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Abstract: Land use and land cover (LULC) change is one of the clearest representations of the global
environmental change phenomenon at various spatial and temporal scales. Chile is worldwide
recognized to have areas dedicated to non-native forest plantations that specifically in coastal range
show high environmental and economic deterioration, questioning the sustainability of the forestry
industry. Currently, there are no studies in Chile that reveal the real effects of the LULC change on the
water balance at basin or sub-basin scales associated with future scenarios, which might contribute to
territorial decision-making and reveal the real magnitude of the effects of these dynamics. In this
study, in order to study LULC dynamics in a coastal basin in South-Central Chile, we assessed and
analyzed the effects of future LULC change scenarios on the hydrological processes by generating
future synthetic land cover maps from Landsat (Landsat 5 TM and Landsat 8 OLI) image datasets.
The hydrological model Soil Water Assessment Tool (SWAT) was calibrated and validated, using
hydroclimatic time series, to simulate discharges and other hydrological components over those
future LULC scenarios. The LULC future scenarios were projected using combined Markov chain
analysis (CA–Markov) and cellular automata algorithms for the near (2025), middle (2035) and far
(2045) future. The results revealed that the effects on the different components of the water balance of
the basin are not as significant except in the soil water transfer in percolation (increase 72.4%) and
groundwater flow (increase 72.5%). This trend was especially observed in sub-basins with non-native
forest plantations that dominated land cover in the year 2035, in which an increase of 43.6% in
percolation and groundwater flows resulted in increased aquifer recharge and water storage, mainly
offset by a decrease of 27% in the evapotranspiration. This work demonstrates the importance of
evaluating the impacts of the dynamics of LULC on the hydrological response of a coastal basin, and
also on how the land use governance and policy are closely linked to that of water resources.

Keywords: LULC changes; hydrological modeling SWAT; LULC future scenarios; water balance

1. Introduction

Land use and land cover (LULC) change is one of the clearest representations of the
global environmental change phenomenon that occurs at various spatial and temporal
scales. Such changes have been responsible for the variation in the hydrological response
at a watershed scale, modifying the flow regime and accelerating soil erosion [1,2]. LULC
changes have become one of the most studied topics in the Earth Sciences community,
because human activities are the main cause of LULC changes (e.g., agricultural expansion,
logging and infrastructure construction) and the impacts of such changes are directly
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related to deforestation and fires [3]. The motivations for these anthropic activities can
be summarized as the exploitation of natural resources to fulfill immediate human needs,
which results in the degradation of ecosystems [4].

The strong relationship between climate, LULC and hydrology have contributed to the
concern for the basic characteristics and planet processes (e.g., soil productivity, biodiversity
conservation, aridity and drought, desertification, soil degradation, hydrological processes
and climate change [5]). The human use and management of the land cover can modify
or disrupt the hydrological processes; for example, changes to the canopy interception,
soil infiltration and aquifer recharge, runoff generation, water yields, evapotranspiration
rates, flood frequency, concentrations of transported substances (sediments, nutrients and
pesticides), snowmelt and accumulation [6].

Globally, several studies have been conducted to assess the impacts of LULC change
on hydrology at the watershed scale [7–12], which have had different results depending
on the local climate and the territory characteristics (relief, aspect, soil type, geology) in
the respective study areas. According to [13], most of the plantations in the world are
monocultures composed of species such as Eucalyptus, Pinus, Acacia, Tectona, Picea, Pseu-
dotsuga, Swietenia and Gmelina. Many authors [14–16] have criticized monoculture tree
plantations because of negative social and environmental impacts (e.g., loss of productivity
and soil fertility, increasing fire risk, alteration of the hydrological cycle and increasing risk
of promoting pests), despite their economic benefits.

According to CONAF, the decrease and deterioration of native forests is accelerating
in Chile. In fact, during the last two or three decades, between 60,000 to 71,000 hectares
of native forest and therefore biodiversity have been lost annually [17]. Among the major
causes of the reduction of native forest areas are the substitution by scrublands, non-
native forest plantations and agricultural lands, fires, annual degradation by livestock and
selective felling [18].

At the regional scale in South-Central Chile, coastal rural areas show high environ-
mental and economic deterioration, headed by a process of natural resource degradation,
stemming from productive activities [19]. In addition, problems related to current and
future water resources, such as increased frequency in flooding and channel morphology
degradation (sediments mining, impoundment, channelization), among others [19,20],
have been detected in the aforementioned areas. These environmental effects translate
into high costs for the state and a deterioration in the quality and standard of living of the
population [21].

Aguayo et al. [2], among others [22–24], have described the changes in LULC in the
context of the non-native forest expansion that has affected mainly the South-Central Zone
of Chile in recent decades. Other studies have focused on the effects of LULC changes in
particular species, such as Pinus radiata, on the water balance and the amount of water
produced [25–27]. Currently, there are no studies in Chile that have revealed the real
effects of the dynamics of LULC on the water balance at basin and sub-basin scales or
studies that have considered future scenarios, all of which could contribute to territorial
decision-making and reveal the real magnitude of the effects of these dynamics.

Despite significant efforts in this regard, some questions remain unanswered. One of
the most critical gaps in the literature is related to the link between LULC changes trends
(future scenarios) and the effects on the different hydrological components through different
spatial scales (basin and sub-basin scales) in basins with a strong expansion of non-native
forest plantations. Considering the latter, the following open questions could be addressed:
(i) Is it possible that the effects of LULC changes on the hydrological components can be
detected or partially masked when the entire basin is considered? (ii) What could be the
future trend in the territory of a basin that has had a dominant land use of accelerated
expansion in the past? Moreover, (iii) if the dynamics of LULC changes decelerate, could the
effects on the hydrological balance of a basin also be stabilized? The above open questions
motivate the main goal of this paper, which is to assess and analyze the effects of LULC
changes, considering futures scenarios, on the hydrological processes in a costal basin
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in South-Central Chile. The rest of the paper is organized as follows: Section 2 presents
the methodology used (case study information, hydrological model and their calibration
and validation, and the model to project the future LULC). Section 3 shows the results,
highlighting the change in the different components of the hydrological balance due to
future land use. Section 4 presents the discussion of the results. Conclusions are provided
at the end.

2. Materials and Methods

This section is composed of four subsections. The first subsection is Section 2.1.
Study site, where the basin studied is presented. The second subsection is Section 2.2.
Satellite image processing and classification of land uses, where the selection criteria of
the images, their treatment and the classification method for the determination of the
LULC are indicated. The third subsection is Section 2.3. Hydrological Model, where the
performance of the model used to analyze changes in the components of the water balance,
including hydroclimatic and land data sources, is described. In the same subsection, the
selection process of the calibration parameters of the hydrological model was made is
described; as well, the selected values for these parameters and the adjustment indicators
for hydrological model are presented. Finally, the Section 2.4. Projection of future land use
scenarios subsection provides a description of the computational tools used in the LULC
projections, which are used as inputs in the hydrological model to assess the effects of
LULC on the components of the water balance.

2.1. Study Site

Chile is one of the first ten countries in the world, and the fifth in the Americas, to
have areas dedicated to non-native forest plantations [28]. The El Maule, Ñuble, Biobío and
La Araucanía regions represent over 84% (surface equivalent to 2.35 mil. ha) of the current
non-native forest plantations in the country, and it is composed mainly of Pinus radiata
and Eucalyptus globulus [29]. This is in part because of the enactment of the Forest Law
of 1931, which expresses the state’s interest of promoting reforestation for erosion control,
and the Law Decree 701 of 1974, which promotes a rapid increase in non-native forest
plantations [2], resulting in the reduction of native forest, natural lands and agricultural
lands. One of the areas with the largest number of non-native forest plantations in Chile is
the Coastal Mountain Range.

The study site corresponds to the Andalién River Basin, located in the Coastal Moun-
tain Range of the Biobío Region, between 36◦42′ to 36◦56′ S and 72◦36′ to 73◦04′W (Figure 1).
The basin has a surface of 780 km2 and, according to the Köppen classification, the basin
has a Mediterranean climate with oceanic influence (Csb) and a pluvial regime [30]. It has
an average temperature of 13 ◦C and four cold months (May–August), where 70% of the
annual precipitation is concentrated, ranging between 1200 and 1400 mm [31].

The Csb climate favored the primary occupation of the territory and the intensive use
of natural resources, since its native forests have been used from the middle of the 20th
century to the present [32]. The Andalién River Basin is one of the most environmentally
degraded areas of the region, mainly because of the LULC change [32]. Non-native forest
plantations (exotic) and native and mixed forest (which cover 46.0% and 11.8%, respectively)
are the main LULC present in the basin as depicted in Figure 1 [31,33]. The Andalién River
Basin covers the 23% of the province of Concepción that includes the communes of Penco,
Florida, and the city of Concepción [31], with 223,574 inhabitants [33].



Sustainability 2022, 14, 16363 4 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 
 4 of 22 
 

 

plantations (exotic) and native and mixed forest (which cover 46.0% and 11.8%, respec-
tively) are the main LULC present in the basin as depicted in Figure 1 [31,33]. The Andal-
ién River Basin covers the 23% of the province of Concepción that includes the communes 
of Penco, Florida, and the city of Concepción [31], with 223,574 inhabitants [33]. 

 
Figure 1. Location of the Andalién River Basin and LULC modified from CONAF [34]. 

2.2. Satellite Image Processing and Classification of Land Uses 
Landsat images of 30 m resolution for the period 2003–2016 were used to analyze 

the land use dynamics in the basin (Table 1). All images were downloaded from the 
United States Geological Survey (USGS) database [35]. These classified images were used 
as input data in the hydrological model, as described in later sections. 

Table 1. Satellite images with their acquisition date and resolution, used in the hydrological 
model. 

Satellite Sensor Acquisition Date  

Landsat 5 TM 

20 December 2003 
22 February 2004 
24 February 2005 
26 January 2006 
29 January 2007 
16 January 2008 

8 April 2009 
26 March 2010 
29 March 2011 

Landsat 8 OLI 
9 August 2013 

12 August 2014 
31 August 2015 

Figure 1. Location of the Andalién River Basin and LULC modified from CONAF [34].

2.2. Satellite Image Processing and Classification of Land Uses

Landsat images of 30 m resolution for the period 2003–2016 were used to analyze the
land use dynamics in the basin (Table 1). All images were downloaded from the United
States Geological Survey (USGS) database [35]. These classified images were used as input
data in the hydrological model, as described in later sections.

Table 1. Satellite images with their acquisition date and resolution, used in the hydrological model.

Satellite Sensor Acquisition Date

Landsat 5 TM

20 December 2003
22 February 2004
24 February 2005
26 January 2006
29 January 2007
16 January 2008

8 April 2009
26 March 2010
29 March 2011

Landsat 8 OLI

9 August 2013
12 August 2014
31 August 2015

18 September 2016

Only Landsat images with less than 10% cloud cover were selected. Next, the at-
mospheric and radiometric corrections were applied using the advanced FLAASH (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module available in the ENVI
5.3 software. The advance FLAASH module corrects wavelengths in the visible through
near-infrared and shortwave infrared ranges, incorporating the radiation transfer code
MODTRAN4 [36]. These corrections to adapt the raw pixel values were made possible
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because of the influence generated by the atmosphere during data acquisition and the
potential sensor calibration failures caused by radiance [37].

For LULC classification of Landsat images, an interactive supervised classification
algorithm was used. The algorithm is available in ArcGIS software version 10.4. [38,39].
This procedure was performed by creating training polygons extracted from two previous
LULC classifications made by the National Forestry Corporation (CONAF) for the years
2008 and 2015 [34,40,41]. The training polygons created using the CONAF LULC 2008 were
used to classify the set of Landsat images for the period 2003–2011, while the training
polygons created using the CONAF LULC 2015 were used to classify the set of Landsat
satellite images for the period 2013–2016. The LULC classifications obtained through the
Landsat images were complemented by the data provided by the LULC maps developed
by Hansen [42]. Determining the accuracy of the classified Landsat images was performed
using a confusion matrix to compare the concordance between a set of random sampling
points in the classified images with control areas where the surfaces of LULC are known.

The results of LULC classification using the aforementioned methodology were re-
grouped into nine categories. As will be explained later, the hydrological modeling was
performed using the model Soil and Water Assessment Tool (SWAT) [43]; therefore, these
nine LULC were associated with the land use classes in the SWAT database, as shown in
Table 2.

Table 2. LULC classes and SWAT codes.

Land Use Classes Code in SWAT

Native and Mixed Forest FRST
Adult Plantation (non-native forest) FRSE
Young Plantation (non-native forest) RNGB

Agricultural Coverage AGRL
Urban and Industrial zones UIDU

Thickets and Prairie RNGE
Bare soil lands BARR

Wetlands WETN
Rivers and Streams WATR

2.3. Hydrological Model

In this study, the Soil and Water Assessment Tool (SWAT) model was used [43], which
has been applied globally to assess the impacts of LULC change [1,44]. Its multiple functions
allow us to obtain valued information for each of the components of the water balance.

The SWAT model is a semi-distributed model and discretizes a basin into multiple sub-
basins that are—at the same time—discretized into hydrological response units (HRUs).
HRUs represent areas grouped using three land variables: (i) soil type, (ii) LULC and
(iii) slope class within a sub-basin [5]. In the SWAT model it is assumed that each HRU
responds similarly to the weather input (precipitation and temperature). The hydrological
cycle simulated by SWAT is based on a hydrological balance that considers the different
processes in each HRU.

The meteorological data input corresponds to the minimum and maximum daily
temperatures and precipitation. The modeling period considered in this study ranges from
1994 to 2016, with data obtained from the meteorological station called Río Andalien camino
a Penco (Figure 1). The stream flow data was obtained at the gauge station located at the
same place (both stations share the same name) and both stations are controlled by the
General Water Directorate (DGA). A digital elevation model (DEM) with 30 m resolution
was used, and it was obtained from the Alaska Satellite Facility (ASF) database [45]. This
DEM allowed for the basin delineation and river network generation and extraction. The
SWAT model also required soil types information, which was obtained from the Natural
Resources Information Center [46], and LULC information, which was obtained from the
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classification generated from satellite images for the period 2003–2016 (presented in the
Section 2.2).

A sensitivity analysis based on a review of previous research performed in similar
basins [47–53] was performed in this study in order to identify the more relevant calibration
parameters in SWAT. Such calibration parameters have the greatest influence on simulated
hydrological processes, particularly on the stream flow results. The values of the parameters
were verified using the value ranges according to [54–56].

The modeling simulation period was performed between 1 January 1994 and 31 December
2016, with a warm-up period of nine years from 1994 to 2002, a calibration period of five
years from 2003 to 2007 and a validation period of nine years from 2008 to 2016.

The performance of the SWAT model was evaluated through a set of fit indicators,
and the model results were compared with observed discharge data from the stream gauge
station (Figure 1), comparing observed and simulated stream flow time series.

According to [57], to evaluate the hydrological model performance using quantitative
fit indicators, it is necessary to consider at least the coefficient of determination (R2), the
Nash–Sutcliffe efficiency (NSE) and the percentage of bias (PBIAS). Additionally, the Kling–
Gupta efficiency (KGE) was incorporated, which corresponds to a decomposition of the
NSE function [58]. To classify the performance of the SWAT model applied in the Andalién
River Basin, the criterion proposed by Kouchi et al. [59] was used.

2.4. Projection of Future Land Use Scenarios

Future projections of LULC can be modeled through a trend analysis based on past
changes and thus estimate the probabilities of changes based on a group of explanatory
variables [60]. To project future LULC, the IDRISI Selva GIS software [58] was used. IDRISI
Selva combined Markov chain analysis (CA–Markov) and cellular automata algorithms that
allow for LULC projections [56,61]. Recent research [62–65] has demonstrated the efficiency
of using the CA–Markov model to quantify the effects of LULC change on the hydrological
cycle. The CA–Markov model uses a matrix of transition probabilities deduced from the
Bayes’ equation in order to predict trends in LULC, which is calculated as follows:

S(t+1) = Pij × S(t) (1)

where S(t) and S(t+1) are the states of the system at times t and t + 1 respectively, and Pij is
the transition probability matrix, which is obtained from the following equation [61]:

P =
∥∥Pij

∥∥ =

∥∥∥∥∥∥∥∥
P11 P12 . . . P1n
P21 P22 . . . P2n
. . . . . . . . . . . .
Pn1 Pn2 . . . Pnn

∥∥∥∥∥∥∥∥ (2)

With 0 ≤ Pij ≤ 1, where P is the Markov transition probability matrix, Pij is the
probability of transformation from the current state (i) to another state (j) and Pnn is the
probability of states at any moment.

These transition models are very useful when the factors that cause changes in the
landscape (e.g., socio-economic variables) are difficult to represent analytically (such as
mechanical processes) [57]. For the LULC projections in the Andalién River Basin, three
LULC classifications were used: these correspond to the years 2008, 2015 and 2020. The
first two LULC were classified by CONAF while the LULC for the year 2020 was obtained
through the interactive supervised classification algorithm using Landsat imagery as
mentioned above. The LULC for 2008 and 2015 were used as reference LULC (defining
2015 as the base year) to predict future LULC maps in decadal increments. The projected
years were 2025 (near future), 2035 (middle future) and 2045 (far future). The classification
of LULC 2020 (using Landsat) was considered to be the observed LULC 2020 and was
compared with the projected LULC 2020 (using the CA–Markov algorithm) to evaluate the
performance of the CA–Markov projection model. The CA–Markov model performance in
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the LULC projection maps was evaluated using the Kappa statistical indicator, calculated
according to Equation (3) [66,67]:

Kappa =
Po − PC
1− PC

(3)

where Po is the quantity of cells classified correctly and Pc is the hypothetical probability of
chance agreement between the observed LULC 2020 map (from Landsat classification) and
the projected LULC 2020 map. The Kappa value was classified according to Aliani et al. [65]
as can be seen in Table 3:

Table 3. Kappa coefficients and degree of agreement.

Kappa Coefficient Degree of Agreement

<0.2 Weak
0.21–0.4 Acceptable
0.41–0.6 Moderate
0.61–0.8 Good
0.81–1.0 Very good

Finally, to evaluate the effects of LULC change on the water balance, hydrological
simulations were performed with the calibrated SWAT model for the three future LULC
scenarios (near 2025, middle 2035 and far 2045). For the three future LULC scenarios, the
same meteorological input time series (daily precipitation and maximum and minimum
temperature) from the period 1994–2015 was used. Therefore, the results obtained from the
components of the hydrological balance were produced exclusively because of the LULC
modifications. The components of the hydrological balance considered were evapotran-
spiration (ET), percolation (PERC), surface runoff (SURQ), lateral subsurface runoff (LAT),
groundwater (GW) and water yield (WYLD).

The overall modeling framework (Sections 2.2–2.4) to evaluate the effects of LULC
change on the water balance in the Andalién River Basin is based on the three future LULC
scenarios is shown in Figure 2.
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3. Results
3.1. Land Use Changes in the Base Years 2008 and 2015

In comparing the LULC between the reference years 2008 and 2015 (Figure 3), the
average percentage change was 3.6%. When analyzing the most representative land cover
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classes of the basin in terms of surface (FRST, FRSE, RNGB, AGRL and RNGE), we found
that the maximum percentage of change was 7.1% for the LULC class of thickets and prairie
(RNGE). The LULC that present a greater surface for both reference years are young and
adult non-native forest plantations (FRSE and RNGB), native and mixed forest (FRST)
and agriculture (AGRL). In 2008, non-native adult forest plantations occupied 46.1% of
the surface of the basin, followed by native and mixed forest with 16.5% and finally
agriculture with 16.0%. In 2015, a 3.3% decrease in non-native adult forest plantations was
observed (possibly due to forest harvesting), which together with non-native young forest
plantations corresponded to 56.2% of the basin, showing a clear dominance of non-native
forest plantations. On the other hand, agriculture reduced its area by 5.9%, while thickets
and prairie increased significantly from 6.8% in 2008 to 13.9% in 2015 (all these data are
presented in Supplementary Material S1).
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3.2. Warm-Up, Calibration and Validation of the SWAT Hydrological Model

For the three hydrological modeling phases of warm-up, calibration and validation, a
time series of 22 years of meteorological data was used, ranging from 1994 to 2016. The first
phase was a warm-up of nine years (1994–2002), followed by a five-year calibration period
from 2003 to 2007, and finally a nine-year validation period (2008–2016). After completing
the sensitivity analysis of the calibration parameters, and based on an extensive review of
the literature [47–51], eighteen parameters were selected. These parameters were adjusted
using the stream gauge station Andalien Camino a Penco. The calibration of the parameters
was performed for each of the five years (2003–2007); this information is presented in
Supplementary Material S2. Finally, Table 4 shows the results of the hydrological model
performance according to the Moriasi criterion [57], using four adjustment indicators for
calibration and validation. The results of the hydrological simulations were classified
as good (G) and very good (VG). This means that simulated and observed stream flow
discharges are numerically close or very close. While the PBIAS values corresponding to
−1.18 and −5.67 for calibration and validation show that the model performance is very
good and suggest that the stream flows simulated are above the estimated bias.

Figure 4a shows the hyetograph and hydrograph (observed and simulated) for the
period 2003–2016, allowing comparison of the results of the model for maximum and
minimum stream flow discharge. This figure shows that the model is capable of reproducing
base flows better than maximum flows (peak discharges). This fact can be verified in
Figure 4b, where there is a greater dispersion for the peak flows.
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Table 4. Hydrological model performance.

Adjustment Indicator Calibration (2003–2007) Validation (2008–2016)

R2 0.91 VG 0.75 G
NSE 0.91 VG 0.73 G

PBIAS −1.18 VG −5.67 VG
KGE 0.94 VG 0.85 G

With VG: Very Good; G: Good; S: Satisfactory; U: Unsatisfactory adjustment.
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3.3. Analysis of LULC Projections and Validation

The transition probability matrix, obtained from the LULC reference maps (years
2008 and 2015), is shown in Table 5. The first column with the LULC classes corresponds to
the LULC for the year 2015, and the first row represents the expected LULC for the year
2025. The elements of the matrix are the probabilities associated with the expected changes.
The red color represents a higher probability of transition and the green color represents a
lower probability for the ten-year time frame (2015–2025). The most probable change in
coverage corresponds to the transition from native and mixed forest (FRST) to non-native
adult forest plantation (FRSE). Additionally, the non-native young forest plantation (RNGB)
in 2015 will pass to the status of non-native adult forest plantation in 2025. The probabilities
of these transitions occurring are 40.9% and 51.2%, respectively. On the other hand, it was
confirmed that there is a 61.7% probability that the industrial and urban zone will remain
the same. Finally, there is a 30.4% probability that the bare soil land will become thickets
and prairie.

Table 5. Transition probability matrix 2015–2025.

Probability of Change in 2025:

LULC Classes FRST FRSE RNGB AGRL UIDU RNGE BARR WETN WATR

LULC in 2015

FRST 0.292 0.409 0.098 0.041 0.002 0.155 0.002 0.002 0.001
FRSE 0.163 0.428 0.190 0.051 0.006 0.154 0.004 0.003 0.002

RNGB 0.130 0.512 0.158 0.060 0.002 0.131 0.004 0.004 0.001
AGRL 0.130 0.293 0.096 0.247 0.007 0.214 0.001 0.012 0.002
UIDU 0.053 0.133 0.020 0.063 0.617 0.082 0.009 0.002 0.023
RNGE 0.223 0.365 0.098 0.074 0.015 0.213 0.002 0.009 0.002
BARR 0.150 0.283 0.081 0.121 0.019 0.304 0.001 0.026 0.014
WETN 0.123 0.317 0.081 0.140 0.010 0.267 0.002 0.039 0.021
WATR 0.031 0.204 0.024 0.036 0.336 0.183 0.002 0.008 0.177
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The CA–Markov model projected the changes in LULC shown in Table 6. The result
of the CA–Markov model shows that for the year 2025 (near future), there will be an
increase of 10.6 km2 for native and mixed forest (FRST) and 18.6 km2 for thickets and
prairie (RNGE), corresponding to 1.4% and 2.5% of the basin, respectively. Additionally,
the coverage classes non-native adult forest plantation (FRSE) and agricultural (AGRL) will
decrease by 16.4 km2 and 20.0 km2; this is 2.2% and 2.7% of the basin, respectively.

Table 6. LULC projected for the years 2025, 2035 and 2045.

LULC Classes 2008 (km2) 2015 (km2)
Future Scenarios

2025 (km2) 2035 (km2) 2045 (km2)

FRST 124.3 126.2 136.8 141.0 142.1
FRSE 346.3 321.4 305.0 305.9 306.0

RNGB 89.7 101.2 107.7 105.4 104.8
AGRL 120.5 75.7 55.7 53.1 52.1
UIDU 16.5 15.9 15.0 15.7 16.4
RNGE 51.4 105.1 123.7 123.3 122.7
BARR 0.9 1.9 2.2 2.1 2.1
WETN 1.7 3.0 3.6 3.5 3.4
WATR 0.6 1.2 1.7 1.8 1.7

In the following periods, these changes will decrease, reaching a stabilization of LULC
for a 30-year horizon from the base year 2015. In the period 2025–2035, the average changes
are small in comparison with the previous decadal period, presenting an increase of 4.2 km2

in FRST and a decrease in agricultural (AGRL) and non-native young forest plantation
(RNGB) classes of 2.6 km2 and 2.3 km2, respectively.

Finally, this stabilization will be consolidated with the following changes for the
period 2035–2045: an increase of 1.1 km2 in the native and mixed forest (FRST), while
for the agriculture (AGRL) and non-native young forest plantation (RNGB) there will
be a reduction of 1 km2 and 0.6 km2, respectively. These changes are negligible and
can be considered less than the error associated with the LULC projections by the CA–
Markov model.

The spatial distribution of LULC projected in the Andalién River Basin from 2025 to
2045 is shown in Figure 5. From this figure, agriculture (AGRL) appears to be decreasing in
the upper part of the basin, being mainly replaced by non-native young forest plantation
(RNGB) and thickets and prairie (RNGE).
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The performance of the CA–Markov model was evaluated by comparing the pro-
jected LULC for 2020 with the LULC classified (using a Landsat image) for the same year.
For this evaluation, the validate tool in the IDRISI Selva software was used, obtaining a
Kappa = 0.67. In Figure 6, the surface of each of the observed and projected LULC classes
for the year 2020 were compared, with no category having a relative error greater than 10%.
Therefore, the LULC projections made using the CA–Markov model have a good precision
according to the Landis and Koch criterion [68]. This means that the LULC projections have
an accuracy sufficient to be used as input data for the hydrological model. Consequently,
the changes in water amounts in the different components of the hydrological balance, due
to projected LULC, can be determined.
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Figure 6. Comparison of LULC observed (Landsat classification) and projected (using CA–Markov),
both for the year 2020.

3.4. Hydrological Responses of the Basin and Sub-Basins to the LULC Change Projections

Impacts of land use change on the water balance at basin scale.
The hydrological responses of the Andalién River Basin due to changes in LULC were

evaluated using three projected LULC scenarios, considering 2015 to be the base year, and
the same climate data series (precipitation and temperature). The hydrological components
that were evaluated for each LULC projected scenarios correspond to evapotranspiration
(ET), percolation (PERC), surface runoff (SURQ), subsurface runoff (LAT_Q), groundwater
(GW_Q), water yield (WYLD) and stream flow discharge of the basin (DISCH).

The results show that on average the annual percolation and groundwater flow in-
crease of 27.4 mm and 12.7 mm, respectively, while the average subsurface runoff decreases
in 14.1 mm, under the LULC scenarios projected. In Figure 7, it can be observed that the
percolation, groundwater and subsurface runoff components are more susceptible to the
LULC future projections, producing maximum variations for 2035, with close to + 80% for
groundwater flow and percolation and −20% for subsurface runoff. In contrast, stream
flow discharge, evapotranspiration and water yield are the least sensitive. Supplementary
Material S4 provides detail of the water balance results for the years 2015, 2025, 2035 and
2045 for each hydrological component.
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Figure 7. Percentage change of the different components of the hydrological balance for the periods.

Analysis of the water balance in representative LULC sub-basins.
The previous results represent the global balance of the Andalién River Basin, which

may mask some local effects in sub-basins where one of the nine LULC classes is dominant.
To evaluate this possible mask effect, a detailed analysis was carried out for four sub-basins.
These sub-basins were selected based on the largest changes of the dominate LULC of
non-native adult and young forest plantation (FRSE and RNGB), agriculture (AGRL), and
native and mixed forest (FRST) for the period 2015 to 2045. These sub-basins correspond to
those presented in Figure 8, together with their numerical identifier.

In Figure 9, the annual percentage change for each component of the water balance
is shown for each of the representative sub-basins. The evapotranspiration graph shows
that the greatest increase occurs in sub-basin 27 (the dominant LULC is RNGB) with a
11.7% increase in the year 2045, while a major reduction of 27.3% occurs also in sub-basin
27 (a dominant LULC is RNGB) in the year 2035. Among the largest annual changes, the
percolation in sub-basin 27 (the dominant LULC is RNGB) stands out with an increase of
43.6% in 2035. The component that showed significant changes regarding the results of
2015 is groundwater in sub-basin 23 (the dominant LULC is FRST), with an increase of
165%. In addition, Figure 9 shows that the sub-basins 8 (the dominant is AGRL) and 27 (the
dominant is RNGB) are the most susceptible to LULC changes projected, which is reflected
in the hydrological components, particularly in the projections for the years 2035 and 2045.
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4. Discussion
4.1. Calibration and Validation of the Hydrological Model and Evaluation of the
CA–Markov Model

For the calibration phase (2003–2007), the more sensitive parameter was the SCS
initial runoff curve number for moisture condition II (CN2). In the validation phase
(2008–2016) of the hydrological model, a very good agreement between the observed and
simulated monthly mean discharge was determined using statistical indicators R2, NSE,
PBIAS and KGE [69]. This indicates that the hydrological model is useful for the analysis
of hydrological processes in the basin. The model is less efficient in reproducing higher
magnitude discharges (Figure 4), overestimating the observed discharges by an average of
3.4%, with the negative PBIAS value confirming this condition. The model is capable in
simulating the stream flow discharges, but it was not possible to validate its results for the
other hydrological components. Consequently, one of the assumptions of this work is that
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the hydrological model can also simulate well the other hydrological processes, as it does
with stream flow discharges.

The evaluation of LULC projections, using the CA–Markov model for the year 2020,
presented a Kappa coefficient lower than 0.85. This result categorizes the prediction as
good [70] in terms of precision. One factor that influences the degree of Kappa agreement is
the number of errors induced during the interactive supervised classification process of the
Landsat images. Globally, differentiating native forests from non-native forest plantations
on as large of a scale as the Andalién River Basin remains a challenge; this complexity
makes it difficult in determination of the transformation of native forest to non-native forest
plantations, especially for the non-native adult forest plantations [18,71–73].

4.2. Projected Land Use Scenarios

The speed of deforestation globally for the years 2025 and 2050 is likely to be lower
compared to the peak period of the 1980s [74]. Currently in Chile, there is scarce information
on the projections of the dynamics of LULC in basins like the Andalién River Basin. Some
studies in Chile such as Heilmayr et al. [75] mention that despite the rapid expansion of
non-native forest plantations at the beginning of the 21st century, a drastic decrease in
using native wood in industrial applications, as well as the decrease in the non-native forest
conversion rate and changes in forest policies, suggests that plantations relieve demand
pressures on native forests. That conclusion is coherent with the results found in this
study, since there is a small decreasing trend in non-native forest plantations (young and
adult) and a 4.1% increase in the natural LULC (native and mixed forest, thickets and
prairie, and wetlands) for the future projections regarding 2015. There are two main forces
that can explain the stabilization of non-native forest expansion in the watershed, one of
which is the limited expansion space available. Likely there are no more suitable places
with the conditions (economic, social and environmental) for non-native forest plantations.
The second corresponds to the policy regarding recovery of the native forest and limiting
non-native forest development (Law No. 20.283 of 2008), in which the main objective is the
protection, recovery and conservation of native forests, to improve forest sustainability [76].

In a comparable study in Africa [77], a similar behavior was reported, where an
average LULC change rate of less than 1.0%, with a maximum of 8.5% for one of the LULC
classes. Likewise, a study by Nath et al. [70] in China revealed a maximum change rate
of 7.9%, while a large number of the classes did not show differences greater than 1% for
the projected periods. These reports on the slowdown and subsequent stabilization of
non-native forest expansion and deforestation of the native forest are consistent with the
projections of LULC change made for the Andalién River Basin for the near (2025), middle
(2035) and far (2045) future. For these periods, the land uses remain practically unchanged,
breaking the trend of the last three decades (1980, 1990 and 2000) of increased non-native
forest expansion.

4.3. Land Use Change Impacts on the Water Balance at Basin and Sub-Basins Scales

The impact on each component of the water balance in the Andalién River Basin was
evaluated by maintaining the input climate time series and modifying only the LULC sce-
narios to reveal the effects of these changes. At the basin scale, the evaluated hydrological
components that presented the greatest variability (period 2015–2035) for projected LULC
scenarios were percolation (+72.5%), stream flow discharge (+9.9%), subsurface runoff
(−29.0%) and groundwater flow (72.4%), which are, according to Tankpa et al. [78], the
most important components in a hydrographic basin. According to Yan et al. [7], when a
LULC transformation occur from agricultural (AGRL) land cover to thickets and prairie
(RNGE), the evapotranspiration increases and consequently surface runoff (SURQ) de-
creases. This condition is present in the Andalién River Basin, where the probability of
transformation is 2.1% (AGRL to RNGE), reducing surface runoff by 3.3% for the average
of three projected scenarios.



Sustainability 2022, 14, 16363 16 of 20

At the basin scale, the minimal changes (stabilization) of non-native forest expansion
can explain the steady state of evapotranspiration (ET) and surface runoff (SURQ). In
the basin, the bare soil surface is negligible, a large part of the water transfers through
ET and depends directly on plants but above all depends on forests (native and non-
native) [24,78,79]. According to the literature [9,80], the amount of ET depends strongly
on the ground cover and, consequently, changes in the amount of ET will influence the
other components of the water balance. To maximizing the water yield (WYLD) and the
discharge (DISCH), a watershed management strategy should focus on reducing the ET.

The results of the hydrological modeling focused on the sub-basins show an important
alteration, particularly in the sub-basin that will have a greater coverage of non-native
young forest plantations (sub-basin 27). When the non-native young forest plantation
becomes the dominant LULC, a reduction in water transfer to the soil (PERC and GW_Q)
occurs, with a decrease from LULC 2015 to the LULC 2045 of 318.8 mm to 291.0 mm for
PERC, respectively, and a decrease from 148.1 mm to 135.1 mm for GW_Q. In addition,
there is a projected increase in ET, from 441.9 mm to 493.5 mm in that same period. The
conditions mentioned (an increase in ET and a decrease in PERC and GW) are relevant,
because there is a negative effect on the water yield in basins that have extensive, fast-
growing, exotic plantations (i.e., pine and eucalyptus), as is the case of sub-basin 27 and the
entire Andalién River Basin, where exotic forest plantations (young and adult) cover over
50% of the surface. Researchers [81] indicate that the behavior in the water consumption of
the non-native forest plantations produce in the long term a reduction of water in the soil
(in terms of moisture and groundwater flows).

5. Conclusions

This study investigated the effects of LULC dynamics on the water balance in the
coastal basin of the Andalién River, located in South-Central Chile. Three research questions
were raised to improve our understanding of the relationship between land management
and its effects on the hydrological cycle in the basin. We have found in this work that the
dynamics of LULC practically stopped: after a tremendous expansion of non-native forest
plantations in the last three decades in Chile, and particularly in the coastal basins, this
expansion has stabilized. LULC projections show that the conditions no longer exist for non-
native forest plantations to increase their occupation in the Andalién River Basin. Despite
the above, the effects of small changes in LULC can be reflected in the different components
of the water balance, with a redistribution of water transfers to each of the components
and in different magnitudes, with a non-proportional and non-linear relationship between
changes in LULC and effects on the hydrological cycle. When the whole of the Andalién
River Basin is considered (780 km2 surface), the effects of LULC on the hydrological cycle
are reduced since there is compensation due to the different LULC patches that change over
time, which makes it difficult to assess how the LULC dynamics affects the hydrological
cycle at the outlet of the basin. On the other hand, by focusing the analysis on sub-basins
with a specific dominant LULC, as is the case of non-native forest plantations (young and
adult), the changes are more evident and their effects can be better quantified, allowing
promotion of more effective practices and management in the territory.

The LULC change predictions exhibited a trend towards the stability of the main
coverage in the basin and a reduction in native and mixed forest, agricultural land, and
non-native forest plantation (young and adult) LULC for the three future scenarios of
the years 2025, 2035 and 2045. Despite the dynamics of LULC changes being less than
what occurred in the two preceding decades (2000–2020), its consequences on the water
balance of the basin, and particularly in the sub-basins, is considerable in terms of the water
storage in the soil and the negative effects on water yield. This is especially observed in
sub-basins with non-native forest plantations that dominated LULC, in which a decrease in
percolation (8.7%) results in reduced aquifer recharge, as well as a decrease in groundwater
flows (8.8%), which are mainly offset by an increase in evapotranspiration (11.7%), in the
long-term projection (2045).On the other hand, at the basin scale, the semi-distributed
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hydrological model made it possible to quantify the hydrological impacts on an annual
time scale for the long term (far projection 2045), with an increase in percolation (40.1%)
and groundwater flow (40.0%) and a decrease in evapotranspiration (2.2%), surface runoff
(3.7%) and subsurface runoff (3.3%). Some measures can be applied to improve water
management based on management practices for non-natural of land cover such as non-
native forest plantations. The most cultivated forest species in Chile are pine (pinus radiata)
and eucalyptus (eucalyptus globulus), which consume a lot of water [82], increasing the
evapotranspiration rates. One of the measures to improve the water management for this
type of basin is to replace non-native forest plantations with thickets and prairie, reducing
evapotranspiration rates and increasing the surface runoff and water yield [83,84].

In many of the basins in the Chilean territory, there is a dearth of detailed information
on agricultural or forest management practices (native and non-native), new industrial
projects (private investments), public works (new roads, road improvements, among
others), future environmental regulations or economic growth and other variables even
more complex such as social behaviors (demographic). This lack of information could
represent a limitation for this study. If the information on these variables was available, a
hybrid model could be considered within that combines a CA–Markov model and a multi-
criteria evaluation (MCE). However, it is probable that the effort put into improving the
input data and predictions would not reflect a significant improvement in the assessment
of the hydrological balance for a basin the size of the Andalién River Basin.

Finally, the analysis of the LULC change effects is important for decision-making, but
a still greater challenge is considering this condition with others that may overlap such as
climate change [5,7,44,85].
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Results of the hydrological model performance for the validation period; Table S5: Water balance
results for the years 2015, 2025, 2035 and 2045.
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