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Abstract  

Mild cognitive impairment (MCI) represents a precursor to dementia for many individuals; 

however, some forms of MCI tend to remain stable over time and do not progress to dementia 

(Jicha et al., 2006; Petersen et al., 1999; Visser et al., 2006). In fact, conversion rates vary 

substantially depending on the diagnostic criteria used and the nature of the analytic sample 

and clinical setting (Ganguli et al., 2004; Ritchie, Artero, & Touchon, 2001). To identify 

personalized strategies to prevent or slow the progression of dementia and to support the 

clinical development of novel treatments, we need to develop new approaches for modelling 

disease progression that can differentiate between progressive and non-progressive MCI 

subjects. The aim of this study was to develop a novel prognostic machine learning (ML) 

framework utilising longitudinal information encoded in efficient, cost-effective, and non-

invasive markers to identify MCI subjects that are at risk for developing dementia. Our 

approach was developed using the dataset from the National Alzheimer’s Coordinating 

Center. We built two prognostic models based on the patient data from 3 (n=768) (Model 1) 

and 4 (n=409) (Model 2) assessment visits. A novel hybrid prognostic approach, using 

cognitive trajectory classes, generated through unsupervised learning (Stage 1), as input in 

supervised ML models (Stage 2), was developed and systematically tested. Our unsupervised 

learning approach (Stage 1) involved: (i) the implementation of the longitudinal data 

partitioning method allowing for clustering trajectories based on their shapes; (ii) validation of 

the optimal number of clusters using three different Clustering Validity Indices (CVIs), and (iii) 

application of the fusion-based methods for combining CVIs into the fused normalized CVI 

scores, averaged for each cluster partition to determine the final number of trajectory classes 

for each type of clinical scores. In Stage 2, we built four types of prognostic models based on 

random forest (RF), Support Vector Machines (SVM), logistic regression (LR), and kNN 

ensemble approaches. Classification models incorporating both clinical scores and cognitive 

trajectory classes input showed up to 6.5% higher accuracy than models based only on clinical 

scores (p < 0.05 in all cases). Given the patient data from three time points (Model 1), the 
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highest recorded prediction accuracy was achieved for the ensemble and RF model, i.e., 

85.0% (standard deviation: 3.1%) and 84.6% (4.1%) respectively. Using the patient data from 

four time points (Model 2), the highest accuracy was reported for RF and ensemble models, 

i.e., 87.5% (6.1%) and 86.8% (3.7%) respectively. We showed that the incorporation of the 

output of unsupervised learning significantly improved the performance of supervised ML 

models. Our prognostic framework can be applied to improve recruitment in clinical trials and 

to select early interventions for individuals at high risk of developing dementia.  

 

Keywords: dementia; mild cognitive impairment; machine learning; longitudinal modelling; 

unsupervised learning, prognostic model
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1 Introduction 

The structural and function changes in the brain, associated with changes in neuronal 

structure, loss of synapses, and neuronal dysfunction, become more likely as people age . 

Neurodegenerative diseases, such as Alzheimer's disease and related dementias, accelerate 

cognitive decline, with many people developing cognitive impairment severe enough to affect 

their functional independence and social interaction (Murman, 2015). Worldwide, 

approximately 50 million people live with dementia, and this number is projected to triple by 

2050 (Murman, 2015). Patients diagnosed with mild cognitive impairment (MCI) face a 

substantially higher risk of developing dementia (Prince et al., 2015). MCI is often considered 

a transitional phase between healthy ageing and dementia, with the annual rate of conversion 

of 9.6% (Mitchell & Shiri‐Feshki, 2009). Nevertheless, not all MCI patients progress to 

dementia and some even regain normal cognition. Finding new approaches to differentiate 

between progressive and non-progressive MCI subjects and developing new methodologies 

for modelling disease progression is therefore of paramount importance. 

Traditionally, the severity and changes in cognitive function have been assessed manually by 

clinicians using appropriate guidelines (e.g., NINCDS-ADRDA, DSM-IV, ICD-10). In recent 

years, advances in machine learning (ML) have provided the computational framework that 

has significant potential to revolutionize clinical decision making by leveraging abundant 

patient data and providing risk assessments and recommendations tailored to individual 

patients (Topol, 2019; Yu, Beam, & Kohane, 2018). As such, the data-driven identification of 

disease states has offered unique opportunities for enhancing disease classification based on 

expert knowledge (Yu et al., 2018). In the context of dementia, accurate prediction of future 

dementia-related cognitive decline has important practical applications. In particular, the 

identification of individuals at risk of developing dementia can help healthcare professionals 

make more informed clinical decisions on treatment strategies. It can also support the clinical 

development of novel treatments by creating the opportunity for those at increased risk of 

developing dementia to participate in preventive interventions and clinical trials and be 
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assessed for potential contributors to cognitive impairment (e.g., vitamin deficiency, 

medication-side effects, psychiatric conditions, brain injuries). 

The most common ML approaches used to assist the diagnosis of dementia have been based 

on supervised ML methods that learn the mapping function from the labelled data. This 

includes Random Forest (RF) (Bansal, Chhikara, Khanna, & Gupta, 2018; Bucholc et al., 

2019; Gray et al., 2013; Sarica, Cerasa, & Quattrone, 2017), K-Nearest-Neighbors (KNN) 

(Bucholc et al., 2019; Varatharajan, Manogaran, Priyan, & Sundarasekar, 2018), Logistic 

Regression (LR) (Barnes et al., 2010; Bauer, Cabral, & Killiany, 2018), Naïve Bayes (Bansal 

et al., 2018; Shree & Sheshadri, 2018), Support Vector Machine (SVM) (Bucholc et al., 2019; 

Varatharajan et al., 2018), linear regression (Bauer et al., 2018), and fuzzy classifier systems 

(Stirling, Chen, & Bucholc, 2021). Most practical deep learning dementia applications have 

also been driven by supervised learning (Ding et al., 2019; Jo, Nho, & Saykin, 2019). In 

contrast, unsupervised learning has been rarely applied in dementia context, possibly because 

it involves more complex processing tasks. In unsupervised learning, no priori information 

exists, and the modelling process is based solely on identifying regularities in datasets (Celebi 

& Aydin, 2016). This lack of direction for the learning algorithm in unsupervised learning is in 

fact advantageous, since it overcomes limitations of the supervised feature space definition 

by unbiasedly revealing associations without any human involvement. Some examples of 

utilization of unsupervised ML methods in dementia research can be found in (de Langavant, 

Bayen, & Yaffe, 2018; Escudero, Zajicek, & Ifeachor, 2011). Although unsupervised machine 

learning approaches may be difficult to understand from a clinical perspective, their use does 

not depend on the availability of a prespecified clinical outcome such as, clinical diagnosis 

and hence, can be more easily re-applied using different types of datasets. In addition, when 

combined with supervised ML, unsupervised learning can exploit information of unlabelled 

data to improve the accuracy of supervised models. As such, the unsupervised learning can 

generate labels that can be used for a supervised learning task.  
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In this study, we developed a novel hybrid prognostic framework utilising longitudinal 

information encoded in cognitive scores to identify subjects with mild cognitive impairment 

(MCI) that are at risk for developing dementia. We first allowed for hypothesis-free detection 

of cognitive trajectory classes within the data without being guided by a pre-labelling of 

instances and then, combined this information with the routinely collected cognitive 

assessment scores to predict which MCI individuals are likely to develop dementia and which 

are suffering from non-progressive cognitive impairment. It was hypothesized that 

incorporation of cognitive trajectory classes, generated using unsupervised learning, as 

additional input variables would improve performance metrics of supervised ML models.  

2  Material and methods 

2.1  Participants 

The data used in this study was taken from the National Alzheimer’s Coordinating Center 

Uniform Data Set (NACC-UDS), containing participant characteristics collected in Alzheimer’s 

Disease Research Centers (ADRC) in the period 2005-2018 (Beekly et al., 2004; Beekly et 

al., 2007). The primary purpose of the NACC-UDS is to provide a standard set of assessment 

procedures, collected longitudinally (approximately annually), to describe ADRC participants 

with AD and mild cognitive impairment and compare them to cognitively healthy controls 

(Morris et al. 2006). This longitudinal information is captured during the participants’ initial visit 

and subsequent follow-up visits by trained research personnel, clinicians, and psychometrists. 

Participant recruitment occurs through referrals from neurologists and community outreach. 

The incidence of MCI and AD are determined based on the clinical diagnosis made by a single 

physician or a consensus panel according to each ADRC’s diagnostic protocol; however, each 

ADRC generally adheres to the modified Petersen criteria for establishing MCI diagnoses and 

to the DSM-IV or NINDS-ADRDA guidelines for the clinical diagnosis of AD. The NACC-UDS 

includes demographic information, medical history, family history, medication usage, cognitive 

assessments, neurological exams, and clinical diagnoses (Morris et al., 2006). The authors 
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assert that all procedures contributing to this work complied with the ethical standards of the 

relevant national and institutional committees on human experimentation and with the Helsinki 

Declaration of 1975, as revised in 2008. All procedures involving human subjects were 

approved by the University of Washington Institutional Review Board. Written informed 

consent was obtained from all subjects at each participating ADRC. 

The NACC dataset contained 37,568 unique participants. Overall, the average number of 

visits per participant was 3.4 visits (min = 1, max = 13). Out of 37,568 participants, 12,231 

(32.6%) participants had single visits. The total number of visits for participants with more than 

one assessment was 116,211. Among 25,337 participants with at least 2 visits, 4,718 (18.6%) 

participants had 3 visits, 3,778 (14.9%) participants had 4 visits, 2,732 (10.8%) participants 

had 5 visits, 2,170 (8.6%) participants had 6 visits, and 1,587 (6.3%) participants had 7 visits. 

The remaining participants had the baseline assessment and at least 7 years of follow-up 

evaluations.  

Our prognostic framework was build using easily collected, cost-effective, and non-invasive 

cognitive/functional tests, i.e., Functional Activities Questionnaire (FAQ) measuring social 

functioning and activities of daily living (Pfeffer, Kurosaki, Harrah Jr, Chance, & Filos, 1982); 

Logical Memory IIA Delayed (LOGIMEM) assessing auditory episodic memory for a short story  

(Abikoff et al., 1987); Mini Mental State Examination (MMSE) evaluating several mental 

abilities, including short and long-term memory, attention span, concentration, language and 

communication skills (Cockrell & Folstein, 2002); Digital Span Forward (DIGIF) and Digital 

Span Backward (DIGIB) measuring auditory attention span (Schofield & Ashman, 1986); 

WAIS-R Digit Symbol (WAIS) determining psychomotor speed (Silverstein, 1982), and Boston 

Naming Test (BOSTON) assessing the ability to name objects (Mack, Freed, Williams, & 

Henderson, 1992). All selected assessments capture domains sensitive to cognitive aging and 

the early stages of dementia. After removing patient records with missing values for selected 

input features and including only individuals with MCI diagnosis, two prognostic models were 

developed using patient data with 3 (n = 768) (Model 1) and 4 (n = 409) visits (Model 2), 
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separated by one year. Accordingly, in Model 1, disease prognosis at Year 2 (Y2) was 

determined based on cognitive scores at BL and Year 1 (Y1) and cognitive trajectory classes 

derived using cognitive scores from the BL and Y1 visits (‘cognitive trajectories & cognitive 

scores’ models). In Model 2, disease prognosis at Year 3 (Y3) was determined based on 

cognitive scores at BL, Y1, and Y2 and cognitive trajectory classes established using the BL, 

Y1, and Y2 cognitive data (‘cognitive trajectories & cognitive scores’ models). All participants 

at BL and Y1 in Model 1 and BL, Y1, and Y2 in Model 2 had MCI diagnosis. Among 768 MCI 

participants with the record of 3 visits (Model 1), 112 converted to dementia at Y2. Out of 409 

MCI participants with 4 visits (Model 2), 65 converted to dementia at Y3. Note that after initial 

data cleaning, the sample size of MCI individuals with 5 visits or more (n < 100) was limited 

and insufficient to obtain unbiased performance estimates for prognostic models.  

2.2 Development of prognostic models  

The development of the hybrid prognostic framework comprised two key stages. In Stage 1, 

we grouped longitudinal trajectories for each considered cognitive/functional assessment 

using an unsupervised ML approach. Three distinct strategies for Stage 1 have been 

introduced, (1) the implementation of the longitudinal data partitioning method allowing for 

clustering trajectories based on their shapes; (2) validation of the optimal number of clusters 

using three different Clustering Validity Indices (CVIs), and (3) application of the fusion-based 

methods for combining CVIs into the fused normalized CVI scores, averaged for each cluster 

partition to determine the final number of trajectory classes for each type of clinical scores. 

Such generated trajectory classes, characterizing the similar symptomatic progression of 

subjects (e.g., stable vs. decline), were then fed to Stage 2 as additional input variables when 

building prognostic Models 1 and 2. The performance of these models was later compared to 

the performance of classifiers developed using only cognitive scores (‘cognitive scores’ 

models). The overall procedure for model development is presented in Fig. 1. 
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2.2.1 Stage 1: Cognitive trajectory modelling using unsupervised learning 

Most of partitioning methods applied to the longitudinal data, group together individuals that 

have close trajectories at given time points (e.g., using Euclidean distance) without adjusting 

for their shapes (Bhagwat, Viviano, Voineskos, Chakravarty, & Alzheimer’s Disease 

Neuroimaging Initiative, 2018). In effect, trajectories of identical shapes shifted in time are 

often defined as different and are consequently assigned to different clusters. In the context 

of our study, the disease progression is more important than the moment at which it occurs 

and therefore, we classified the cognitive trajectories according to their shapes (rather than 

classical distances) using the Fréchet distance: 

𝑑(𝐴, 𝐵) = inf max𝛼,𝛽,𝑡 ∈[0,1] (𝑑 (𝐴(𝛼(𝑡)), 𝐵(𝛽(𝑡))))                     [1] 

and the Fréchet mean: 

𝑚(𝐴, 𝐵) =  (𝑑(𝐴(𝛼(𝑡1)),𝐵(𝛽(𝑡1)))2 , 𝑑(𝐴(𝛼(𝑡2)),𝐵(𝛽(𝑡2)))2 , … , 𝑑(𝐴(𝛼(𝑡𝑛)),𝐵(𝛽(𝑡𝑛)))2 )   [2] 

where A, B are trajectories, α(t) and β(t) describe the position on a trajectory at a time point t ∈ [0, 1].  

We identified the optimal number of clusters based on multiple clustering validation metrics, 

namely, Silhouette (Rousseeuw, 1987), Calinski-Harabasz (Caliński & Harabasz, 1974), and 

Dunn (Bezdek & Pal, 1998) cluster validity indices. All selected measures assessed the quality 

of partitioning by taking into account the compactness of individual points in the same cluster 

and their separation in the distinct clusters. Initially, each CVI was calculated for several 

candidate clustering solutions k ∈ Ω, where Ω is the ordered set of candidate cluster numbers. 

The preferred number of clusters was then obtained by finding the value of k that maximized 

the function CVI(k) over all values from Ω.  



10 

Since evidence shows that no single CVI can always outperform others (Kryszczuk & Hurley, 

2010), we implemented the decision-level fusion of multiple CVIs using four score fusion-

based methods presented in (Kryszczuk & Hurley, 2010) and described in Table S1. Before 

calculating the combined score of Silhouette, Calinski-Harabasz, and Dunn CVIs using these 

four strategies, we normalized their scores to a common range using the min-max 

normalization. We then made the final judgment regarding the optimal number of trajectory 

clusters for each cognitive/functional test by averaging the output of the four fusion-based 

methods. The produced trajectory classes were used as input variables (with cognitive scores) 

in a supervised learning task in Stage 2.  

2.2.2 Stage 2: Development of a prognostic model for disease progression using supervised 

learning  

The full dataset was randomly divided into two subsets, namely the model development set 

(90%), used for model training and validation, and the held-out testing set (10%), used to 

provide an unbiased evaluation of the final model (Barber, 2012). We implemented the nested 

validation procedure, with the inner loop serving for model/parameters selection and the outer 

loop assessing the quality of tuned models on the held-out testing set (10 repeats) (Fig. 1). 

Note that Z-score normalization was applied to transform multi-scaled data inputs into a 

common range. Given the model development set, the training partition was used to train the 

model while the validation partition allowed us to fine-tune the model hyperparameters  

(Barber, 2012). The optimal hyperparameter selection was conducted by applying grid search 

with 10-fold cross validation (CV). Table S2 contains the hyper-parameter search spaces and 

a set of optimal hyperparameters used for the best performing Model 1 and Model 2. Since 

evidence shows that predictive models developed using imbalanced datasets tend to generate 

biased and inaccurate results, we applied the Synthetic Minority oversampling technique 

(SMOTE) to oversample the under-represented class labels in the training set (i.e., individuals 

with dementia) prior to model fitting (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). For 

improved generalization performance of predictive models, we also performed feature 
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selection. Specifically, the Random Forest-Recursive Feature Elimination (RF-RFE) with the 

10-fold cross validation (CV) was applied on the model development set. For better 

replicability, the 10-fold CV procedure was repeated 10 times with different partitions of the 

data. We found that a combination of all features achieved the highest performance for both 

prognostic models (i.e., Model 1 based on the patient data from three time points spanned 

over three years and Model 2 based on the patient data from four time points spanned over 

four years) (Fig. S3 and S4) and hence, all input variables were retained for model training. 

We then developed three prognostic models based on RF, SVM, and LR to predict conversion 

to dementia in patients with MCI and tested their performance on the held-out testing set (10 

times). Furthermore, we built an additional kNN ensemble model combining the outputs of 

individual classifiers, as previous studies indicated that ensemble methods may contribute to 

improvements in accuracy and robustness of predictions (Vilalta, Giraud-Carrier, & Brazdil, 

2009). A pairwise statistical test was used to compare the performances of classifiers 

incorporating both ‘cognitive trajectories & cognitive scores’ input with models based only on 

‘cognitive scores’ input. Differences with p < 0.05 were considered statistically significant. 

3 Results 

3.1 Cognitive trajectory modelling  

Results of the four fusion-based strategies used to determine the optimal number of clusters 

for each cognitive/functional assessment in Models 1 and 2 are shown in Fig. S1 and Fig. S2 

respectively. The optimal number of trajectory clusters identified for FAQ (0-30), LOGIMEM 

(0-25), MMSE (0-30), DIGIF (0-12), DIGIB (0-12), and BOSTON scale (0-30) was two. The 

larger score range of WAIS (0-100) scale enabled modelling of disease progression with 

higher specificity and resulted in three distinctive trajectory classes.  

The cognitive trajectories and the derived clusters’ means are shown in Fig. 2 and Fig. 3. 

Table 1 shows the percentage of participants assigned to each cluster. Given Model 1, the 

cluster assignment based on the trajectory-templates yielded two clusters for the majority of 
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cognitive tests, namely FAQ, MMSE, LOGIMEM, DIGIF, DIGIB, BOSTON, with Cluster 1 

subjects having consistently better mean results on cognitive tests than individuals in Cluster 

2. Cluster 2 also exhibited greater rates of decline over the studied period. For WAIS, we 

identified three distinct groups in the sample, with Cluster 3 characterized by the greatest 

decline in cognitive performance over time. In Model 2, the proportion of assigned trajectory 

labels for each test was comparable to Model 1. Again, two distinctive patient groups were 

identified based on FAQ, MMSE, LOGIMEM, DIGIF, DIGIB, BOSTON test results. 

Accordingly, Cluster 1 mean trajectory of cognitive performance appeared relatively stable 

while Cluster 2 subjects showed a pattern of worsening over time. The generated trajectory 

classes were later used as additional input features when building prognostic Models 1 and 2 

for predicting the MCI-to-dementia conversion (‘cognitive trajectories & cognitive scores’ 

models). 

3.2 Development of a prognostic model for disease progression  

To test the effectiveness and robustness of our approach, we applied four different ML 

techniques, namely, RF, SVM, LR, and kNN ensemble. Two prognostic models were 

developed i.e., Model 1 based on the patient data from three time points spanned over three 

years and Model 2 based on the patient data from four time points spanned over four years. 

In Model 1, disease prognosis at Y2 was determined using cognitive scores at BL and Y1 and 

cognitive trajectory classes derived using cognitive scores from BL and Y1 (‘cognitive 

trajectories + cognitive scores’ models). We compared the performance of these models to 

ones developed using only cognitive scores at BL and Y1 (‘cognitive scores’ models). In Model 

2, prognostic predictions at Y3 were established based on cognitive scores at BL, Y1, Y2, and 

cognitive trajectory classes defined using the BL, Y1, and Y2 cognitive data (‘cognitive 

trajectories + cognitive scores’ models). The performance metrics of these models were 

compared to ones derived using only cognitive scores at BL, Y1, and Y2 (‘cognitive scores’ 

models).  



13 

Our analysis showed that all models incorporating cognitive trajectory classes into their design 

performed better than models based purely on cognitive scores (p < 0.05 in all cases). Table 

2 shows the mean (and standard deviation) of all performance metrics calculated on 10 

randomly selected held-out testing sets. Given Model 1 with three time points, prediction 

accuracy of all models including cognitive trajectory classes was 3-4% higher than accuracy 

of models built using only cognitive scores. With combined ‘cognitive trajectories & cognitive 

scores’ input, the ensemble model achieved the best accuracy of 85% (3.1%), followed by 

performance of RF with 84.6% (4.1%) accuracy. Although LR model achieved the lowest 

accuracy of 79.3% (3.4%), it offered the highest prognostic specificity of 72.7% (14.3%). With 

only ‘cognitive scores’ input, performance of all models degraded, with both RF and ensemble 

models providing top accuracy of 81.4%. Again, LR achieved the lowest accuracy (75.9% 

(3.3%)) but highest specificity in distinguishing MCI from dementia cases (74% (15.3%)).  

For Model 2 developed using patient data from four timepoints, performance metrics were 

again consistently higher when the combined ‘cognitive trajectories & cognitive scores’ input 

was used. In addition, models including the fourth time point offered enhanced predictive 

performance when compared to ones based on only three time points (Model 1). With 

combined ‘cognitive trajectories & cognitive scores’ input, the RF model showed the best 

accuracy of 87.5% (6.1%), followed by the ensemble and SVM, with accuracy of 86.8% (3.7%) 

and 86.5% (3.8%) respectively. With only ‘cognitive scores’ input, all models yielded lower 

performance, i.e., accuracy of 81.3% (6.5%) for RF, 84% (4.7%) for the ensemble model, and 

83.8% (5.0%) for SVM. Again, the best specificity was offered by LR, i.e., 74.2% (11.0%) for 

models based on ‘cognitive scores’ input and 81.1% (15.6%) for models including ‘cognitive 

trajectories & cognitive scores’ input. It is worth noting that although the proportion of MCI 

non-converters that were correctly identified by our prognostic framework was high and 

ranged between 84-97%, the specificity of our models, i.e., the ability to correctly identify MCI 

converters, varied hugely between different solutions (with a range of 24-81%).  
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4 Discussion  

In this study, we developed a novel hybrid machine learning framework for the analysis of 

longitudinal data that can be used for the clinical prognosis of dementia in individuals with 

MCI. Our approach utilizes the output of unsupervised learning to improve the classification 

accuracy of supervised models. We assessed the performance of all models in a systematic 

and comprehensive way at various time points during follow-up and showed that exploiting 

information of unlabelled data (Model 1/ 2 incorporating both ‘cognitive trajectories & cognitive 

scores’ input) can deliver significantly stronger predictions compared to models that do not 

use the cognitive trajectory features (Model 1/ 2 incorporating only ‘cognitive scores’ input) (p 

< 0.05 in all cases). Although we did not identify one model that would consistently achieve 

the best performance in all scenarios, we demonstrated that RF and kNN ensemble models 

offered the best accuracy in most cases. Given the Model 1 based on the patient data from 

three assessment visits, the best accuracy was reported for the ensemble model (85.0%), 

followed by RF (84.6%). For Model 2 based on the patient data from four assessment visits, 

the RF model offered the best accuracy (87.5%), followed by the ensemble model (86.8%). 

The LR model achieved the highest specificity i.e., 72.7% in Model 1 and 81.2% in Model 2.  

The effective performance of RF and ensemble models in differentiating between progressive 

and non-progressive MCI subjects have been shown in previous studies (Chen et al., 2012; 

Velazquez & Lee, 2021). Velazquez and Lee (2021) developed the balanced RF model to 

determine which Early Mild Cognitive Impairment patients were at risk of developing 

Alzheimer’s disease (AD) and to identify which clinical features were most relevant for 

conversion prediction. They used the combination of demographic, brain volume, and 

cognitive data and achieved the accuracy of approximately 90%, higher than the accuracy of 

competing SVM, XGBoost, and LR implementations. They also found that neuropsychological 

assessments were the most discriminative features. Chen et al. (2012) utilized the Bayesian 

Network framework with ensemble learning to differentiate between MCI converters and non-
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converters. Their approach was based on the Magnetic Resonance Imaging (MRI) data and 

yielded prediction accuracy of 81%, with sensitivity and specificity of 63% and 89% 

respectively. It is worth highlighting that the majority of presented models were trained using 

data from a single timepoint. In the context of dementia prognosis, input from a single time 

point lacks information regarding temporal changes in clinical status, which is necessary for 

measuring cognitive decline. An example of the ML framework used to analyse the multiple 

time point data was shown in Grassi et al. (2019). Their ensemble approach applied to the 

longitudinal data (socio-demographic, clinical, neuropsychological) achieved the sensitivity of 

77.7%, and specificity of 79.9% for predicting the 3-year conversion to AD in MCI individuals. 

The effective cognitive impairment classification was based only on easily clinically derived 

information. Several other studies focused on the development of models for predicting the 

MCI-to-dementia conversion and models based on the multimodal data approach 

demonstrated higher specificity than our framework (Clark et al., 2014; Guo et al., 2017; 

Minhas, Khanum, Riaz, Alvi, & Khan, 2016; Spasov et al., 2019). For example, Guo et al. 

(2017) reported the specificity of 84.78% and sensitivity of 85.0%, by incorporating both 

cognitive scores and structural MRI data into the model. The combination of neuroimaging 

data and cognitive assessments yielded the sensitivity of 87.5%, and specificity of 92.31% in 

Minhas et al. (2016). Spasov et al. (2019) achieved the sensitivity of 87.5%, and specificity of 

85% by combining the demographic, neuropsychological, structural MRI, and APOe4 data. All 

these models incorporated expensive, labour-intensive, and not readily accessible 

biomarkers, while current general clinical practice relies relatively heavily on cognitive and 

functional assessments. In contrast, our prognostic framework effectively utilizes information 

from widely available, cost-effective, and non-invasive dementia markers and hence, can be 

easily implemented in daily clinical practice. We demonstrated that cognitive/functional tests 

can reliably and accurately provide prediction of the decline of cognition from MCI to dementia, 

in particularly when using the patient data from four time points (accuracy of 87.5%, sensitivity 

of 92.9%, and specificity of 58.3%). 
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Although our framework was developed using only a relatively small set of cognitive/functional 

assessments, it still offers sound and high prognostic performance. The fact it utilizes 

information that is efficient and easily collected and does not depend on procedures that are 

cost-ineffective, invasive, or not commonly available, such as MRI and PET imaging, 

cerebrospinal fluid (CSF) collection, and genetic testing ensures minimal subject burden and 

improved translation to a clinical setting. High predictive power of cognitive/functional 

assessments in the task of identification of individuals at risk of dementia has been shown in 

previous studies (Cui et al., 2011; Gupta & Kahali, 2020). Cui et al. (2011) demonstrated that 

single-modality predictive models based on functional and neuropsychological test 

outperformed those built using MRI (62%) and CSF (60%) biomarkers, yielding accuracy of 

65%. Although an increasing number of studies develops the multimodal approaches for either 

differentiating between stages of dementia severity or identifying potential predictors for the 

decline of cognition from MCI to dementia, claiming their superior performance compared to 

models based only on cognitive/functional assessments, the question about the trade-off 

between performance and cost-effectiveness or efficiency of the proposed solutions is still 

questioned and much debated (Bucholc et al., 2019; Fleisher et al., 2008).  

Apart from achieving effective prognostic performance based only on a small number of 

cognitive/functional tests, the main novelty of our ML framework lies in using the output of the 

rigorously designed unsupervised learning approach as input in a supervised learning task. 

Our analysis showed that classification models including cognitive trajectory classes 

generated through unsupervised learning outperformed models based only on clinical scores 

from multiple visits. To our knowledge, this is the first time that such an approach has been 

utilized for dementia prognosis/diagnosis. In fact, unsupervised learning has been rarely 

applied in dementia context (de Langavant et al., 2018; Escudero et al., 2011; Tosto, Monsell, 

Hawes, Bruno, & Mayeux, 2016). In de Langavant et al. (2018), hierarchical clustering was 

used to determine the likelihood of dementia using the data from population-based surveys. 

Escudero el al. (2011) applied the k-Means clustering to identify individuals with mild cognitive 
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impairment (MCI) that are at higher risk of developing dementia while Tosto et al. (2016) used 

cluster analysis (CA) to model extrapyramidal signs progression in patients with 

AD. Furthermore, few studies investigated the application of latent class analysis (LCA) for 

modelling changes in cognitive function (Sukkar, Katz, Zhang, Raunig, & Wyman, 2012; 

Williams, Storlie, Therneau, Jr, & Hannig, 2020). However, none of these studies attempted 

to use the output labels of unsupervised learning as input in supervised learning models.  

Several limitations warrant mention. First, bias may arise from the degree of accuracy with 

which cognitive measurements were taken. All tests used in dementia are subject to random 

measurement error, meaning that change in scores can occur solely due to random 

fluctuations (Murray et al, 2021). A further issue is bias associated with so-called ‘practice 

effects’ defined as improvements in cognitive test performance due to repeated 

measurements using the same test materials (Jabrayilov, Emons, & Sijtsma, 2016). It has 

been shown that adults with less impaired cognition at baseline may benefit more from practice 

than those who are more impaired at baseline (Salthouse, 2010). Moreover, several studies 

suggested that the accuracy of dementia screening assessments may depend on 

demographic factors including age, gender, education, and ethnicity (Hambleton & Jones, 

1993; Schmand et al., 1995). Another limitation of our study is a relatively short follow-up 

period, limiting more precise modelling of the shape of cognitive trajectories and identifying 

additional clusters with more subtle deterioration. Third, the identification of cognitive trajectory 

classes in our study was based on the assumption that they are homogeneous, discrete 

entities. However, this assumption of within-group homogeneity is not reflected in the 

heterogeneous pathological nature of neurodegenerative diseases. Finally, the validation of 

clustering-derived groups of cognitive trajectories is challenging in the absence of ground 

truth. Therefore, to ensure that our cognitive clusters are biologically meaningful, the external 

validation using independent datasets is essential. Future efforts should further explore 

heterogeneity in disease progression, including the analysis of pre-symptomatic and 

prodromal disease phases (e.g., amnestic MCI and non-amnestic MCI) as well as different 
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dementia types. Given that our procedure led to the performance gain for all considered 

classifiers, it should be further tested on other longitudinal datasets, in particular, those 

available for longer time periods and earlier-stage subjects, to provide additional evidence of 

its accuracy in generalized applications. Furthermore, the application of our methodology to 

neuroimaging data may help find different patterns of brain atrophy that can be further grouped 

and used as an additional input when building prognostic classifiers. We also intend to test 

our framework using the combined cognitive/functional test data and biomarker input, such as 

brain imaging, to assess the potential prediction gains offered by incorporating additional 

information. 

5 Conclusion 

We developed a novel hybrid prognostic framework utilising longitudinal information encoded 

in efficient, cost-effective, and non-invasive markers to identify subjects with MCI that are at 

risk for developing dementia. The main novelty of our approach lies in using the output of the 

rigorously designed unsupervised learning approach as input in supervised ML models. We 

assessed the performance of our framework in a systematic and comprehensive way for 

different number of assessment visits and showed that exploiting information generated 

through unsupervised learning can deliver stronger predictions in a supervised learning task. 

As the high predictive performance of our prognostic ML-based framework is further confirmed 

using different longitudinal datasets, it could be incorporated into the clinical decision support 

system to automate the care pathway for dementia. 
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Figures  
 
Fig. 1. Overview of the model development procedure. 

 

 

Fig. 2. The cognitive trajectories and the clusters’ means for each considered 

cognitive/functional assessment in Model 1. Model 1 was based on the patient data from three 

time points spanned over three years, with trajectory classes derived using clinical scores from 

baseline (BL) and Year 1 (Y1) visits. 

Fig. 3. The cognitive trajectories and the clusters’ means for each considered 

cognitive/functional assessment in Model 2. Model 2 was based on the patient data from four 

time points spanned over four years, with trajectory classes derived using clinical scores from 

baseline (BL), Year 1 (Y1), and Year 2 (Y2) visits.
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Table 1. Number (percentage) of individuals identified in each data cluster. 
 

 Model 1 Model 2 

 Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 

FAQ 607 (79%) 161 (21%) - 288 (70%) 121 (30%) - 

MMSE 568 (74%) 200 (26%) - 265 (65%) 144 (35%) - 

LOGIMEM 404 (52%) 364 (48%) - 234 (57%) 175 (43%) - 

DIGIF 453 (59%) 315 (41%) - 265 (65%) 144 (35%) - 

DIGIB 474 (62%) 294 (38%) - 230 (56%) 179 (44%) - 

BOSTON 630 (82%) 138 (18%) - 316 (77%) 93 (23%) - 

WAIS 345 (45%) 247 (32%) 176 (23%) 207 (50%) 109 (27%) 93 (23%) 
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Table 2. Model performance measures 

 

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

             Model 1 (based on 3 time points) 

Cognitive trajectories + cognitive scores  

Ensemble 85.0 (3.1) 95.4 (1.8) 24.7 (12.0) 60.1 (5.4) 

RF 84.6 (4.1) 91.4 (3.2) 47.0 (13.6) 69.2 (6.7) 

SVM 84.1 (3.1) 94.5 (2.3) 24.1 (11.0) 59.3 (4.9) 

LR 79.3 (3.4) 81.2 (4.4) 72.7 (14.3) 77.0 (6.0) 

Cognitive scores  

Ensemble 81.4 (4.2) 91.8 (3.7) 26.3 (12.6) 59.1 (7.3) 

RF 81.4 (3.4) 88.4 (4.7) 45.8 (15.0) 67.1 (6.7) 

SVM 80.7 (4.9) 90.3 (4.4) 29.3 (14.8) 59.8 (8.1) 

LR 75.9 (3.3) 76.1 (4.6) 74.0 (15.3) 75.0 (6.5) 

               Model 2 (based on 4 time points) 

Cognitive trajectories + cognitive scores  

Ensemble 86.8 (3.7) 96.5 (2.2) 29.4 (13.7) 63.0 (6.3) 

RF 87.5 (6.1) 92.9 (4.6) 58.3 (19.1) 75.6 (10.3) 

SVM 86.5 (3.8) 96.2 (2.0) 29.4 (13.7) 62.8 (6.4) 

LR 83.0 (6.0) 83.8 (7.1) 81.1 (15.6) 82.4 (7.8) 

Cognitive scores 

Ensemble 84.0 (4.7) 95.5 (3.0) 26.9 (16.0) 61.2 (8.2) 

RF 81.3 (6.5) 88.9 (5.7) 43.7 (23.5) 66.3 (12.2) 

SVM 83.8 (5.0) 95.7 (3.0) 24.2 (12.8) 60.0 (6.7) 

LR 81.8 (5.3) 83.5 (6.4) 74.2 (11.0) 78.8 (5.9) 

Abbreviation: RF, Random Forest; SVM, Support Vector Machine; LR, Logistic Regression; AUC: Area Under the Receiver Operating Characteristic (ROC) curve. Standard 

deviations are shown in brackets. 


