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a b s t r a c t

Highly complex and dense models of 3D objects have recently become indispensable in digital
industries. Mesh decimation then plays a crucial role in the production pipeline to efficiently get
visually convincing yet compact expressions of complex meshes. However, the current pipeline
typically does not allow artists control the decimation process, just a simplification rate. Thus a
preferred approach in production settings splits the process into a first pass of saliency detection
highlighting areas of greater detail, and allowing artists to iterate until satisfied before simplifying
the model. We propose a novel, efficient multi-scale method to compute mesh saliency at coarse and
finer scales, based on fast mesh entropy of local surface measurements. Unlike previous approaches, we
ensure a robust and straightforward calculation of mesh saliency even for densely tessellated models
with millions of polygons. Moreover, we introduce a new adaptive subsampling and interpolation
algorithm for saliency estimation. Our implementation achieves speedups of up to three orders of
magnitude over prior approaches. Experimental results showcase its resilience to problem scenarios
that efficiently scales up to process multi-million vertex meshes. Our evaluation with artists in the
entertainment industry also demonstrates its applicability to real use-case scenarios.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The ever increasing requirements for highly detailed three-
imensional meshes in movies, animations and interactive media
uch as games has been met with progress in hardware and
endering techniques. However, it is still common practice to
implify models for not only final usage, but in earlier stages of
roduction, as loading and manually editing models with millions
f vertices in interactive software is still costly. While traditional
ast mesh simplification algorithms might be used [1] for this,
hese only allow control of howmuch decimation will be applied,
not where it will be applied. Thus, artists end up manually
removing superfluous faces (or even recreating the mesh by
hand) to preserve details they believe are important, which is
impractical for complex geometry.

Saliency-based decimation [2,3] retains details on visually sig-
nificant regions while yielding coarser geometry in other areas.
Notably, importance estimation and decimation become two dis-
tinct passes, supporting parameter tuning and artist feedback
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(favored in industry [4]) before decimating. However, state-of-
the-art saliency estimation techniques may require several days
to process million-polygon meshes, a standard in the entertain-
ment industry. Factoring in multiple runs to adjust parameters, or
failure cases on problematic meshes, manually painting saliency
values on a model has surprisingly become the faster approach.
While previous work [5] proposed pre-decimating meshes via
standard methods [6] to yield quicker results, simplification ir-
reversibly erases details, defeating the purpose of saliency-aware
methods.

This paper addresses existing challenges to making saliency-
aware decimation viable in production environments. The follow-
ing two requirements for saliency detection must then be at least
fulfilled:

R1 Robustness: Saliency calculation should be stable under
varying mesh topologies, given that sculpted or scanned
models are a standard in the industry.

R2 Fast computation: Each turnaround of saliency calculation
should be performed at close to interactive rate for million-
polygon meshes.

Unfortunately previous saliency detection methods have not con-
sidered these demands in production settings or could not meet
them at a time.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Contribution of tropical angle and the change to the binning operation
using β . From left to right: Buddha model using Local Curvature Entropy
(LCE) [2]. Next, gamma correction (0.03) still fails to show distinctive features.
Then, introducing β = (0.1) allows distinctive features to be detected but still
contains much noise in the base where the model is flat. Finally, by applying the
tropical angle of curvature we obtain a smooth map using estimated β . Color
apping for all images in this paper is [0.0 − 1.0], cyan to red.

We therefore propose a new practical technique for saliency
etection to meet these demands and its usage in production
nvironments. This technique introduces a novel saliency estima-
ion, based on the entropy of the tropical angle of curvature that
stimates the maximum immediate difference of normals at each
ertex on a surface (see Fig. 1). As illustrated later, the tropical
ngle of curvature ensures stable calculation for the saliency
stimation. Our new adaptive subsampling approach coupled with
fficient data structures and a parallel traversal algorithm pro-
ides speedups of up to three orders of magnitude for the saliency
stimation over current techniques.
In addition, we consider the following requirement, which

ay be a general demand for a practical tool:

R3 Artist-friendly parameter control: The parameters pro-
vided should be easily tuned by artists to get their desired
results.

Regarding this, we demonstrate that our method is config-
rable by one global parameter or via five high-level parameters
or experienced artists, allowing flexibility to adapt to complex
ases such as creases and 3D scanned models as well as to noise
itigation of the scanned data. The applicability of our tech-
ique to production settings is also confirmed by an evaluation
erformed with artists.

. Related work

The landmark work from Koch and Ulmann [7] postulates
hat attention is naturally driven towards locally salient ele-
ents from their surroundings at different scales. Thus, mesh
aliency [8] has traditionally been calculated with multi-scale
hape analysis on 3D models. The survey from Liu et al. [3] clas-
ifies saliency detection methods as single-scale, global-scale and
ultiple-scale. Single-scale techniques are purely local methods

hat analyze each point independently using a small neighbor-
ood. They have been successfully used for different applications,
.g curvature maxima to find contours [9] or 3D Harris descrip-
ors as local saliency measurements for shape matching and
lignment [10]. Similarly they have been used to calculate point
loud saliency [11], where point clusters are compared in terms
f uniqueness to neighboring clusters. Their main limitation is
ocusing on local differences (differently than the visual attention
ystem [7]), producing mostly binary saliency maps with the
harpest features.
64
Lee et al.’s [8] is a multi-scale method, combining Gaussian-
veraged curvatures at multiple scales. Miao et al. [12] propose
stimating a relief height from a mesh, trying to fit a surface to
ach vertex at different scales, where stronger deviations mean
igher saliency. While they showed positive outcomes on terrain
utlines, their results proved noisier on common models. More-
ver, the plane fitting technique becomes considerably expensive
t larger scales. Song et al. [5] propose a similar but even costlier
pproach. This is the follow-up to a well-known multiple-scale
ork that handles global features [13]. They calculate stochastic

aplacians of the mesh at different scales. Then combine both
verage and max laplacian values, pooling at varying levels of
etail. Finally, they introduce global features later in the process
o that local features still appear in the final map, an improve-
ent over their previous work. The global component of these
lgorithms is also computationally expensive. Because of this,
oth techniques rely on simplifying the model before calculating
ts salient features, which makes them not suited to estimating
aliency for mesh simplification. See Section 5 for further details.
Sipiran and Bustos [14] developed a global method, using Har-

is 3D features to classify mesh elements, and estimate saliency
y their grouping. Wu et al. [15] take a similar approach, but
sing the contrast in Zernike moments [16,17] within vertices and
heir neighbors. However, as all global contrast methods, these
echniques are computationally expensive. Page et al. [18] pro-
ose an interesting shape analysis method, which defines saliency
ia Shannon’s entropy of the Gaussian curvature of a surface.
his inspires Limper et al. [2]’s approach, which measures local
ntropy of the mean curvature to indicate how much information
s contained in a neighborhood of a vertex. Their approach is
pplied at multiple scales, and combined into a unified map that
uccessfully contains quasi-global and locally salient elements.
owever, the curvature calculation in these approaches is af-
ected by tessellation density, so that we need a more stable
pproach in dealing with highly complex and dense models. A
ecent review [19] proposes a saliency comparison technique,
ighlighting [2,8,13] as good distinctive representatives of current
pproaches. They conclude that a combination of methods should
roduce better results than isolated measurements.
Recent work [20–23] uses eye-tracking to annotate salient

oints on meshes based on where people look at. In this body
f work we can see texture and lighting having a significant
mpact on the result of the detected saliency; which is consistent
ith the model described by Koch and Ulmann [7] as these
etails at a varying scale will draw attention; and that contextual
nformation also draws attention (e.g. faces in humans, handles
n mugs). This category of work tend to claim low agreement to
urface based methods, which in their view may disprove those.
owever, the proposed experiments use but a limited number of
iews, over a limited time, and lighting conditions, highlighting
ust a couple of ‘‘most salient’’ points in a model. While these are
seful for understanding human perception, their application to
ecimation is limited.
Song et al. [24,25] apply deep learning to detect mesh saliency,

y extrapolating view dependent 2D salient points into a 3D
esh, which shows a higher degree of agreement with both pre-
ious surface based methods, and human-picked interest points
Schelling points) [26]. Their focus on saliency for view selection,
lso requires pre-decimation of meshes to achieve competitive
un-times. Alternatively, Nousias et al. [27] use neural networks
rained with spectral saliency [13] to allow estimation on larger
eshes. While faster than calculating spectral saliency directly, it
till shares the same limitations as the original method, and still
as high execution times for simple models.
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. Saliency detection

In developing a practical tool for saliency detection, we first
ote that multi-scale surface-based methods approximate human-
icked interest points [24], and closely mimic the human visual
ttention system [7]. Then, considering the requirements R1–
3, we found that entropy-based methods [2,18] were more
calable, amenable to parallelization, and well suited to our
roposed subsampling scheme. This section focuses on each com-
onent of our saliency formulation and shows how they are
ombined. The whole process of our proposed method, together
ith pseudocode, will be presented in Section 4.

.1. Local measurement: tropical angle of curvature (θ (v))

In order to measure ‘‘curviness’’ of a mesh surface, we first
onsider the angular difference between the two tangent planes
t the closest vertices (sample points). For example, let Ta and Tb
e the adjacent tangent planes at vertex a and b respectively. The
ngular difference is estimated by cos−1(na · nb), where na, nb are
he normal vectors at a and b respectively. In our formulation,
nstead of cos−1(na · nb), we consider the‘‘normalized’’ angular
ifference, which is defined as 1−(na·nb)

2 . It takes values in [0, 1].
Then, for each vertex v in our input model we calculate θ (v) using
Eq. (1) where adj(v) are all vertices connected to v by a mesh
edge:

θ (v) = max
a,b∈adj(v)

{
1 − (na · nb)

2

}
. (1)

This means that we look for the largest (normalized) angular
difference in the 1-ring neighborhood of vertex v, as an alterna-
ive of curvature at v. θ (v) plays a crucial role in our method and
s referred to as tropical angle of curvature in this paper.

This novel geometric concept can be treated as a kind of
urvature, providing new features as described in what follows.
e find θ (v) to be a more stable measurement of local changes

han the mean [2] or Gaussian curvature [18] as seen in Fig. 2.
For example, see Fig. 2 where the mean curvature and θ (v)

re plotted. The model depicted has three different areas with
arying tessellation levels. The absolute mean curvature suffers
eavily from outliers caused by particular mesh topologies mak-
ng an entropy analysis process volatile. When comparing to
ean curvature with a manually set outlier boundary we show

hat the tropical angle of curvature values span the same range
egardless of vertex area, and better reflect local differences.
his is more suited to the discretization step in the entropy
alculation, as it also allows us to control to more easily optimize
he distribution of values to different bins (see Section 3.2) An
xample of usage of both measurements in saliency calculation
an be seen in Fig. 2, where saliency is wrongly attributed to areas
ithout salient details, just due to higher tessellation and small
urface fluctuations.
The calculated θ (v) is used at two instances in our method: to

alculate surface entropy over multiple areas (Section 3.2), and to
dentify local contours that are visually salient (Section 3.5).

A more detailed description and rationale about the tropical
ngle of curvature can be found in Appendix A.1 .

.2. Entropy of tropical angle of curvature (H(v, r))

As the main component of our saliency calculation, we con-
ider the entropy of the tropical angle of curvature, and adapt
he binning operation to improve the distribution of values.

The curvature calculation by Taubin [28] may suffer from tes-
ellation variations. In this case, when discretizing the curvature
 v

65
Fig. 2. (A) Model with varying tessellation in different areas. (B) Different
measurements of curvature for a given model with three areas with different
levels of tessellation. Tropical angle is the only one with no visible correlation
to the tessellation level. (C) Saliency with tropical angle and (D) saliency with
mean curvature.

1 Function H(v,r):
2 κr [] = x : GD(x, v) < r
3 σ [n] = [0...]
4 for x ∈ κr do
5 i = ⌊n ∗ (θ (x)β − θ

β

min)/(θ
β
max − θ

β

min)⌋
6 σ [i] = σ [i] + Ax

7 for 0 ≤ j < n do
8 H = H − (σ [j] /A) ∗ log2 (σ [j] /A)
9 return H

10

Algorithm 1: Algorithm for the entropy calculation for a given
vertex v, with parameter radius r , a calculated distribution
adjustment β , n = number of bins, A = total mesh area,
Ax = vertex area and GD(x, v) the geodesic distance between
x and v.

measurement, we would increase the likelihood of distinct cur-
vatures in highly-tessellated areas, while lesser tessellated areas
will fall inside the same bin (i.e. the discretized range of possible
curvature values), and thus be considered to be low saliency. We
thus employ another definition of local entropy using the tropical
angle, and adapt the binning operation.

Our local entropy at each vertex v of the mesh model considers
the tropical angle of curvature (Eq. (1)) to the power of β at v, i.e,
θβ (v), where β is a parameter taking positive values.

Algorithm 1 describes the process to calculate this local en-
tropy for θβ , which is denoted by H(v, r). We calculate it in the
geodesic neighborhood of v with radius r: U(v, r), which consists
f all the points x whose geodesic distance GD(x, v) from v is
maller than r . To evaluate the entropy H(v, r), we now consider
β as a stochastic variable in U(v, r). The probability density
unction of θβ is then approximated with its ‘‘area-weighted’’ his-
ogram. Given θmin, θmax, the minimum and maximum calculated
alues of the tropical angle of curvature of a given mesh, n a set
umber of discrete intervals in the range of possible curvatures
we call each one a ‘‘bin’’ for simplicity) in an array σ [n], we
ccumulate the value Av for each discrete range of curvature in
ur mesh (Alg 1, lines 5–6). Avi being the influence area of a vertex
∈ κ , which is calculated using mixed Voronoi cells.
i r
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Parameter β will either spread out differences to different bins
(β < 1), or concentrate them (β > 1). We can automatically
determine a reasonable value for β from the observation that
the entropy of the global curvature distribution approximates the
mean entropy of all neighborhood curvature distributions. We
solve for a value of β such that the global entropy is equal to
some desired max histogram. We aim for mean saliency equal
to the saliency midpoint (white in our figures), but do not know
the saliency range beforehand as it depends on β . We evalu-
ated the deviation of the mean saliency (Rµ) from the midpoint
(Rmid) for various models from public repositories, made by var-
ious artists, and having medium to high polygon count with
a range of saliency values Rmin, Rmax by calculating (Rµ−Rmid)

(Rmax−Rmin)
.

We found that, on average, a target entropy factor of 0.453
yields 0 deviation with variance <0.1, except for small models
(<5000 vertices), where it becomes easier to manually adjust the
parameter as the algorithm runs interactively.

The local entropy H(v, r) is finally calculated by summing the
area weighted contribution of each bin, where a larger variety of
θ (v) would yield a higher entropy (Alg. 1, line 8).

Fig. 1 shows an in-depth analysis of the contribution of these
first two changes to the saliency formulation.

3.3. Mitigating small scale noise (η(v, r))

Outputs of 3D scanning software or photogrammetry data of-
ten include small-scale noise that should not be considered visu-
ally salient. Alternatively, in modern rendering pipelines, one may
choose to ignore small geometry details that can be emulated by
bump mapping.

Given a level of ‘‘noise’’ ϵ, our goal is to remove artifacts from
surface fluctuations smaller than this value. The effect is harsher
on low entropy surfaces such as flat plane-like structures. By
approximating small neighborhoods to a plane (which is true in
such surfaces and locally valid for more complex structures), we
can find which points in that area have a variation within the
noise level by taking their distance to the estimated plane. To
this end, we first consider N = { ⃗avg ·w}w∈U(v,r), where ⃗avg is the
average normal vector calculated over the neighborhood U(v, r).
Given ∆N = maxN − minN, η is defined by Eq. (2):

η(v, r) =

{
3(∆N

ϵ
)2 − 2(∆N

ϵ
)3 , if ∆N < ϵ

1 otherwise. (2)

Our function η(v, r) is defined using a common smooth-step
function (0, 3x2 − 2x3, 1, where x is the interpolated variable) to
avoid sharp discontinuities in the range where change is close to
ϵ. Thus, ϵ will either scale down the contribution of a vertex v to
he saliency calculation at that level, if its position deviates just
lightly from a plane, or keep it unchanged if not the case.

.4. Multi-scale calculation R(v)

We run each step of saliency estimation using H(v, r) for a
iven geodesic radius r and a number of steps ℓ. This means
hat we estimate H(v, r

2k
)(0 ≤ k ≤ ℓ − 1). The radius r of the

eodesic search is a percentage value of the total area of the
esh, being decreased to r

2 in each iteration from 0 to ℓ. We
ombine the detected saliency at each level with the evaluation of
(v, r) which can diminish the effect from noise. The multi-scale
omputation can be written as:

(v) =
1
ℓ

ℓ−1∑
η(v,

r
2k )H(v,

r
2k ) (3)
k=0
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3.5. Integrating crease detection: final formulation S(v)

Finally, we introduce a weighted amount of ‘‘crease detection’’
which highlights immediately local edges which can be hard to
parametrize for with the entropy formulation. This is sometimes
desirable in a decimation process in cases where handcrafted
local patterns must be preserved (e.g. pleated pattern on a skirt).

We normalize R(v) based on its range U(v, r) over all vertices.
The normalization of R(v) is denoted by R̂(v):

(̂v) =
R(v) − Rmin

Rmax − Rmin
, (4)

where Rmin = minw∈U(v,r){R(w)} and Rmax = maxw∈U(v,r){R(w)}.
We thus define the complete saliency formula S(v):

S(v) = min
(
1, αθ (v) + R̂(v)

)
. (5)

For each vertex v in the mesh, Eq. (5) computes its saliency
S(v). R(v) is computed in a first step, then it is normalized before
adding the α weighted contribution of θ (v), the tropical angle of
curvature at v, as curvature measurements have been widely used
as a component of contour detection [29]. This limits its contri-
bution to the final saliency measurement S(v), not substantially
increasing the relevant saliency of regions with creases when
compared to the rest of the mesh. It can be used at no extra
computation cost, since it is already used to calculate H(v, r).

Our approach is thus controlled by five parameters: ℓ, r, β,
α, ϵ. We reduce these to one ‘‘globality’’ parameter Γ , that con-
trols ℓ, r, α as a hyper-parameter. ϵ is estimated by the average
noise present in the mesh, and the optimal value for β can be
estimated as described in Section 3.2. A detailed description of
this mapping and the effects of varying these parameters can be
found in the Appendix and video accompanying this manuscript.

4. Subsampling scheme, and method implementation

1 Function Saliency(ℓ, r0):
2 for k ∈ {0, . . . , ℓ− 1} do
3 r = r0/2k

4 re =
√
2 · r/

√
ns

5 candidates = vertices
6 samples = {}

7 while candidates ̸= {} do
8 vi = PopRandom(candidates)
9 samples = samples ∪ {vi}

10 H̃i = η(vi, r) · H(vi, r)
11 for vj ∈ vertices

⏐⏐ gd(vi, vj) < re do
12 candidates = candidates \ {vj}

13 for vi ∈ vertices \ samples do
14 HΣ = 0
15 wΣ = 0
16 for vj ∈ samples

⏐⏐ gd(vi, vj) ≤ 2re do
17 w = max

(
re/gd(vi, vj) − 1/2 , 0

)
18 H̃Σ = H̃Σ + H̃j · w

19 wΣ = wΣ + w

20 H̃i = H̃Σ/wΣ

21

Algorithm 2: Pseudo-code of our subsample and interpolate
algorithm. Per level we do a first loop to select samples and
calculate saliency over a ground truth neighborhood, and a
second to perform interpolation.
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Fig. 3. Description of the sampling process with ns = 3. When sampling smaller
neighborhoods, details are detected as more vertices out of the original mesh
are chosen as samples.

Fig. 4 presents an overview of our method, where we utilize
the mathematical notations introduced in Section 3 along with
the corresponding images for all steps. This section will introduce
the subsampling approach, and how it implements the theory
presented in the previous section.

Subsampling is a popular approach to speeding-up computa-
tion over large datasets [30], and it will typically be associated
with a quality vs. speed trade-off. However, our method can
reduce the introduced error to negligible levels by tailoring the
sampling algorithm to our problem domain.

Adaptive: S(v) is inherently a multi-scale measurement. It
combines information about larger regions of high saliency with
individual features that have been detected at smaller scales.
When r is large, the computation is more expensive, but the na-
ture of the result is primarily averaged and perceived as smooth
over the model, which can be achieved with fewer samples. The
computation is quicker with a small r , but we can easily miss local
detail by not choosing enough samples, requiring a higher sample
count. Thus, we control our sampling rate via the parameter
ns, which defines the number of samples-per-neighborhood. This
process can be seen in Fig. 3; As r gets smaller, ns gets closer to
the number of points in the geodesic neighborhood κr .

True samples:, even though we might be running each level
, . . . , ℓ − 1 of R(v, r) on vertices chosen from a sub-sampled
et, each individual calculation of H(v, r) and η(v, r) (line 10
f Algorithm 2) iterates over a geodesic neighborhood κr from

the ground truth mesh, not a sub-sampled mesh. Thus, we
interpolate between different ground-truth saliency values, not
simplified ones, which already introduce non-recoverable errors,
e.g., pre-decimated meshes (cf. Section 5). Moreover, as tropical
angle calculation precedes the saliency computation, the range
of values [θmin, θmax] stays the same, as well as the effect of
parameters such as β .

Independent: our measurements are independent of tessel-
lation density, meaning that the sampled points are accurate
regardless of what part of the mesh they come from, thus making
their interpolation accurate as well.
67
4.1. Poisson-disc subsampling

Two issues are relevant to our problem domain: (1) the se-
lected vertices must represent the local entropy H of the mesh
with similar quality to that of the entire mesh, and (2) our method
must be fast (a slow subsampling technique would hinder its
benefit).

We employ a Poisson-disc technique inspired by [31] that
combines fast random selection with a near-uniform distribution
in order to minimize interpolation error for a given number
of samples. Vertices are randomly selected in parallel, and all
vertices within the geodesic re neighborhood of each selected
vertex are excluded from future selection. We define the exclu-
sion radius re with respect to the hyper parameter ns as re =√
2 · r/

√
ns (lines 3–4 of Algorithm 2). Sampling then continues

until all vertices are excluded. Fast random selection is facilitated
by iterating through a randomly shuffled list of vertices. The
threads start at indices evenly distributed through the list and
select their next sample vertex by iterating and skipping vertices
previously flagged as excluded. When a vertex has been sampled,
interpolation is performed by distributing the weighted entropy
to vertices within the 2re neighborhood (see Section 4.2).

4.2. Interpolating saliency values

After calculating values for the sampled vertices, we then
finish the saliency map by propagating those values to unsam-
pled vertices. For each unsampled vertex vi, our method collects
earby sampled vertices [vj, vj+1, . . . , vj+n] that were assigned

calculated values. The interpolant H̃ is then calculated as the
inverse-distance-weighted mean of sample values:

H(vi) =

∑n
k=0 η(vj+k, r) · H(vj+k, r) · w(GD(vi, vj+k))∑n

k=0w(GD(vi, vj+k))
, (6)

where we search for sampled vertices within 2re of the vertex vi,
and the weighting function w is defined as:

w(d) = max (re/d − 1/2 , 0) . (7)

This guarantees interpolation coverage (2re exceeds the largest
distance between two nearby subsampled vertices) and also en-
sures a continuous interpolation (values further from vi receive
ero weight).

.3. Memory and grouped traversal optimizations

When ns becomes close to verifying every one out of four
ertices, choosing samples and interpolating becomes more ex-
ensive than the ground truth calculation. We introduce two
ore optimizations that aid efficient operation once we fall back

o full sampling. Only the grouped traversal optimization is spe-
ific to the non-subsampled case; the memory layout is always
pplicable.
Fig. 4. Full overview of our method, with every step visually represented. Purely illustrative samples were chosen).
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Fig. 5. Execution times in seconds for the evaluated techniques in a linear scale
(top) with cutoff execution time on 1 h, and log scale (bottom) with cutoff of
48 h.

Memory Layout: We use a flat data structure that packs all
vertices and their lists of neighbors into a single contiguous mem-
ory region and then consistently use offsets to identify vertices,
significantly reducing indirection overhead when traversing the
mesh. We also layout the vertices such that neighbor points
are roughly grouped to improve cache locality. A series of trun-
cated breadth-first searches are used to gather groups that are
then placed sequentially. A secondary inner search gathers inner
groups of four direct neighbors to aid the grouped traversal.

Grouped Traversal: The traversal step identifies the
r-neighborhood of a given vertex in preparation for the saliency
calculation because the r-neighborhoods of directly adjacent ver-
tices inherently have a significant overlap. To optimize, we visit
the r-neighborhoods of four neighboring vertices together in a
single traversal to share work between them. Again, we use a
modified first-in-first-out queue instead of the traditional priority
queue to implement this, which is also faster in this specific case.

As the operations performed during traversal and entropy
calculation for each of the four root vertices are identical, we
can further reduce computational overhead by taking advantage
of SIMD operations (our implementation employs x86-64 SSE
compiler intrinsics, hence the use of four root vertices).

5. Results & discussion

We present and discuss results showing that our method
is faster and stabler than alternatives when applied to highly
complex models. Similar to previous work, we chose models from
the Stanford 3D Scanning Repository [32] and SHREC [33] for
benchmarking. Section 5.1 compares execution times of different
approaches. Section 5.2 compares our adaptive subsampling to
the pre-decimation of models used in previous work. Section 5.3
 r
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highlights the accuracy of our saliency calculation against related
work. Finally, Section 5.4 concludes with an industry-focused
discussion.

5.1. Execution time

We compare the execution time of our method to [2,13],
and [24]. We choose these methods for this comparison because
they are popular, recent alternatives with source code available
for testing. [2] is the most similar recent work to ours in that it
also uses a multi-scale saliency measure, and [13,24] are similar
in that both use global evaluation of saliency. All results were
gathered using a computer with the following specifications:
AMD Ryzen 2700X (8 core, 16 thread), 32 GB RAM.

We executed each of the methods on the original models
(avoiding the pre-decimation step for the techniques that use
it) to evaluate the scalability of each approach. We used two
subsampling configurations in this test, at ns = 100 and ns = 25.
These introduce marginal error in the final computation (root
mean square error (RMSE) < 0.004 and < 0.0071 respectively
or all models). We also included a non-sub-sampled version of
ur method to test the upper bound of increasing ns and also to
valuate better the contributions from parallelization optimiza-
ions.

Fig. 5 plots the results (detailed timings can be found in
he Appendix). Examining the figure, we observe that our ap-
roach scales better than others as the complexity of the mod-
ls increases (note that the difference between execution times
ncreases in proportion to complexity) for any value of ns.

The results show that the computation time required for all
ethods alternative to ours (the version with all optimizations)
eemingly scales exponentially with model complexity, as can be
een in Fig. 5. Our approach (pink and brown lines) seemingly
cales sub-linearly with the number of vertices. On a log–log
cale, this arguably corresponds to a sub-exponential growth rate.
he fastest alternative to our approach is [2]. Comparing [2] to
ur method configured to use ns = 25, we are faster by 4.54
imes on Bimba, 111.56 times on Buddha, and 1593.35 times on
hai Statue. Our data show that their method’s computation time
ramatically increases when applied to models with over one
illion polygons, each run taking hours to complete. Larger mod-
ls, such as Lucy, had to be terminated due to computation times
xceeding our 48-hour limit. Indeed, the performance advantage
f our algorithm grows with polygon count. [13] required 26 min
o complete the Bimba model with 15516 vertices, while [24]
nly needed 2:38. In comparison, our ns = 25 configuration
ompleted this model fast enough for interactive use. Notably, the
ata structures necessary to execute their technique did not sup-
ort processing more complex models since their global method
s very computationally expensive. Because of this, [5,13,24] use
re-decimation of models as a speed-up strategy, which is the
nly way to deliver competitive execution times. The following
ection questions how viable this speed-up strategy is against our
daptive subsampling.

.2. Adaptive subsampling vs. pre-decimation

In this section, we compare our adaptive subsampling to the
re-decimation approaches used in [5,13,24]. As outlined in Sec-
ion 3, and in previous work [2,3,8], a primary application of
aliency is to enable the decimation of highly complex meshes
ithout losing visually salient details. We argue that decimating
mesh using a standard algorithm is prone to discarding these
etails. Since important features were discarded, a saliency map
omputed on the pre-decimated mesh will inevitably yield wrong
esults. Moreover, it is seemingly counter-intuitive to decimate a
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Fig. 6. Comparison between speed-up strategies: Subsampling vs. pre-decimation. Subsampling shows lower RMSE for the same execution times, even if not
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model and then calculate saliency to decimate the model without
loss of information.

Nevertheless, we compare the achieved speed-ups related to
he RMSE to the ground truth saliency estimation. Song et al. [5,
3] do not present such numerical comparisons to ground truth
ue to the high computation costs of these approaches. Indeed,
round truth calculations were only feasible for less complex
odels (where the simplification was minor), introducing less
rror.
We calculated the ground truth saliency using our method (pa-

ameters clarified in the next section) and using the two different
peed-up approaches: pre-decimation and our adaptive subsam-
ling. Fig. 6 plots execution time against RMSE that we observed
hen applying each method to four different models (Buddha,
ragon, Thai Statue, and Lucy). Two lines are plotted for the
re-decimation strategy: one line specifies the combined time
or the decimation (QSlim [6] as done by [5,13]) and saliency,
nd one line for just the time necessary for saliency. Replacing
Slim with a faster alternative would yield results in the shaded
rea between both lines. The same plot displays our subsampling
ethod performance for different values of ns.
From Fig. 6, we can observe a worst-case 0.02 RMSE for

ll results using our method, with typical cases being close
o zero. Even discarding the decimation time, our execution
imes remains similar to that observed for pre-decimation. As
re-decimation tends toward zero (green line), RMSE increases
onsiderably. As for subsampling, there is a point where using
ewer samples no longer reduces execution time (due to the
ncreased overhead of choosing samples). However, RMSE only
ncreases marginally, even when using fewer samples. Fig. 7
hows a concrete example of the two approaches running on a
arge model (Thai Statue from Stanford Repository). Our speed-
p approach delivers visually indistinguishable results from the
round truth (RMSE ≤ 0.0046) for similar execution times. Al-
hough we could tweak the parameters on the decimated model
o reach results closer to the ground truth, that details were lost
n the decimation means that no configuration could outperform
ur subsampling approach in terms of accuracy.
Finally, Fig. 8 depicts the relation between RMSE and ns. De-

pite varying complexities and topologies, we observed similar
rends throughout all tested models. Thus, we conclude that ns
an control the trade-off between acceptable error and speed-up.
ecalling Fig. 5, we can observe that our subsampling configura-
ion ensures a marginal worst-case error (0.004 for ns = 100 and
.0071 for ns = 25). Notably, our worst-case error outperforms
he best-case error across all pre-decimation approaches (which
lso require much longer execution times).

.3. Accuracy of saliency maps

In what follows, we compare our generated saliency maps
o recently published work [2,24]. Fig. 9 shows a side-by-side
omparison between our method and LCE [2] that also estimate

aliency via multi-scale entropy calculations. LCE saliency maps

69
Fig. 7. Left to right: Ground truth, Subsampling at 75 samples per neighborhood
(120 s) and pre-decimation to 50000 vertices (114 s). All other parameters
unchanged.

Fig. 8. RMSE for all models w.r.t. samples-per-neighborhood parameter, showing
a similar trend for all models regardless of complexity or topology.

appear on the top, while our approach is shown on the bottom.
Regarding unique parameters to our approach, we set α = 1
crease detection) for our method, used the automatic estimation
f β (contrast), and did not use noise removal by setting ϵ = 0.
e ensured fair comparison by setting other parameters similarly

or either approach (geodesic neighborhood r = 0.02, number
f levels l = 5). We also adopted the same number of bins σ
or entropy calculation and avoided smoothing saliency maps in
ither case.
For the three smallest models (Wolf, Horse, and Bunny), the

CE maps and ours present similar features as salient. We can
bserve specific differences, as our approach includes crease-like
eatures missed by LCE, which are essential for decimation. These
re due to our method’s α parameter that helps to ensure creases
emain salient.

LCE could not highlight the salient elements of the two dragon
odels and the Buddhamodel, the more complex models created

rom laser scans. This observation highlights our novel saliency
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Fig. 9. Top row: results from [2], Bottom: our results running on the same
meshes. Limitations of LCE revealed in the more complex meshes. Matching
parameters set to the same values. α = 1, ϵ = 0, and automatic β for the ones
nique to our approach.

Fig. 10. Results from Machine Learning approach from [24] using pre-decimated
eshes. Results on Dragon, Bimba and Buddha models fail to isolate salient
egions, while the others see a focus on more global regions instead of outlining
ocal features.

ormulation’s advantage, which adopts the tropical angle of cur-
ature θ (v) over main curvature measurements. We hypothesize
hat LCE could not highlight these features due to the problem
escribed in Fig. 2, where their approach fails due to varying
evels of tessellation, which adversely impacts how curvature
alues are computed and ultimately mask salient features. One
ould argue that merely reducing the range of acceptable curva-
ures to remove gross outliers is a viable solution (thus enabling
CE to successfully identify the missed features in cases where
alformed faces are present). However, we can observe that even
ell-formed meshes can feature widely varying curvature (see
ig. 2), leading to results seen in Fig. 9. In contrast to LCE, our
pproach assigns appropriate saliency values to each complex
odel, despite the irregular tessellation and noise levels. While
eing locally accurate, our approach can highlight salient features
cross larger areas (such as Buddha’s face in Fig. 9).
We could replicate the results from [24], using pre-decimation,

s the authors made the pre-trained networks available. Fig. 10
hows these results. The quality of Dragon, Buddha, and Bimba is
eemingly not better than [2], with most of the meshes being con-
idered salient. This figure exemplifies the argument made in Sec-
ion 5.2: pre-decimating meshes will remove fine-scale details.
70
Therefore, potentially essential features will be lost for saliency
detection. We found this especially problematic for Bimba, where
he simplification rate was considerably lower than for the other
wo. The same defects occur for Armadillo, albeit to a lesser
xtent. Prominent regions appear roughly outlined on the smaller
odels, but some salient local features are lost.
As discussed in Section 2, [24] and other similar methods

re still seemingly suitable to other application areas such as
bject retrieval and matching, and specific to [24], estimating
he saliency of scenes containing several models. In the appen-
ices we highlight some of the differences in the saliency maps
f our technique, focused on decimation, and visual attention
oints [26], and how they are not suitable for decimation. How-
ver, when processing highly complex models, pre-decimation
oses essential details, is less sensitive to local features, and does
ot scale to shapes with over 10k vertices.
Finally, Fig. 11 shows the results of our algorithm on a new

ataset using the default settings in our technique, showing that
o parameter tuning is necessary to achieve good results. For
xample, unlike prior methods, our algorithm successfully detects
he edge lines of the pedestals (top) and shell (top rightmost)(see
ore detailed discussions in Section 5.4, and in the appendices for
detailed description of the parameter space.).

.4. User evaluation

We implemented an interactive tool that allows users to
xplore the parameter space easily (seen in Fig. 12), calculate
aliency, and perform saliency-weighted decimation. We found
hat we can enable an interactive, or close to interactive, experi-
nce for meshes of reasonable complexity. We observed
ub-second execution times for Armadillo and all other less
omplicated models. For larger meshes, execution times are fast
nough to avoid disturbing artist workflow (e.g. 3.44 s for Bud-
ha—543k vertices, 29.75 s for Thai Statue—4.99m vertices, and
4.49 s for Lucy—14m vertices).
In order to validate that artists were able to navigate the

arameter space with ease, and that this would be an appropriate
ool for their day-to-day use cases, we performed remote user
ests with 14 artists from three different companies in the enter-
ainment industry. We cannot provide names and more specific
eedback or images due to existing Non-disclosure agreements.
ubjects were sent the tool with sample models, a short video
n using it, and a questionnaire about the experience. We then
equested artists to freely use the tool to calculate saliency in
heir private models to assess practicality in real-world produc-
ion pipelines. The unsupervised tests had no time limit, giving
sers enough time to make several attempts on both simple and
hallenging models. Due to the wide variety in time availabil-
ty by the artists in each company, the form of the provided
eedback was varied; a few responded to every single question
n a structured manner, but the majority provided short textual
escriptions of their experience and several examples of their
uccesses or difficulties. We requested feedback on the tool’s
ase of use (visualization, processing files) and specifically on
avigating the parameter space. Other usability-type feedback
ability to undo, support for alternative file formats) will not be
iscussed here as they fall outside this paper’s scope.
All users could easily navigate the parameter space regarding

aliency computation, providing several successful results in their
rivate datasets. Artists appreciated the ability to control the
ethod. Moreover, they requested (1) allowing manual input to
rovide further detail of the results if non geometrically salient
reas are considered essential. Additionally, (2) to provide presets
or different model types (e.g., humans, buildings, animals, 3D
cans) to speed-up processing of several models in a sequence
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Fig. 11. Saliency results using the default parameters of our technique (Γ = 0.5, ϵ = 0) on scanned models of statues and natural objects (Statues from noe-3d.
tSketchFab and natural models from RISD Nature LabSketchFab). All models have 500k to 1M faces.
t

Fig. 12. A GUI allows artists to explore our method’s parameters.

without requiring to re-set previously chosen parameters. These
can be quickly addressed by improvements in the Tool, not the
saliency approach itself. It is crucial to notice that no user has
reported any case of complete failure in calculating saliency,
attesting to the method’s robustness in real-world scenarios. We
attribute this to the more stable surface measurement that we
proposed, the tropical angle of curvature (failure scenarios of
curvature-based methods were discussed in Figs. 1 and 9).

Decimation: Using highly complex models, we evaluated the
mpact of using our saliency maps in mesh decimation. As dis-
ussed in Section 1, saliency-aware decimation has one main
dvantage when it comes to being applied in practical scenarios
e.g., entertainment industry); it gives the artist control of how
he decimation is going to be performed. Typically the only pa-
ameter available is the target number of faces, with no indication
f how the operation will affect a given model. The saliency
ap highlights how each model part will be affected before this

engthy operation.
Fig. 13 shows a comparison using saliency-weighted quadric

dge collapse decimation. The top row shows the estimated
uadrics error metric relative to the ground truth mesh, and the
ottom row shows the used saliency map for the decimation
none in the leftmost scenario). Our findings are coherent with
revious work that evaluated saliency-weighted decimation [2],
here our approach will yield a higher global geometric error
ue to optimizing for saliency instead, as compared to traditional
ethods. However, when evaluated locally, our technique in-

roduces less error in higher saliency regions (e.g., body, face)
nd higher on low saliency ones (e.g., paws, horns), effectively
ompensating decimation errors in less salient regions. As seen

n this figure, using a more localized saliency map (Fig. 13E) will
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Fig. 13. Saliency weighted decimation comparison for the Asian Dragon. Top:
colorized decimation error. Bottom: saliency map. From left to right: no saliency,
Γ = 0.25, Γ = 0.75.

allow producing a mesh with quickly changing tessellation den-
sities, allocating more triangles to sharper features (e.g., scales).
A global map (Fig. 13F) will use more triangles in the area as
a whole, which could be useful for high-quality animations of
e.g., the dragon’s body or face. Further examples can be seen in
the appendices.

We also evaluated our approach with a quad-based deci-
mation algorithm — ZRemesher by ZBrush [34] (we input our
saliency map directly as the Poly Paint input for the ZRemesher
tool, which is used to guide the extent to which decimation is
applied across the mesh). Fig. 14A shows a saliency map produced
by our method for the Asian Dragon model, and 14C presents
he decimation result of ZRemesher when using this map. For
comparison, ∼14B shows the decimation result from ZRemesher
adaptive mode without any saliency map applied. Both models
were reduced to 5% of their original size. Our saliency map helps
the decimation tool to preserve details relevant to shapes such
as the eyes and individual scales. Furthermore, our map enables
more aggressive decimation of less salient features, such as the
cheeks and horns of the dragon. Although they do not preserve as
much detail as the triangle decimation results, quad-meshes are
the preferred format of several artists in the industry. Saliency-
weighted decimation is perhaps more relevant in this case, as it
allows this format to preserve features that would be smoothed
by re-meshing.

Finally, Fig. 15 shows a practical example, rendering a saliency-
aware-decimated mesh using path tracing. Even at very high
compression (100:1) rates, details such as the crack on top of the
lip and toes, marked as high saliency, are still clearly visible in
the compressed render.
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Fig. 14. Decimation Results using a quad mesh. (A) Saliency map for Asian
ragon. (B) 95% decimation without saliency map. (C) 95% decimation with
aliency map. Decimation by ZRemesher.

Fig. 15. Renders of Lucy. Left: After 99% decimation with our saliency map using
a triangle mesh. Right: original with 14 million vertices. Bottom: Used saliency
map and wire-frame output. Our method preserves salient features even under
high compression levels, e.g., upper lip and feet details.

6. Conclusions, limitations and future work

We have presented a novel saliency measure and demon-
strated that it captures local and global salient regions and creases
and is resilient to mesh noise. We have also shown that our
method can process large and dense meshes with distinct shapes
and complexities while being more robust than state-of-the-art
approaches concerning minimizing effects from spurious artifacts
from varying tessellation density.

One limitation of our approach is how well it can be integrated
into an existing production pipeline. While our approach fits well
in a ZBrush-centered process, which is quite common, other
tools for our GUI need to be developed to fit different processes
(e.g., adding painting functionality to our program).

We also need to explore good saliency-weighted decimation
pproaches, to exploit our method to the fullest, specially in the
uad-mesh format. This is because the decimated mesh quality
epends not only on good saliency maps but also on the deci-
ation algorithm. Unlike triangle-based decimation, quad mesh
ecimation remains a challenging topic [1].
In future work, we will examine how saliency values vary

ver time on animated meshes so that we can assign saliency
o their range of movement. Pose-invariant saliency is a topic
hat has been brought up in recent neural-network based work
or shape matching [35], and we wish to use this concept in
esh decimation. Additionally, we will examine alternative data
tructures and GPU implementations to enable our approach to
cale to even larger models. As found in recent research, there
s more considered than just geometry when it comes to visual
aliency. We plan to investigate how these two aspects can com-

liment each other, so an efficient and scalable model of human
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attention can be developed for usage in production environments.
Finally, we plan to study how this measurement can be combined
with other visual information present in the mesh (e.g., textures,
material maps), which may influence the final visual saliency.

Ultimately, our approach is the first to allow saliency detec-
tion to be practically applied to meshes containing millions of
polygons. We believe our technique is so powerful as to guide
a saliency-aware decimation process, meshing seamlessly with
both the standardized tools and workflow of the entertainment
industry.
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Appendix

A.1. Tropical angle of curvature

Motivation: We first recall the curvature of a planar curve and its
discrete approximation. Let γ be a planar curve, which is defined
on a 2D plane (≈ R2). Suppose that this curve is parameterized
with its arc-length s: γ = γ (s). As is well known, we have
|γ ′(s)| = 1 for all s, where we denote γ ′(s) =

dγ (s)
ds . Assume

that we have sample points γi ≡ γ (si) of the curve uniformly
across its arc length such that ∆s = si − si−1 is constant. Then we
an roughly estimate each (absolute) value of κi ≡ κ(si) as being
proportional to the turning angle ∆ϕi, which is defined with the
wo adjacent tangent lines at γi−1 and at γi, which means

κi| = |
d2γ
ds2

(si)| ≈ |
γ ′(si) − γ ′(si−1)

si − si−1
| ≈ |

∆ϕi

∆s
| ≈ |∆ϕi|.

In this paper, we directly extend the above idea to measure
‘‘curviness’’ of a mesh surface M . For a moment we assume
that the surface M is densely and uniformly sampled. While
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Fig. 16. Angular difference of two adjacent tangent planes.

the curvature for a planar curve can be thought of as being
(proportional to) the turning angle mentioned above, we first
consider the angular difference between the two adjacent tangent
planes at the closest sample points (i.e., at the two vertices, each
of which belongs to 1-ring neighborhood of the other vertex), as
shown in Fig. 16 where the tangent planes ta at a and tb at b are
efined with the given normal vectors na and nb, respectively.
hen we refer to the angular difference of the two tangent planes
s ϕ(a, b), which is obtained as cos−1(na · nb). We may assume
hat the angular difference ϕ(a, b) ranges from 0 to π . Unlike a
lanar curve case, our curviness measure at vertex v of M should
onsider the tangent planes near the vertex v. Therefore we
efine the curviness measure, denoted by ϕmax, as the maximum
alue of the difference angle ϕ(a, b), where (a, b) is any pair of
ertices in the 1-ring neighborhood of v:

max(v) := max
a,b∈adj(v)

ϕ(a, b). (A.1.1)

urther, in our formulation and implementation, we introduce the
ollowing geometric measurement θ , instead of ϕmax:

θ (v) = max
a,b∈adj(v)

{
1 − (na · nb)

2

}
. (A.1.2)

s explained in 3.1, Eq. (A.1.2) simply gives normalization of the
arameter space ϕ of [0, π] to the parameter space θ of [0, 1],
ithout going through arc-cosine function. We expect that the
ropical angle of curvature θ (Eq. (1) or (A.1.2)) could give us
ough yet useful information as a curviness measure, like a kind
f analogy with the absolute value of the principal curvatures for
smooth manifold. Usefulness of the new geometric measure θ is

clarified in this paper. We then note that, in practice, we use the
tropical angle of curvature under the assumption that the mesh
vertices are densely but not necessarily uniformly distributed.

Validity: As an alternative of θ in Eq. (1), we could consider:

ψ(v) = max
a∈adj(v)

{
1 − (na · nv)

2

}
. (A.1.3)

owever, as illustrated in Fig. 17, we see that the tropical angle θ
works better than ψ for crease or sharp edge detection. Consider
the vertices marked A and B in Fig. 17. If we consider the vertex
itself and the vertices in its 1-ring neighborhood, then both A
and B exhibit the same maximum difference of normals, and
hence produce the same value of ψ . This means the entire region
appears uniform from a curvature perspective. We wanted to
capture that A was much ‘‘curvier’’ than B, so we came up with θ ,
which looks for the max difference of normals over all adjacent
vertices. This produces a large value for A, and a much smaller
value for B.
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Fig. 17. Sharp edge detection by the tropical angle of curvature. Figure shows
the normal vectors of vertices in the 1 ring neighborhood of A (blue) and B
(green). Shared vectors are drawn in red.

Fig. 18. Effect of adding θ (v) for contour detection on the armadillo model.

Fig. 19. Manually changing β to change the perceived ‘‘contrast’’ of the saliency
map.

Fig. 20. Example saliency maps of a model created from a scan (Thai Statue
from Stanford Repository) where local noise is filtered out by using ϵ = 0.01%
of the mesh area, as seen in the top of the model (A). (B) features a large value
of ϵ in order not to apply this operation.

A.2. Parameters and evaluation results

The execution speed of our algorithm allows us to create a
user interface where these can be easily changed and explored
easily, and at interactive speeds for simpler models. There are
five free variables in our saliency definition, each one affecting
a different part of the calculation. A Summary of their individual
effects can be seen in Table 1. Figs. 18,19, 20 visually exemplify
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Fig. 21. Left to right: globality increasing from 0 to 1 in steps of 0.25. Top row has ϵ = 0 meaning no noise reduction applied. Bottom has ϵ = 0.02.
Table 1
Individual Parameters of our approach. Each parameter independently controls a separate dimension. Given some configurations overlap, we proposed a simplified
version with one parameter.
Par Description Effect

ℓ Number of levels to calculate R(v) Allows less or more visibility of local features in S(v)
r Radius of the topmost level where R(v) will be calculated Controls the size of the most global salient elements that will be detected in the input model,
β Power applied to the calculation of θ (v) Works as a contrast control for R(v), as it affects the binning operation.
α Weight parameter applied to the combination of θ (v) in

S(v)
Increases the perceived saliency of immediately local features such as creases and sharp
edges.

ϵ Noise control parameter of η(v, r) Controls what is the expected level of noise in the data so it can be minimized.
v

0

i
ℓ
s
e
r

some the effects of these parameters. An interactive exploration
can be seen in the accompanying video. As for execution time
tests with the examples in this paper, please see Tables 2 and 3.

While an experienced artist could manually tweak each of
hese parameters, we propose a simplified version for easier
ontrol of the saliency map, estimating two of the parameters,
nd using a hyper-parameter to define the other three.
First, the value ϵ can be set per model based on the estimated

noise of the used 3D scanner. This value may either be provided
by the manufacturer, or procedurally estimated accurately for off-
the-shelf sensors [36,37]. A simple approach to estimating this
noise level is to observe the standard deviation of the depth of
a certain pixel in a sequence of frames observing a static planar
object, parallel to the viewing plane. The user can then set ϵ to
multiple of this. For the use case of a sculpted model, which is
ommon in the entertainment industry, this value will be zero,
nless one desires to smooth out small details from the model.
he effect of this parameter can be seen in Fig. 20
Secondly, we can automatically determine a reasonable value

or β from the observation that the entropy of the global cur-
ature distribution approximates the mean entropy of all neigh-
orhood curvature distributions. We solve for a value of β such
hat the global entropy is equal to some desired max histogram.
e aim for mean saliency equal to the saliency midpoint (white

n our figures), but do not know the saliency range beforehand
s it depends on β . We evaluated the deviation of the mean
aliency from the midpoint (Rµ−Rmid)/(Rmax−Rmin) for various models.
These came from a larger collection than the ones included in
the paper, selected from public repositories, created by various
artists, varying in complexity and content and having medium
to high polygon count, meaning they would be candidates for
decimation. We found that, on average, a target entropy factor
of 0.453 yields 0 deviation with variance <0.1. The only models
hat deviate from this trend are those with a meager polygon
ount (e.g., wolf). The low number of vertices makes skewing the
istribution in any direction due to outliers considerably easier.
or those cases, however, our algorithm runs interactively, and it
ecomes trivial to adjust the value of β manually.
The values for ℓ, r and α are controlled by a global hyper-

parameter (Γ ), which is the only user controlled value. For Γ = 0
we set α = 1, r = 0.0001, and ℓ = 3. A local map will be
mindful of creases (α = 1) and highlight only local structures
74
Table 2
Breakdown of execution time tests for our results in seconds. These times are
included in those reported in Table 3. θ is the time to calculate θ (v) for all
ertices. Layout is the time to prepare our optimized data structure.
Model θ Layout

Wolf 0.001 0.004
Bimba 0.006 0.011
Max Planck 0.011 0.020
Bunny 0.015 0.019
Horse 0.022 0.027
Armadillo 0.112 0.112
Buddha 0.348 0.265
Dragon 1.581 0.834
Asian Dragon 2.704 1.485
Thai Statue 4.751 2.296
Lucy 8.605 6.178

(r = 0.0001). While we could use a single level here, using
multiple levels ensures that while we increase r through Γ , we
still capture the same local details as before.

At the middle of the spectrum (Γ = 0.5), globally salient
regions are identified, but are still less salient than local elements,
which are still detected. For this, we just increase r to halfway the
maximum globality point (for the examples in this paper, r =

.0555 for Γ = 1, so r = 0.2775 for Γ = 0.5 as it interpolates
linearly). Both α and ℓ keep the same values.

Next we show that a global map (Γ = 1) will just roughly
dentify larger regions of saliency in the model (r = 0.0555,

= 1, α = 0). For this, we decrease alpha linearly to zero to
lowly remove the detection of creases which are purely local
lements, we keep increasing the r to look at larger areas, and
emove levels at Γ = 0.67 and Γ = 0.84 to continue removing
the presence of local elements.

Fig. 21 shows the results of varying this parameter. As seen
in the bottom row, the noise filtering has higher effect when
calculating local maps, where noise is widely considered as detail.
When Γ = 0, without noise filtering, lots of noisy regions are
highlighted in white (mid saliency point). These maps however
pick up details that are way too local, being dominated by what
is detected by alpha (the crease detection), being not very useful
for a decimation task.

As we increase the global parameter Γ , the maps become

more expressive and useful for decimating. With Γ = 0.25 we
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Fig. 22. Comparison between decimation with (left) and without (right) saliency weighting for the Lucy (left) and Hindu (right) models simplified at 99%. Both
models have the same vertex count, with the saliency allowing more details to be preserved.
Fig. 23. Comparison between Schelling points [26] probability distribution and our method. Schelling points tend to be discretized around individual areas of interest
hat may have contextual meaning, which is not always ideal for decimation (example, point at the center of the table). On the other hand, our approach works
etter at detecting creases and edges at different scales (e.g. see cup, table and airplane models). We argue that for mesh decimation ours is the best performing
pproach.
Table 3
Full results of execution time tests in hh:mm:ss. Cutoff time is 48 h. [13] could only process the first two meshes, running out of memory (OOM) on the remaining
cases. Our approach is the only one that shows enough scalability for practical use, taking less than three minutes to complete the most complex model (Lucy).
Model #Vertices Spectral CNN LCE Ours ST Ours MT Ours ns = 100 Ours ns25

Wolf 4,344 00:00:40.25 00:00:38.53 00:00:00.34 00:00:00.19 00:00:00.18 00:00:00.01 00:00:00.01
Bimba 15,516 00:26:13.29 00:02:38.59 00:00:01.84 00:00:00.51 00:00:00.40 00:00:00.06 00:00:00.04
M. Planck 27,726 OOM 00:03:34.02 00:00:02.96 00:00:00.81 00:00:00.59 00:00:00.08 00:00:00.07
Bunny 34,834 OOM 00:04:57.18 00:00:04.98 00:00:01.03 00:00:00.69 00:00:00.10 00:00:00.09
Horse 48,485 OOM 00:07:01.02 00:00:07.84 00:00:01.62 00:00:01.00 00:00:00.15 00:00:00.12
Armadillo 172,974 OOM 01:38:13.23 00:02:22.47 00:00:13.59 00:00:03.54 00:00:00.87 00:00:00.73
Buddha 543,671 OOM 13:32:02.25 00:19:12.67 00:03:28.12 00:00:30.29 00:00:03.44 00:00:02.28
Dragon 1,982,636 OOM Timeout 05:14:32.96 00:52:59.20 00:06:47.64 00:00:15.57 00:00:10.46
A. Dragon 3,609,455 OOM Timeout 16:55:39.02 04:25:20.16 00:40:31.54 00:00:29.34 00:00:19.40
T. Statue 4,999,996 OOM Timeout 45:50:46.40 12:44:37.87 01:43:57.17 00:00:56.94 00:00:29.75
Lucy 14,028,019 OOM Timeout Timeout Timeout 31:56:48.50 00:02:58.32 00:01:24.49
are able to differentiate between the edges of individual scales,
and the insides that are less salient. On Γ = 0.5 each individual
scale is now considered a whole salient element. With Γ = 0.75
each piece of the dragon that has detail is grouped with similar
saliency (e.g. whiskers, horns, feet, fangs, tail, etc.). Finally, the
global map (Γ = 1) groups even larger elements (e.g. head, body).

When applied in industry settings, the choice between which
Γ to use will depend on available animations, textures, and other
effects that the model has, which can guide artists in choosing
which elements should keep similar tessellation levels, and what
is the desired level of compression. From our experiments, a
75
map with a wider distribution in the saliency spectrum (Γ =

0.25 in the case depicted in Fig. 21) will provide an optimal
compression/quality trade-off. More details on decimation results
can be seen in Section 5.4.

Finally we show two more evaluation results. The first one
demonstrates effectiveness of our method by comparing the dec-
imated models with and without saliency weighting. In Fig. 22,
top row shows decimated results for Lucy’s model, while bottom
row shows decimated Hindu models. While the results at each
row have the same number of vertices, it is clearly to see that
the result with saliency on the left successfully keeps the details
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o be preserved, compared with the result on the right without
aliency.
The second one is comparison of our method and the Schelling

oints method [26]. Schelling points tend to be discretized around
ndividual areas of interest that may have contextual meaning,
ather than geometric saliency for mesh decimation. While there
s some overlap between both methods to support the theory be-
ind surface-driven saliency capturing visually interesting points,
ur saliency method is better much suited for mesh decimation,
s illustrated in Fig. 23.

ppendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.cag.2023.01.012.
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