean streamwise velocity profile, with
comparisons made to the DNS predictions of Vreman and Kuerten
(2014). The right plot illustrates the three components of the root
mean square of the velocity fluctuations as well as the main mean
shear stress. In all cases, agreement with the validation data is at least

very good. These results generate confidence in the turbulent flow field
into which the polymeric phase will be injected.

The influence of the fluid on the polymer extensional vector field
is coupled through the transpose of the velocity gradient tensor, j*. To
generate understanding about the influence of the fluid in various
regions of the channel flow, the distributions of velocity gradient com-
ponents are presented in Fig. 3. The data for these distributions were
generated by sampling 10 000 random points within each region, lim-
ited to the lower half of the channel flow. Due to the nature of both
the mean velocity profile and the presence of coherent turbulent struc-
tures at various wall-normal distance regions observed in previous
studies into wall-bounded turbulence (Lumley, 1981; Mortimer and
Fairweather, 2020; Lee and Moser, 2015; Moser et al., 1999), the analy-
sis shall focus on explaining polymer stretching, and fluid interaction
behavior in each of these. The region definitions are presented in
Table I.

TABLE I. Turbulent channel flow at Res ¼ 180 wall-normal distance region
classification.

Region
Distance from wall

(�) (begins)
Distance from wall

(�) (ends)

Bulk flow 0.200 1.000
Log-law region 0.166 0.200
Buffer layer 0.027 0.166
Viscous sublayer 0.000 0.027

FIG. 4. Instantaneous polymer orientations for b ¼ 50; WeB ¼ 1.Color depth indi-
cates polymer extension. Note that polymer extension vectors are emphasized and
not to scale.

FIG. 5. Temporal evolution of tr QQh i=b (left) and probability distribution of polymer extension Qj j (right) in turbulent channel flow for b ¼ 50; WeB ¼ 1. Regional dependence
is illustrated.
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Starting with the top row in Fig. 3, the results illustrate the varia-
tion of streamwise velocity gradients dependent on direction and
region. In the streamwise direction, the gradients are relatively low,
with the greatest variation and range occurring in the buffer layer. In
the viscous sublayer, the streamwise velocity slope is very gentle. As
expected, the gradient of streamwise velocity is much greater in the
wall region as a function of wall distance, this time strongest in the vis-
cous sublayer, and reducing greatly in the log-law and bulk flow
regions. The variation of streamwise velocity gradient with spanwise
position is also proportionately high in the buffer layer, as the presence
of low-speed streaks causes various steep reductions and increases. In
the other regions, this component remains low as the frequency and
intensity of turbulence structures are reduced. Considering the wall-
normal component in the middle row, the gradient with the stream-
wise and spanwise directions is very low in all regions but has the larg-
est range within the log-law and bulk flow regions. The gradient of
wall-normal velocity with the wall-normal direction is greatest in the
buffer layer and least in the regions closest to laminar flow (bulk flow
and viscous sublayer), as expected since the fluctuations and vortices
are least frequent in these regions. Finally, the lower row indicates the
distribution of gradients of spanwise velocity. For the streamwise

component, the distributions in all regions aside from the viscous sub-
layer are similar but, in all cases, are relatively low. In contrast, the
wall-normal component is large, with the largest gradients occurring
in the wall region. This is likely due to the presence of counter-
rotating vortices in these regions which are orientated in the stream-
wise direction, ejecting fluid particles initially in a spanwise and then
wall-normal motion (Pope, 2000). The turbulent regions also contain
the largest range of spanwise component of spanwise velocity gra-
dients, with the presence of vortices in these regions also contributing
to this. It is clear from Fig. 3 that the dominant components contribut-
ing to polymer stretching in Eq. (7) are @ux

@y in the viscous sublayer and
buffer layer, @ux

@z in the wall region, @uy

@y in the buffer and log-law layers,
@uz
@y in the wall region, and @uz

@z in the buffer and log-law layers. The
term jðtÞ � Q tð Þ in Eq. (7), hence, has dominant contributions to the
extension in the streamwise direction, particularly so in the near-wall
regions and for polymers with moderate Qy components, for instance,
those orientated perpendicular to the wall. Wall-normal extension will
be driven by regions of high @uy

@xi
close to the wall, i.e., ejection regions,

but these will again favor polymers with already moderate wall-
normal orientation or extension. Because of increased streamwise
stretching near the wall, the tendency for dominant spanwise

FIG. 6. Probability distribution of angle hd made between polymer end-to-end vector Q and streamwise axis (upper-left), wall-normal axis (upper-right), and spanwise axis
(lower) for b ¼ 50; WeB ¼ 1.
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stretching is much less favorable but may happen as a result of stream-
wise orientated polymers in the bulk flow or the log-law region, where
all @ui

@x are equally low. That said, stretching to the extent observed in
the streamwise direction within the wall region is highly unlikely.

We now consider Newtonian simulations of polymer-laden
flows, paying attention predominantly to the polymer configurations
in each region of the flow. Three simulations are reported here, with
differing polymer timescales WeB ¼ 1; 5, and 10. The maximum
extensibility squared parameter is kept constant at b ¼ 50. Since the
effect of polymers on the fluid is not considered in this part of the
study (effectively b ¼ 1Þ, 10 000 polymers are injected randomly
within the center planes of each of the four fluid regions, on both
halves of the channel. For the bulk flow region, polymers are simply
injected into the center-plane of the entire channel. Again, the total
fluid time studied is t� ¼ 20 in order to ensure statistically stationary

configurations, but within each fluid timestep, the polymers are
allowed to evolve for 1000 sub-timesteps to allow time for them to
adjust to the local flow variation since the previous step. All results
and statistics are reported at the end of t� ¼ 20.

Figure 4 illustrates the polymer orientations and extension for
We ¼ 1 in each wall-normal region x� � z� center plane of the chan-
nel flow. In this illustration, polymers are depicted as lines, with the
chain colors closer to red indicating longer extensions. Clearly, poly-
mers in the viscous sublayer are mainly orientated in the streamwise
direction with various moderate to high extensions. It is notable that
the most stretched polymers predominantly align with the streamwise
direction. In the buffer layer, we begin to see polymers of moderate
extension as well as the appearance of several aligned in the spanwise
direction. The presence of “short, upright” chains in this figure may
also indicate those orientated in the wall-normal axis direction, but
overall an increase in isotropy is observed as the buffer layer is reached.
The mean extension is lower than that observed close to the wall, a
trend which continues in both the log-law region and the bulk flow
region. At WeB ¼ 1, there is no obvious alignment with vortical struc-
tures close to the wall; however, in both the log-law and the bulk flow
regions, there appear to be localized regions of increased extension.
The temporal evolution of tr QQh i=b is illustrated in the left plot of
Fig. 5, which in all regions demonstrate statistical settling of the con-
formation tensor by t� ¼ 5. As observed in Fig. 4, the maximum
mean extension is found in the viscous sublayer, which reduces as the
bulk flow region is approached. The right plot illustrates how the dis-
tribution of extensions varies in each wall-normal region. Both the vis-
cous sublayer and the buffer layer contain relatively homogeneous
distributions of stretching behavior, whereas the log-law and bulk flow
regions tend to favor polymers with low extensions. Since the restora-
tion forces for low WeB polymers are strong, regions of the flow with
low fluid-coupling (i.e., regions with low velocity gradient compo-
nents) do not provide enough energy to maintain even a moderately
stretched polymer.

In order to study polymer alignment in each region, the angle the
connector vector Q makes with each axis’ unit vector (i.e.,
hi ¼ cos�1Q̂ � êi ) was measured and probability distributions are

FIG. 8. Temporal evolution of tr QQh i=b (left) and probability distribution of polymer extension Qj j (right) in turbulent channel flow for b ¼ 50; WeB ¼ 5. Regional dependence
is illustrated.

FIG. 7. Instantaneous polymer orientations for b ¼ 50; WeB ¼ 5. Color depth indi-
cates polymer extension. Note that polymer extension vectors are emphasized and
not to scale.
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presented in Fig. 6. Note that low (hi ¼ 0) and high (hi ¼ p) angles
indicate alignment with axis hi. For WeB ¼ 1, the top-left plot illus-
trates obvious alignment with the streamwise axis in the viscous sub-
layer and buffer layer regions, whereas the most probably alignment in
the bulk flow region is to not align with any axis at all, indicating iso-
tropic orientations. The orientation with the streamwise axis in the vis-
cous sublayer and buffer layer is further confirmed in the plots of hy

and hz which show perpendicular orientations to both axes. Again,
chains within the viscous sublayer exhibit more dominant streamwise-
orientation dynamics. A very interesting behavior is identified in that
beyond the buffer layer, polymer orientations are no longer driven by
wall distance, despite anisotropic flow conditions and velocity gradient
tensor. That said, considering Fig. 3, though the flow conditions are
anisotropic, the components of the velocity gradient tensor in these
regions tend to be symmetric and also low (when compared to those
present in the near-wall layers). The combination of the isotropic
Brownian force function with the low fluid coupling term which sam-
ples symmetric fluid distributions in these regions likely leads to this
eventual isotropy of chain orientation for both regions.

FIG. 9. Probability distribution of angle hd made between polymer end-to-end vector Q and streamwise axis (upper-left), wall-normal axis (upper-right), and spanwise axis
(lower) for b ¼ 50; WeB ¼ 5.

FIG. 10. Instantaneous polymer orientations for b ¼ 50; WeB ¼ 10. Color depth
indicates polymer extension. Note that polymer extension vectors are emphasized
and not to scale.
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FIG. 11. Temporal evolution of tr QQh i=b (left) and probability distribution of polymer extension Qj j (right) in turbulent channel flow for b ¼ 50; WeB ¼ 10. Regional depen-
dence is illustrated.

FIG. 12. Probability distribution of angle hd made between polymer end-to-end vector Q and streamwise axis (upper-left), wall-normal axis (upper-right), and spanwise axis
(lower) for b ¼ 50; WeB ¼ 10.
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For the WeB ¼ 5 simulations, it is clear from Fig. 7 that this sys-
tem exhibits an overall increase in stretching behavior when compared
to the WeB ¼ 1 case. Here, the largest extensions still occur in the vis-
cous sublayer and the buffer layer, whereas those closer to the bulk
flow region are more relaxed. In terms of polymer orientations, the
log-law and bulk flow regions also look qualitatively similar, with a
slight increase in stretching behavior in the log-law region. In both
cases, the polymers appear to trace some of the flow structures, where
local orientations appear correlated. The chains in the two regions
closest to the wall are predominantly orientated in the streamwise
direction. The left plot in Fig. 8 indicates that the largest mean exten-
sion was this time found within the buffer region, indicating a transi-
tion point between WeB ¼ 1–10 where the mechanisms leading to the
longest extensions become more dominant beyond the viscous sub-
layer. Comparing against the instantaneous plot in Fig. 7, this seems to
be the case. It is also of value to note that the polymers within the log-
law region take up to t� ¼ 20 for the conformation tensor to reach an
approximate steady state.

We believe the explanation is as follows. There are two fluid-
coupling mechanisms at play here through which a statistically sta-
tionary state is eventually reached. These are chain extension and

reorientation. For the low Weissenberg number, the extension mecha-
nism is weak, hence only the reorientation mechanism occurs. As the
Weissenberg number is increased, the log-law region now has both
extension (see Fig. 8) and reorientation (see Fig. 9) as opposed to the
buffer and viscous sublayer regions which are primarily driven by
streamwise extension dynamics and the bulk flow region which is pri-
marily driven by reorientation dynamics with low extension. The com-
bination of these two mechanisms likely leads to a longer statistical
settling timescale. The right plot in Fig. 8 again illustrates the shift in
the peak of the extension probability distribution within the buffer
layer to be greater than that of the viscous sublayer. We also observe
that in all regions, longer extensions are preferred over shorter ones.
This is expected as the timescale parameter, WeB, determines the dom-
inance of the terms of the force balance in Eq. (7). With an increase in
WeB, the hydrodynamic term becomes larger in comparison to the
nonlinear restoring spring force term as well as the stochastic
Brownian term. In effect, the resistance to stretching is reduced.
Figure 9 illustrates the orientation of the polymers within each wall-
normal region. Despite the largest stretching taking place within the
buffer layer, the polymers orientate themselves the most with the
streamwise axis in the viscous sublayer. Again, orientations within the

FIG. 13. Temporal evolution of centerline streamwise velocity U�x (upper left), mean streamwise velocity (upper right), and root mean square of velocity fluctuations (lower)
sampled at t� ¼ 10 and for b ¼ 0:9. Comparison between WeB and Newtonian flow is illustrated. A comparison against the observed effects of the Newtonian (N) and drag
reduced viscoelastic (V) statistics of Sureshkumar et al. (1997) at Res ¼ 125 is also demonstrated.
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log-law and bulk flow regions are relatively randomly distributed. It is
theorized here that polymers within the buffer layer undergo addi-
tional stretching in the wall-normal and spanwise directions through

interaction with the duy

dy and duz
dz components of the velocity gradient

tensor, both of which are strongest in the buffer layer (see Fig. 3) and
contribute to stretching perpendicular to the streamwise direction.
However, considering the top-right and lower plots of Fig. 9, the
mechanism drives the state more toward isotropy, rather than toward
orientating toward an alternative axis, since the distributions only
widen, with no indication of a peak at hi ¼ 0 or hi ¼ p.

Finally, we consider the dynamics for WeB ¼ 10. Figure 10 indi-
cates similar qualitative characteristics to those corresponding to
WeB ¼ 5, with relatively streamwise-orientated stretching occurring
in the near-wall region and local coherent orientations occurring in
the log-law and bulk flow regions. The chain extension lengths in all
regions are saturated by almost fully extended polymer configurations,
indicating that the dominant mechanism driving extension is occur-
ring in all regions. Figure 11 (left) further reorders the regions of high-
est mean extension, with the buffer layer remaining highest, followed
by the log-law region, the viscous sublayer, and the bulk flow region.
Again, the log-law region takes the longest for the configuration of
polymer extensions to reach an approximately statistically stationary
state. Considering the right plot in Fig. 11, all regions now favor high-

FIG. 14. Comparison of velocity gradient tensor invariant, Q, sampled in fluid wall-normal regions: bulk flow (upper-left), log-law region (upper-right), buffer layer (lower-left),
and viscous sublayer (lower-right). Effect of bulk Weissenberg number, WeB, is indicated.

FIG. 15. Q and R tensor invariants for incompressible flow turbulent structure topol-

ogy classification. Solid curved lines represent D ¼ 27
4

	 

R2 þ Q3 ¼ 0.
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extensional states, with low ( Qj j < 5) extensions highly improbably.
In fact, a vast proportion of polymers possess extensions close to their
maximum extensibility L ¼

ffiffiffiffiffi
50
p

. As with the WeB ¼ 5 case, polymers
are most orientated in the streamwise direction in the viscous sublayer
and buffer layer; however, this time, we observe a slight widening of
the hx distribution in the log-law region, indicating a tendency for
anisotropy when compared to the bulk flow orientations. Beyond
WeB ¼ 1, the orientations, therefore, seem fairly independent of the
relaxation timescale of the polymer. This is reflected in Fig. 12, which
illustrates the orientation of polymers in the flow with WeB ¼ 10.
Comparing with Fig. 9, the distributions are very similar, indicating
that the mechanisms which orientate the chains become Weissenberg
number-independent. This is likely due to the polymers behaving
more rigidly, sampling only extensions close to their maximum exten-
sibility. Their rotational behavior is then similar to those with the
same high extensions but at WeB ¼ 5.

B. Viscoelastic dynamics in polymer-laden turbulent
channel flow at Res5180

In this section, we consider the effect of WeB on the changes in
rheological properties caused by viscoelastic contributions to the stress
tensor from polymer additives. Moving forward, instead of b ¼ 1 (i.e.,
Newtonian flow dynamics), we reduce this parameter to b ¼ 0:9, in

line with previous studies of this nature. Furthermore, due to the simi-
larities exhibited in Sec. III A surrounding extensional behavior for
WeB ¼ 5 and WeB ¼ 10 in the systems with no viscoelastic
mechanisms considered, we choose to consider the effects of only the
WeB ¼ 1 and WeB ¼ 5 systems. In each simulation, 100 polymers per
GLL cell were injected. The fluid timestep in the viscoelastic case
remains constant at dt� ¼ 1� 10�3, chosen to ensure stability when
calculating the additional polymer stress tensor field. We found that
larger timesteps, such as those used in the Newtonian case, would lead
to increased changes in the calculated fluid stress tensor, which caused
divergence issues. At each timestep, each unique GLL cell performs
local Brownian dynamic simulations, ensuring that the calculated
mean end-to-end extension vector is smooth with time. Once a cell
had a statistically stationary configuration tensor, Eqs. (5) and (6) were
used to calculate the local additional stress tensor, which would then
be used for the next fluid simulation step.

Statistics were sampled after the flow had responded and reached
a statistically steady state after the injection of polymers. From
Fig. 13(upper-left), in both cases, we observe a steady increase with
time in the centerline streamwise velocity, which is stronger for the
WeB ¼ 5 case. In both cases, t� ¼ 1 is sufficient time for this to take
place. In the upper-right plot of Fig. 13, the mean streamwise velocity
increases beyond the viscous sublayer region (which has widened),
demonstrating the expected drag-reduction, as observed in many

FIG. 16. PDFs of invariants of the velocity gradient tensor, Q and R, sampled at fluid nodes in the bulk flow region. Upper left: Newtonian flow, upper right: WeB ¼ 1, and
lower: WeB ¼ 5.
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experimental studies (Pinho and Whitelaw, 1990; Wei and Willmarth,
1992). Comparison is made in Fig. 13 with the results of Sureshkumar
et al. (1997), who also considered simulation of drag reduction at
b ¼ 0:9, albeit at Res ¼ 125. Their Newtonian and viscoelastic results
for Wes ¼ 50 (equivalent to WeB ¼ 5:88Þ are displayed in the plots to
illustrate the qualitative drag reduction effects. We observe the same
trend, and in the case of Sureshkumar et al. (1997), the magnitude of the
drag reduction is increased due to a slightly increased Weissenberg num-
ber. Furthermore, for their Wes ¼ 12:5 (equivalent to WeB ¼ 1:47Þ
simulation, they obtained a 2.5% increase in the mean flow velocity. This
is in line with our findings of a 1.7% since our Weissenberg number was
slightly lower. The authors began to see obvious drag reduction at Wes

¼ 25 (WeB ¼ 2:94Þ which is in agreement with our findings, as by
WeB ¼ 5, the drag reduction is obvious.

Finally, their predictions for the components of the rms velocity
fluctuations are also in qualitative agreement with the present work.
The turbulence levels, indicated by the root mean square of the veloc-
ity fluctuations in the lower plot of Fig. 13, are enhanced throughout
the bulk flow region in the streamwise direction and reduced in the
wall-normal and spanwise directions. This is indicative of the suppres-
sion of energy redistribution between the streamwise to the wall-
normal and spanwise directions and has been observed in previous
studies (Li et al., 2015), with increasing WeB leading to these effects

becoming stronger. To further investigate the influence of the poly-
meric phase on the flow, the effect of Weissenberg number on
the properties of coherent turbulent structures was also considered.
Figure 14 illustrates the modification to the velocity gradient invariant,
Q, often used to characterize vortex regions in turbulent flows. There
exist multiple methods used in the literature to classify both the struc-
ture and strength of coherent turbulent flow structures. A commonly
employed technique is that, based on the velocity gradient tensor,
Dij ¼ @ui

@xj
. This tensor is often decomposed into its symmetric (rate-of-

strain) and antisymmetric (vorticity) tensor components such that

Dij ¼ Sij þ Xij, with Sij ¼ 1
2

@ui
@xj
þ @uj

@xi

	 

and Xij ¼ 1

2
@ui
@xj
� @uj

@xi

	 

. The

Q-criterion refers to the condition applied to the second invariant, Q,
of the velocity gradient tensor, where Q ¼ 1

2 kXk
2 � kSk2

� �
: Note

that in the present study, Q is non-dimensionalized by bulk quantities
(U2

B=d
2). The vortex condition is such that if Q > 0 (i.e., the vorticity

is greater than the shear strain rate) is satisfied in a particular fluid cell,
then the fluid element contains part of a vortex. In the cases consid-
ered here, the range of Q values sampled in each flow region is reduced
with the presence of the polymeric phase, and with increasing WeB.
The most dominant structures within the buffer layer are quasi-
streamwise hairpin vortices which convect slow-oving regions of fluid
to the bulk flow region, whereas faster fluid streamlines are convected

FIG. 17. PDFs of invariants of the velocity gradient tensor, Q and R, sampled at fluid nodes in the log-law region. Upper left: Newtonian flow, upper right: WeB ¼ 1, and lower:
WeB ¼ 5.
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toward the buffer layer. A reduction in Q within these regions implies
that the turbulent structures are less frequent or that those which still
survive are dampened. Most interestingly, regions of increased magni-
tude of Q are actually increased in the viscous sublayer, with the effect
lessened by an increased WeB. It is difficult from these results alone to
discern the full effect on the structure of turbulence. To investigate fur-
ther, we adopt the classification scheme of Blackburn et al. (1996).
Under this classification, each fluid field point is categorized using one
of four turbulent structure topology definitions. These are unstable
focus/compressing, stable focus/stretching, stable node/saddle/saddle,
and unstable node/saddle/saddle, as illustrated in Fig. 15. Here, R is
the third invariant of the velocity deviatoric tensor, equivalent to the
negative product of all three of its eigenvalues and is normalized using
bulk quantities, U3

B=d
3.

The effect of WeB on the Q–R phase portrait for fluid points sam-
pled in the bulk flow region is presented in Fig. 16. Comparing to the
Newtonian flow, the vortical-region effect due to the presence of poly-
mers is clear, with the distribution narrowing in both directions for
increasing Weissenberg number. The characteristic shape of the phase
portrait remains consistent, indicating a general reduction in vortex
strength while retaining the same structure. Since polymer chains tend
to be the least stretched in the bulk flow region, the energy removed
from the vortices causes a slight dampening effect but isotropically as

indicated by the distributions of chain orientation. Due to this, the
topology of the turbulent structures is minimally affected. Moving on
to the log-law region in Fig. 17, we begin to observe a narrowing of the
range of R as the Weissenberg number increases, leading to stronger
foci-type regions. There is also a slight stretching in Q for regions of
low R which is characteristic of a flow structure becoming more two-
dimensional. The effect is more pronounced for the high WeB simula-
tion, where most of the distribution is concentrated at low Q and R.

Similar observations are made in the buffer layer for Fig. 18, with
the narrowing in R still persisting. This time, however, distributions
for WeB ¼ 1 and WeB ¼ 5 are similar in shape, indicating that the
modification to the topology of the coherent turbulent structures in
this region may be saturated beyond a certain Weissenberg number.
In both of these cases, the buffer layer contains mostly fully stretched
polymers, which may explain the similarities between these two sys-
tems within this region.

Finally, the phase portrait for the viscous sublayer, shown in
Fig. 19, illustrates the same narrowing in R but a much more enhanced
stretching of Q. The presence of polymers in the viscous sublayer
increases the frequency of vortical regions with increased Q, particu-
larly for those regions with low R. Again, this is indicative of the flow
becoming more two-dimensional close to the wall. This enhancement
of Q, particularly for positive Q, is indicative of an increase in both

FIG. 18. PDFs of invariants of the velocity gradient tensor, Q and R, sampled at fluid nodes in the buffer region. Upper left: Newtonian flow, upper right: WeB ¼ 1, and lower:
WeB ¼ 5.
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compressing and stretching foci. Given that most of the polymers in
this region tend to be fully extended, there is likely an abundance of
elastic energy which may be transferred to the local vortices as the pol-
ymers contract within this region, which may explain the enhance-
ment of the strength of these structures.

IV. CONCLUSIONS

Polymer extension and viscoelastic coupling have been studied
using simulations of a drag-reduced turbulent channel flow at
Res ¼ 180. A multiscale hybrid approach is adopted, whereby direct
numerical simulation is used to predict the continuous phase while
Brownian dynamics simulations and the FENE dumbbell approach
are carried out to model the trajectories of polymer extension vectors.
Parallel computations have been performed to achieve improved com-
putation timeframes for a highly resolved flow. Strong agreement was
observed between the polymeric configurations observed in the simu-
lations and theoretical predictions in equilibrium conditions.

To determine the influence of the continuous phase on the poly-
mer extensional vectors, distributions of velocity gradient tensor com-
ponents are analyzed throughout the channel flow wall-normal
regions. These are key to understanding polymer extension and fluid
coupling since they directly affect the time evolution of the mean con-
formation tensor. We observed that, in the streamwise direction,

gradients of velocity were low, with the strongest gradients occurring
in the buffer layer. The presence of turbulent structures in this region,
such as low-speed streaks, augments polymer–fluid interaction leading
to more significant extension. The dominant components contributing
to polymer stretching were determined to be @ux

@y in the viscous sub-
layer and buffer layer, @ux

@z in the wall region, @uy

@y in the buffer and log-
law layers, @uz

@y in the wall region, and @uz
@z in the buffer and log-law

layers. Most of these terms contribute to the streamwise extension,
causing the polymer chains to orientate themselves in the flow direc-
tion, using the energy of the near-wall vortices to extend. We also note
that moderate wall-normal extensions close to the wall will further
augment the streamwise stretching, causing a curling effect, which we
demonstrate occurring in the log-law and bulk flow regions.

Further effects are observed in instantaneous snapshots of poly-
mer extension throughout wall-normal slices of the turbulent channel
flow, with the effects of the bulk Weissenberg number demonstrating
that increased WeB leads to larger extensions and more streamwise
orientated conformities close to the wall. In the bulk flow and log-law
regions, the polymers tend to trace turbulent structures in the fluid.
The time required to reach a statistically stationary state for the con-
formation tensor is measured, of use in determining the time required
for polymeric simulations during a single fluid timestep to achieve
accuracy and precision. In most cases, t� ¼ 10 was sufficient, with the

FIG. 19. PDFs of invariants of the velocity gradient tensor, Q and R, sampled at fluid nodes in the viscous sublayer. Upper left: Newtonian flow, upper right: WeB ¼ 1, and
lower: WeB ¼ 5.
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log-law and buffer layers taking longer for high WeB. For these cases,
most polymers approached their maximum extensibility, whereas the
distributions exhibited a good proportion of unextended polymers for
the lower WeB. Chain orientation angles are also measured, with WeB

demonstrating little influence on the isotropic distributions in the log-
law and bulk flow regions.

Polymer–fluid coupling is implemented through a polymer con-
tribution to the viscoelastic stress tensor, calculated using the mean
conformation tensor at each GLL cell in the domain. The effect of the
Weissenberg number on turbulent drag reduction effects has been dis-
cussed, with high polymer relaxation times leading to more impactful
reductions. The streamwise turbulence intensities are augmented by
the presence of polymers, while the other two components are
reduced. Finally, the velocity gradient tensor invariants are calculated
for the drag-reduced flows, with polymers having a significant impact
on the Q–R phase diagrams. In all regions, aside from the viscous sub-
layer, the strength of the vortical structures is reduced, with the pres-
ence of polymers tending to cause the distribution of R to narrow.
Interestingly, the distribution of Q is widened in the viscous sublayer,
perhaps due to fully extended streamwise orientated chains in this
region contracting and introducing energy to the local vortex
structures.

Often, particularly in industrial applications, further consider-
ation of a transported particulate phase is required. In this study, we
have demonstrated that polymers can modify the turbulent structures
within wall-bounded flows. Previous studies (Mortimer and
Fairweather, 2020; Dizaji and Marshall, 2017; Eaton, 2009), however,
indicate that capturing particle–turbulence interaction is pivotal to the
accurate prediction of particle trajectories, which may differ greatly
upon the addition of polymers. Therefore, systems containing both
phases should be studied. The mechanisms by which both particles
and polymers interact under the influence of various flows are also of
great interest to processes such as flocculation and separation, and so,
future work will consider the micro-scale interactions of polymers and
particles to generate more useful insight into the micro-scale interac-
tion events. Finally, a comparison of the present findings with those
predicted when using other constitutive relationships (Giesekus,
Oldroyd-B) for the viscous stress tensor should be considered and
compared to experimental validation data, when available, in order to
determine appropriateness in various cases.
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