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Utilising physiological data for augmenting travel choice
models: methodological frameworks and directions of future
research
Thomas O. Hancock and Charisma F. Choudhury

Choice Modelling Centre and Institute for Transport Studies, University of Leeds, Leeds, United Kingdom

ABSTRACT
Recent technological and methodological advances have led to the
possibility of a wider range of data being incorporated into travel
choice models. In particular, physiological data such as eye-
tracking information, skin conductance, heart rate recordings and
electroencephalogram (EEG) have emerged as promising sources
of information that could be used to gain insights into the
decision-making process as well as the decision-maker’s state of
mind. However, research on methodologies to utilise these data
sources and to integrate them with mobility data for advancing
state-of-the-art travel behaviour models is still very limited. In this
paper, we discuss the key benefits of using these emerging
sources of physiological data, review applications of different
types of physiological data and highlight their strengths and
weaknesses. Particular attention is paid to two different generic
frameworks for integrating these types of data into econometric
choice models of travel behaviour. The first framework involves
using physiological sensor data as indicators of latent variables
while in the second framework, they are used as exogenous
variables. We identify the research gaps and outline the
directions for future methodological and applied research
required to better utilise the physiological data for travel choice
models.
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1. Introduction

The travel decisions of individuals are affected by the attributes of the alternatives and the
characteristics of the decision-maker. These characteristics range from socio-demographic
factors (e.g. gender, age, income, etc.), attitudes (e.g. views about sustainable options),
and traits (e.g. risk-taking propensity) to dynamic factors like the state of mind (e.g.
stress level, excitement, etc.). Travel behaviour research to date has mainly focused on
accounting for the effects of static characteristics on travel behaviour, with dynamic vari-
ations in decisions primarily captured by randomly distributed error terms representing
intra-respondent heterogeneity (Ben-Akiva et al., 2007; Hess & Rose, 2009). Some
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exceptions include work on modelling the relationship between travel decisions and
mood and happiness (e.g. Le & Carrel, 2019), where retrospectively reported data on
mood have been used as the dependent variable. However, like all other modelling
work reliant on retrospectively reported and/or ratings data from participants, such
models are prone to bias due to potential errors in the reporting and subjectiveness of
the ratings. Further bias can also arise from the use of “point” (discontinuous) reports
of mood since they may have strong reference dependence.

On the other hand, recent technological advances have led to newer sources of data
for travel behaviour modelling which are passively generated and can consist of longer
panels of repeated observations of the same decision-maker. In particular, physiological
data such as skin conductance, heart rate recordings, etc. have emerged as promising
sources of information to gain insights on the decision-making process as well as the
decision-maker’s condition or state of mind. Hence, these datasets open up further
possibilities in incorporating inter and intra-respondent heterogeneity. However, thus
far, there have been limited uses of complementary physiological data to aid the ability
of a model to represent and capture travel behaviour.

Physiological data sources can be classified into two groups. The first group provides
information regarding how an individual may process the world, such as eye-tracking
information and brain activity recordings (e.g. electroencephalogram (EEG) or functional
magnetic resonance imaging (fMRI)). The second group can provide indications about the
decision-maker’s psychological condition or state, such as heart rate, skin conductance,
blood pressure, blink rate, facial expressions, etc. In addition to holding the promise of
improving the models, the latter can provide insights regarding the well-being of the
travellers.

The benefits of incorporating physiological sensor data in travel choice models are
applicable in the contexts of both stated preference (SP) data and revealed preference
(RP) data. Within the context of SP research, where the respondents are presented with
hypothetical scenarios and asked to make choices in controlled settings, additional phys-
iological sensor data can be used specifically to better understand the thought process a
decision-maker goes through between being presented with information and then
making a choice. Further, within the context of SP research, where the respondents are
presented with hypothetical scenarios and asked to make choices in controlled settings,
the responses may be subject to “warm glow” effect (Nunes & Schokkaert, 2003) and/or
respondents may try to state “correct” choices and attempt to hide the “actual” ones
they would make in real-world settings. Physiological data on the other hand is not
subject to obfuscation, i.e. a decision-maker cannot “hide” physiological indicators. For
example, Millen and Hancock (2019) found that participants could not effectively alter
their eye fixation patterns to pretend they did not recognise familiar faces, and measures
such as heart-rate and skin conductance are similarly autonomic and not easily possible to
consciously control. Hence, collecting and analysing physiological sensor data in conjunc-
tion with SP responses can help the analyst to identify which choices demonstrably show
preferences, and which are more strongly influenced by emotions, stress or other factors
that may cause an individual to choose an alternative they may not usually choose. For
example, Hancock et al. (2022) demonstrate that more stressed drivers make more
“random” choices. Physiological sensor data can also motivate respondents to have
more careful engagement, as would the use of cheap talk or oaths (Cummings &
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Taylor, 1999; Crastes dit Sourd et al., 2018). For example, Mahieu et al. (2016) used lie
detectors to assess the truthfulness of participants’ responses and Cherchi et al. (2020)
used EEG readings to understand when decision-makers found choice tasks easy or
difficult. Further, EEG has also been used to interpret a decision-maker’s confidence in
their choices in perceptual tasks (Krumpe et al., 2018). This has the additional benefit
of avoiding the requirement of advanced methodological frameworks to circumvent
endogeneity issues in the joint modelling of choice and choice certainty ratings (Habib,
2017). Another clear benefit of using physiological sensor data is that it can be linked
with underlying decision-making processes. For example, eye-tracking information
gives insights on information processing strategies (Ryan et al., 2018) and fMRI and EEG
recordings can help infer learning (Frank et al., 2015) and consumer decision-making
(Golnar-Nik et al., 2019) processes. This allows for improving behavioural insights and
may also allow for a better understanding of different possible decision-making strategies
across individuals in the controlled settings of SP.

In the context of RP data, where it is harder for modellers to capture the full range of
external factors that may impact choices made in the real-world, physiological data could
be used to better account for heterogeneous behaviour at the level of the individual
decision-maker, for example by capturing the stress levels of a road-user travelling
through busy traffic to understand their route choice behaviour. For example, Xu et al.
(2018) demonstrate that eye-tracking information could be used to assess how tired a
driver is in real-time, which can be used to better explain their route and lane choice,
gap-acceptance decisions, etc.

Finally, the respective limitations of the RP and SP data have motivated travel behav-
iour researchers to combine RP and SP data to complement each other (see Ben-Akiva &
Morikawa, 1990; Buckell & Hess, 2019; Lizana et al., 2021 for details), though their uptake
beyond academia is still limited (Batley et al., 2019). One alternative to combining SP and
RP is to again consider physiological data (which when collected anonymously may have
less privacy issues attached to them compared to detailed socio-demographic infor-
mation) and use it as a measure of cross-validation of preferences, thus potentially remov-
ing some concerns regarding the realism of behaviour in SP settings. For example, Brunyé
and Gardony (2017) demonstrate that eye-tracking information such as pupil diameter
can be used to predict choice certainty. This can be a potential way to link choices
made in RP and SP settings.

Furthermore, both the traditional RP and SP data have limited information about the
“softer” factors that affect an individual’s travel behaviour such as mental states like stress,
anger or frustration. Evidence from psychology suggests that these have a significant
impact on choices (Garfinkel et al., 2016; Starcke et al., 2012). For example, controlled
experiments have demonstrated that stress increases risk-taking propensity and
reduces variety-seeking behaviour of individuals (Buckert et al., 2014) and numerous
studies have demonstrated the impact of stress or distraction on driving behaviour
(e.g. Paschalidis et al., 2018). However, so far there has only been limited efforts in collect-
ing such data in the context of generic travel behaviour modelling – primarily through
retrospective reporting (Carrel et al., 2016) and experience sampling (Carrel et al.,
2017), both of which are prone to substantial reporting and measurement errors.

Given the clear promise outlined above from using physiological data for under-
standing behaviour, it is unsurprising that applications using this kind of data are

TRANSPORT REVIEWS 3



becoming increasingly common. However, it is less clear that travel behaviour model-
lers, relative to modellers from other disciplines, are making as much use of physiologi-
cal data. Furthermore, as there is a wide variety of types of physiological data and also
a number of theories regarding the impact certain measures should have on behav-
iour, it is understandable that there is also a wide variety of methods for incorporating
this data into models. This is consequently one of the aims of this paper: to review
results from previous behavioural modelling with physiological data and consider
different possible frameworks for including such data. This paper also outlines some
important steps for future travel behaviour modelling involving physiological data,
including a discussion on some barriers that have thus far limited the use of this
data, not least of which is the lack of an established framework for its incorporation
into standard choice models.

The rest of this paper is arranged as follows. Firstly, we outline two general frameworks
for the inclusion of physiological data in choice models. Next, we discuss different types of
physiological data in turn, detailing previous applications and frameworks for their inte-
gration into choice models, relating these different methods to our generalised frame-
works. We then discuss opportunities and next steps for using physiological data
within travel behaviour models, before drawing some conclusions.

2. Two generalised frameworks for the inclusion of physiological data in
choice models

There exists a wide variety of possible methods to analyse the relationship between phys-
iological sensor data and human behaviour. However, in the domain of choice modelling
(both travel and beyond), the models developed to date can be broadly categorised as
falling under one of the two generalised frameworks. Both of these generalised frame-
works include a number of different functions (arrows in Figures 1 and 2) to represent

Figure 1. Framework 1: an integrated choice and latent variable model with physiological sensor data
as indicators. The indices used are for individual, n, alternative, i, attribute, k, and choice task, s.
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the full set of possible elements of decision-making when specifying models incorporat-
ing physiological sensor data. A summary of these functions is given in Table 1. It may be
noted that in reality, due to the unavailability of the data or identification issues, most
applications thus far have included some subset of the functions included in these gen-
eralised frameworks (as detailed in Section 3). In both of our frameworks, it is assumed
that some number of observed variables (in rectangles in the figures) and estimated par-
ameters (in dashed rectangles) are specified together in some functional form to calculate
the utilities of different alternatives. Measurement equations linking the latent variables
(in ovals) with the observed outputs are represented by dashed arrows (note that associ-
ated measurement errors are excluded in the figures for the sake of simplified
presentation).

The key difference between the two discussed frameworks is the placement and use of
physiological sensor data. Depending on the application context and problem of interest,
one framework may be preferable compared to the other.

Figure 2. Framework 2: a process and choice model with physiological sensor data used as direct
explanators.

Table 1. A summary of the functions (arrows) visualised in Figures 1 and 2, and the key differences
between the frameworks.
Framework 1 Framework 2

Functional relationships
(A) Un,s,i = f (an,s , Zn, xn,s,i,k , zn , bn,i,k , mn,s) (B) Un,s,i = f (In,s , Zn, xn,s,i,k , zn , bn,i,k , mn,s)
(C) yn,s = f (Un,s,i) (C) yn,s = f (Un,s,i)
(D) In,s = f (an,s)
(E) an,s = f (Zn , zn, xn,s,i,k)

Key advantages
Allows for measurement error in physiological sensor data Simpler model to estimate
Can capture correlations between physiological sensor and choice data Potential to have better explanatory

power of choice model
Key disadvantages

May have limited explanatory variables to define latent variables α Predictions using the model require
simulation of physiological sensor data
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In the first framework, physiological data is used in a latent variable approach and is
assumed to be an indicator. Explanatory variables are thus used to optimise the likelihood
of observing both the choice outcomes and the physiological indicators. This framework
is consequently equivalent to standard Integrated Choice and Latent Variable (ICLV)
models (Ben-Akiva et al., 2002; Vij & Walker, 2016) but with physiological indicators repla-
cing or in addition to standard indicators such as attitudinal responses. This framework is
visually represented in Figure 1. The figure illustrates possible functional links between
known (solid rectangles), estimated (dashed rectangles) and latent variables (solid
ovals). Here it is assumed that physiological data is to be treated as indicators within
an ICLV framework. The latent variable(s) are used to predict the physiological indicators
alongside the “traditional” indicators (such as attitudinal responses) and the observed
choices. The latent variables used in typical ICLV models are assumed to be static
across choice contexts (i.e. not dependent on the choice task, s) and only depend on
the characteristics of the decision-maker, n. As a contrast, the latent variables that are
used to explain physiological sensor data are “dynamic”. These latent variables can
thus be informed by both characteristics of the decision-maker and variables related to
the choice context (e.g. task difficulty). They can consequently be used to help explain
the decision-making process. For example, they could represent the perception of infor-
mation (a decision-maker’s perceived risk, Bogacz et al., 2021) or the factors impacting the
processing of information (stress levels, Paschalidis et al., 2019).

In the second framework, physiological data is instead incorporated as an explanatory
variable. This data thus helps inform the utility of alternatives, sometimes indirectly
through impacting the value of the estimated parameter(s) through some specified func-
tion. Thus, for example, eye-tracking information may directly inform attribute attendance
and thus effectively capture individual-specific relative importances of different attributes
(Pike et al., 2020).

This framework is visually represented in Figure 2.
It should be noted that attitudinal responses are not included in Framework 2 as it has

been widely acknowledged that in order to avoid the measurement errors and endogene-
ity biases associated with attitudinal responses, it is crucial to use ICLV frameworks (Ashok
et al., 2002; Ben-Akiva et al., 2002). Though the measurement errors are also potentially a
problem for physiological sensor data (Krucien et al., 2017), these are not controllable by
the decision-maker themselves (e.g. Millen & Hancock, 2019). Hence they are less likely to
lead to endogeneity issues and subsequent modelling issues.

Further, for both frameworks, a modeller would not likely use all components detailed
in the figures. However, should the analyst have extensive data on, for example, a wide
range of decision-maker characteristics, the identification of more model parameters
and the addition of further latent constructs may be possible.

We now give a mathematical summary of the graphical representations of the fra-
meworks given in the figures in Table 1 where the subscripts n, s, i, k denote decision-
maker, scenario, alternative and attribute respectively. In this table, we give general-
ised functions (arrows in the figures) that have been used to incorporate physiological
data. We denote typical indices for each variable, which may change across contexts.
For example, physiological sensor data such as heart rate would only vary across indi-
viduals and the scenario (In,s) but eye-tracking data may also include information
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related to an attribute (i.e. how much attention it receives) thus we would instead
have In,s,k .

It is well worth noting that a majority of applications utilising physiological sensor data
use some combination of the functions in Table 1, with a subset of the elements in each
function depending on what information is available to the modeller. For example, a
typical mode choice model may define the utility for alternatives based on characteristics
of a decision-maker (i.e. their age, gender, etc), the attributes of the alternatives, and esti-
mated parameters for the relative importance of these attributes and characteristics,
meaning that we have Un,s,i = f (xn,s,i,k , Zn, bn,i,k, zn).

Table 1 also gives key advantages and disadvantages of each framework.
As the first framework also aims to predict physiological sensor data, it requires

methods for defining the latent variables. Within standard implementations of ICLV
models for understanding attitudinal responses, these variables are often set as a function
of the characteristics of the decision-maker. However, the construction of these latent
variables can be trickier in models predicting physiological sensor data. For example,
Krucien et al. (2017) used a latent variable to represent the perception of information,
allowing the model to capture the correlation between how much a decision-maker
looked at the information and the importance of the information. However, this latent
variable was based on an error term only in the final model. One possible alternative is
to use scenario attributes to determine the latent variable. For example, Paschalidis
et al. (2019) used driving variables (e.g. relative speeds) to define a latent variable that rep-
resented how stressed an individual was, that in turn influenced stress measurements and
also choices.

The key change for the second framework is that observed physiological sensor data is
instead used as explanatory variables within utility functions. The main advantage here is
that there is the possibility of the model having better choice explanatory power (e.g.
Hancock et al., 2022), Whilst the models are also easier to estimate, this approach
causes issues when the model is to be used in a predictive context. This is a result of poss-
ibly complex or rudimentary assumptions being required for the generation of simulated
physiological sensor data to inform the new choice contexts. As a contrast, ICLV models
can be used for forecasting choice behaviour without the requirement of indicator data
for the new hypothetical scenarios (Vij & Walker, 2016).

In the subsequent section, we consider a number of different types of physiological
sensor data, detailing how they have been included in choice models and how these
applications relate to the generalised frameworks presented above.

3. Physiological sensor data and their implementations within choice
models

We now review the precise methods for how physiological data can be incorporated into
choice models, giving specific examples of the generalised equations given in Table 1. We
consider distinct types of physiological sensor data separately. For each type of data, we
first provide an overview of the type of data where we summarise the sub-types of data
and how they have been used in the literature. We discuss some general findings from
using the data, followed by a particular focus on how data has been mathematically
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incorporated within choice models and relating past approaches to the two generalised
frameworks defined in Section 2.

3.1. Eye-tracking data

3.1.1. Overview
Interest and research involving tracking eye movement has existed for over a hundred
years, with psychologists initially studying eye movement to understand the reading
process (e.g. Huey, 1898). However, it was not until the 1970s that eye-tracking research
came to prominence, through the domain of experimental psychology, when researchers
started attempting to link perception and mental processes (Płużyczka, 2018). In the
context of decision-making, eye-tracking information has often been used to understand
how decisions are made by considering how decision-makers visually process information
(Chen et al., 2021; Krajbich et al., 2012). This also allows for the validation (or the lack
thereof) of competing theories of decision-making behaviour, with eye-tracking infor-
mation frequently used to argue for or against various assumptions within choice
models (e.g. Mullett & Stewart, 2016).

In Table 2, example applications of eye-tracking data are given to demonstrate the
variety of sub-types of data/revealed information, to detail example applications follow-
ing our two model frameworks, and to illustrate the breadth of uses of eye-tracking data.
It is notable that the type of eye-tracking information that a researcher may want to use
varies depending on the application context (and often subject to the type of available
eye-tracker). A further key question facing a researcher wanting to make use of eye-track-
ing information is how to empirically include it within their behavioural model. In previous
research, both variants of the generic framework presented in Section 2 have been used:
as a direct variable (i.e. Figure 2) and as an indicator of a latent variable (i.e. Figure 1). The
former is more prevalent in non-econometric modelling literature. On the other hand, in
econometric choice models, it has been acknowledged that the eye-tracking data can
have measurement errors and can consequently need to be treated as an indicator
(Krucien et al., 2017). The majority of applications for including eye-tracking information
can thus be summarised using a subset of the functions are given in Table 1 (demon-
strated in the following subsections).

In each case in Table 2, we specify whether the modelling work (if combined with
choice data) falls into Framework 1 (Figure 1 or Framework 2 (Figure 2). We discuss
each of these applications in detail in the relevant subsequent subsection.

3.1.2. Subtypes of eye-tracking data
Given the huge number of studies investigating visual attention (multiple reviews of eye-
tracking research exist across different disciplines, for example, Ziv, 2016), it is unsurpris-
ing that the type of eye-tracking information used varies significantly. This includes, but is
not limited to fixation location, fixation length, blink rate and duration and pupil size
measurements. In addition to the available equipment, the type of collected data is
largely impacted by what is feasible in the experimental setting. For example, in a
dynamic or virtual setting, it may not be possible to easily work out exactly what the
decision-maker is looking at and thus less specific information such as the number of
times a decision-maker blinks or the general gaze direction (left, right, etc.) may
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Table 2. A summary across key work utilising eye-tracking data, considering types of data, revealed information, how this has been used in mathematical
modelling and the relation to our identified methodological frameworks.
Manuscript Data type Revealed information Data & Application Framework Equations Mathematical modelling/statistics

Ballco et al. (2019) Fixation location/ length Detailed focus of
decision-maker

SP, food preferences 2 B, C Probabilities of choice alternatives based on visual
attention

Benedetto et al.
(2011)

Blink rate, duration and pupil
size measurements

Concentration or
fatigue levels

Driving simulator, driver
performance

n/a n/a Repeated measures ANOVA to test differences across
tasks

Chavez et al.
(2018)

Fixation location/ length Detailed focus of
decision-maker

SP, food preferences 2 B, C Probabilities of choice alternatives based on visual
attention

Chen et al. (2021) Gaze direction Focus of decision-
maker

RP, shopping behaviour n/a D Prediction of visual attention based on shop layout,
product popularity, etc.

Dudinskaya et al.
(2020)

Fixation location/ length Detailed focus of
decision-maker

SP, food preferences 2 B, C Probabilities of choice alternatives based on visual
attention

Fisher (2017) Fixation location/ length Detailed focus of
decision-maker

SP, food preferences 2 B, C Probabilities of choice alternatives based on visual
attention

Hancock et al.
(2022)

Gaze direction Focus of decision-
maker

Driving simulator, gap
acceptance decisions

2 B, C Probabilities of choice alternatives based on visual
attention

Krajbich et al.
(2012)

Fixation location/ length Detailed focus of
decision-maker

SP, purchasing behaviour 2 B, C Probabilities of choice alternatives based on visual
attention

Krucien et al.
(2017)

Fixation location/ length Detailed focus of
decision-maker

SP, health preferences 1 A, C, D, E ICLV framework predicting both choices and attribute
fixation times

Li et al. (2018) Gaze concentration (based
on gaze direction)

Concentration or
fatigue levels

Driving simulator, driver
performance

n/a D Regressions for micro-steering activity based on gaze
concentration

Merat et al. (2012) Blink rate and duration Concentration or
fatigue levels

Driving simulator, driver
performance

n/a n/a Repeated measures ANOVA to test differences across
tasks

Mullett and
Stewart (2016)

Gaze direction Focus of decision-
maker

Simulated data, binary
choice tasks

n/a D Simulation of gaze direction (and choice response time)
patterns under different modelling assumptions

Palinko et al.
(2010)

Pupil size measurements Concentration or
fatigue levels

Driving simulator, driver
performance

n/a n/a Repeated measures ANOVA to test differences across
tasks

Pike et al. (2020) Fixation location/ length Detailed focus of
decision-maker

SP, vacation preferences 2 B, C Probabilities of choice alternatives based on visual
attention

Shimojo et al.
(2003)

Gaze direction Focus of decision-
maker

SP, (human) face
preferences

n/a D Regressions for gaze direction based on face
characteristics

Spinks and
Mortimer (2015)

Fixation location/ length Detailed focus of
decision-maker

SP, medical treatment
preferences

n/a D Prediction of attribute non-attendance based on task
complexity, sociodemographics, etc.

Uggeldahl et al.
(2016)

Gaze shifts Focus of decision-
maker

SP, food preferences 2 B, C Probabilities of choice alternatives based on gaze shifts

*Note that “n/a” in the Framework column refers to cases where methods other than choice modelling were used.
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instead be used. For example, when a purchaser scans different items in a supermarket,
Chen et al. (2021) found that items on the right drew more attention than those on the
left, and that items on a shelf below eye-level rather than at eye-level received the most
attention. Studies of driving behaviour are similarly dynamic, and thus blink rate is often
used to assess a driver’s concentration or performance level (Merat et al., 2012). This is
particularly important in the context of investigating how distracted a driver is, with
blink duration (Benedetto et al., 2011), pupil size measurements (Palinko et al., 2010)
and gaze concentration (measured as a function of the standard deviation of the horizon-
tal gaze position, Li et al., 2018) also used for this purpose, and Khan and Lee (2019) sum-
marising techniques and applications of incorporating eye-movement data specifically for
use within advanced driving assistance systems.

As a contrast, in a laboratory setting, where the decision-maker is facing a screen,
precise information on saccades, numbers of fixations and fixation length may be
recorded. As a result, a modeller may have precise information regarding how long a
decision-maker looks at particular alternatives or particular attributes, thus having a
proxy for the relative importance of different features. This has led to multiple studies
incorporating eye-movement data with a view to understanding attribute non-attend-
ance (Chavez et al., 2018; Spinks & Mortimer, 2015). Many studies also use eye-movement
information to try and understand the decision-making process itself, with research in
cognitive psychology finding a late onset bias (Shimojo et al., 2003), where decision-
makers tend to look more at the alternative they are about to choose just before they
choose it (also known as a gaze-cascade effect).

3.1.3. Models based on Framework 1
The models based on Framework 1 involve using eye-tracking variables as indicators of
latent constructs within an ICLV framework. This makes it possible to calculate probabil-
ities in prediction contexts without the need of generating any simulated eye-tracking
data (as required in models based on Framework 2). This is, however, not a common
approach within the domain of eye-tracking research, with one key example being that
of Krucien et al. (2017), who found that preferences for “harder to process” attributes
varied more significantly with changes in underlying visual attention. Under their frame-
work:

Un,s,i = f (xn,s,i,k , an,k , bk · · · ) (1a)

In,k = f (an,k) (1b)

where the latent variable an,k is dependent on an individual’s processing strategy (though
the final model by Krucien et al. (2017) represented this simply by noise) and is then used
to calculate both the utility of an alternative and the total fixation time for an attribute k
across choice tasks completed by participant n. Krucien et al. (2017) argue that this
alternative approach leads to a number of benefits, including removing the assumption
of a deterministic relationship between visual attention and individuals’ preferences,
with preferences instead impacted by the underlying level of information intake (thus
recognising the fact that an individual may not necessarily be thinking about what
they are looking at).
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3.1.4. Models based on Framework 2
There are many more examples of applications where eye-tracking data is used to help
predict choice data, in line with Framework 2. In particular, some of the first applications
of eye-tracking data in the context of decisions research were performed within cognitive
psychology. In general, models developed in this discipline are typically not based on
econometric theory, meaning they do not necessarily incorporate concepts of utility
(for a review of these models, see Busemeyer et al., 2019, and for a review on insights
from eye-tracking research within cognitive psychology, see Krajbich, 2019). As a result,
for some models, the quality of an alternative is simply related directly to the visual atten-
tion it receives:

Un,s,i = f (Dn,s,i, Fn,s,i, . . . ), (2)

where D and F are the relative shares of attention duration and fixations, respectively, an
alternative i receives over the course of the decision-making process (thus relative impor-
tance/marginal utility parameters are not estimated nor included). This is the approach
assumed by the visual attention model (see Equation 1, Chavez et al., 2018), where the
probability of choosing an alternative is simply:

Pn,s,i = Dn,s,i. (3)

This means that the probability of choosing a particular alternative is set directly as the
proportion of time spent looking at the alternative in comparison to the time spent
looking at all alternatives. The attentional drift-diffusion model (Krajbich et al., 2012)
also assumes that the quality of an alternative is based only on the visual attention it
receives, and has subsequently been used for predicting the probability of choosing an
individual’s preferred snack (from a set of images of different snacks, Fisher, 2017),
where the attributes of the different alternatives may, in any case, be relatively difficult
to directly compare.

The direct inclusion of eye-movement data can also be effective in the utility-based
models that are typically used for modelling responses to stated preference (SP)
surveys. For example, the utility of an alternative could be a function of the value of
different attributes combined with the visual attention for the attributes. In studies on
preferred tourism destinations (Pike et al., 2020) and food (yoghurt) preferences (Ballco
et al., 2019), the utility under a mixed logit model was set as a sum of these components:

Un,s,i = f (xn,s,i,k , bn,i,k , In,s, . . . ) (4a)

=
∑K

k=1

xn,s,i,k · bk

( )+
∑K

k=1

Dn,s,k · xn,s,i,k · gk
( )

, (4b)

where D is the total fixation duration for an attribute k in choice task s made by decision-
maker n, xn,s,i,k gives the value for attribute k for alternative i, and bk and gk are marginal
utility and relative visual importance parameters, respectively, for attribute k, to be esti-
mated. This framework is effective in that should the γ parameters have insignificant esti-
mates, the model collapses to a standard mixed logit model without the incorporation of
eye-tracking information.

This setup could also be used in the context of attribute non-attendance research,
though an alternative is to include attributes in the utility calculation only if they
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receive a certain share of visual attention. Chavez et al. (2018) compared their visual atten-
tion model to a “conditional logit” model, where utility for an alternative was defined:

Un,s,i =
∑k

k=1

xn,s,i,k · bk · (1− ANAn,s,k)
( )

, (5)

where ANAn,s,k is an indicator function for attribute non-attendance, set to a value of 1 if
the relative share of visual attention that an attribute receives is less than 10% of the total
decision-making time (Dn,s,k , 0.1). A similar approach was also adopted by Dudinskaya
et al. (2020), who used an equivalent function but with ANAn,s,k set to a value of 1 if
there are less than 2 fixations on attribute k.

A similar approach was used by Hancock et al. (2022), where it was demonstrated that
drivers who look more to the left (towards oncoming traffic) than they usually do whilst
driving assign a higher importance to the size of gaps when choosing which gap to accept
at unsignalised intersections. In their model, possible measurement error was included by
assuming that the percentage of “attention time” (AT) given to considering the size of the
gap was only proportional rather than equivalent to the fixation time (D):

ATn,s,i,k = f (a, Dn,s,i,k), (6)

where a high estimate for α corresponds to attention time matching fixation time, and a
low estimate suggests attention is random, and not dependent on fixations. Positive, sig-
nificant estimates were found for α, suggesting that individuals did indeed assign more
importance to the attributes that they looked at.

Eye-tracking information has also been used within decision-making research as a
means to understand choice certainty, with Brunyé and Gardony (2017) demonstrating
that fixations, saccades, and pupil diameter could all be used as measures for uncertainty.
In the context of a utility-based framework, choice certainty can be impacted through
adjustments to the scale parameter. For example, Uggeldahl et al. (2016) set scale as a
function of gaze shifting:

mn,s = f (In,s, . . . ) (7a)

= 1+ aGS · GSn,s + f (An,s) (7b)

where GSn,s is a z-score transformation of the number of gaze shifts (movements between
recorded fixations) and An,s is a set of alternative choice set features including whether
there is pictorial or text representation, choice set order, etc (described in full detail by
Uggeldahl et al., 2016, Section 2.5). Under the above specification, a negative estimate
for aGS (as indeed found by Uggeldahl et al., 2016) implies that the more gaze shifts
recorded within a choice task, the lower the scale within the model, corresponding to
a “less certain” response.

3.2. Biomarker data

3.2.1. Overview
The most frequently used biomarker data includes heart rate, skin conductance, respir-
ation, blood volume pulse, salivary cortisol and muscular activity. Applications of these
data are relatively new in comparison to eye-tracking data and are mostly limited to
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inferring stress and fatigue levels and their impact on a decision-maker’s behaviour (for a
review, see Starcke & Brand, 2012). They have been primarily used in the context of driving
safety research (Crawford, 1961). Given the highly consequential nature of poor driving, it
is not surprising that the majority of studies within a transport context that aim to
measure how stressed an individual is, focus on relating stress with driving behaviour.
A particular interest has been the development of passive methods to detect how
stressed a driver is. Physiological sensor indicators offer such an opportunity, particularly
as technological advances have resulted in increasingly non-intrusive sensors, and
alternative measures such as travel diaries are subject to reporting biases and rely on indi-
viduals actually remembering what has happened (Gulian et al., 1990). Before discussing
some example implementations of stress measurement data in detail, we give example
applications of the use of biomarker data in Table 3. We again aim to demonstrate the
variety of subtypes of data/revealed information, to detail example applications following
our two model frameworks, and to illustrate the breadth of uses of biomarker data.

3.2.2. Subtypes of biomarker data
Multiple physiological sensors have been utilised when the aim is to understand how
stressed a driver is, with Healey and Picard (2005) providing one of the first advanced
case studies of real-world driving behaviour. In their experiment, electrocardiogram, elec-
tromyogram, skin conductance and respiration were recorded for 24 drivers as they drove
through a set route in the greater Boston area. Healey and Picard (2005) demonstrated
that these measures were highly correlated with a stress metric based on observed
driving conditions, road features and other behaviours of the driver, such as bumps in
the road, head turns, turns in the road and having to stop the car. Chen et al. (2017)
further explored this data through the use of more advanced methods, including the
use of machine learning models to more accurately predict when a driver was stressed
or not. Outside of travel behaviour research, similar methods have also been used to
assess the mental state and stress levels of patients with anxiety disorders (Katsis et al.,
2011b), with Smets et al. (2018) providing a detailed review of some of the challenges
faced when trying to measure stress levels outside of laboratory settings in general. In par-
ticular, they highlighted the importance of accounting for individual-level variations in
sensor readings and discussed the difficulties of finding ‘base levels’ as a result of the
impact of physical activity on these measures.

Stress measurement data has also been implemented in the context of research on
decision-making. For example, Nowacki et al. (2019) demonstrated that men made
more risky choices in comparison to women after being subject to a ‘cold pressor’ test,
which was designed to deliberately induce stress, by raising blood pressure, heart rate
and salivary cortisol. However, heart-rate was also higher for participants who made
less risky lottery choices (Fooken & Schaffner, 2016), implying that those who do not
feel stressed are more likely to make risky choices as they possibly do not worry as
much about their choices. Stress levels have also been demonstrated to have an effect
in moral choice scenarios. For example, higher stress results in less utilitarian choices in
moral dilemmas (Starcke et al., 2012) and individuals with lower resting heart rates
were found to give lower ratings of anticipated guilt should they commit crimes in con-
frontational situations as well as giving lower predicted probabilities of being convicted
(Armstrong & Boutwell, 2012).

TRANSPORT REVIEWS 13



Table 3. A summary across key work utilising biomarker data, considering types of data, revealed information, how this has been used in mathematical modelling
and the relation to our identified methodological frameworks.

Manuscript Data type
Revealed

information Data & Application Framework Equations Mathematical modelling/statistics

Armstrong and
Boutwell (2012)

Resting heart rate Emotional
involvement

Survey, emotion/action
ratings

n/a n/a Regressions for prediction of ratings based on
resting heart rate

Chen et al. (2017) Muscular activity, breathing rate and
or depth

Stress levels RP, driving stress levels n/a D Correlation between stress levels and driving
conditions

Fooken and
Schaffner (2016)

Heart rate variability Emotional
involvement

SP, risky decision-making 2 B, C Probabilities of choice alternatives based on heart
rate

Hancock et al.
(2022)

Electrocardiogram (heart rate); Skin
conductance (sweat rate)

Stress levels Driving simulator, gap
acceptance decisions

2 B, C Probabilities of choice alternatives based on stress
levels

Healey and Picard
(2005)

Muscular activity, breathing rate and
or depth

Stress levels RP, driving stress levels n/a D Correlation between stress levels and driving
conditions

Katsis et al. (2011b) Blood volume pulse, heart rate Mental state RP, emotions during
therapeutic sessions

n/a n/a Comparison of classification of mental state
(expert psychologist vs machine learning models)

Nowacki et al.
(2019)

Salivary cortisol, blood pressure, heart
rate

Stress levels SP, risky decision-making n/a n/a Repeated measures ANOVA to test differences
across tasks

Paschalidis et al.
(2018)

Heart rate, sweat rate Stress levels Driving simulator, gap
acceptance decisions

2 B, C Probabilities of choice alternatives based on stress
levels

Paschalidis et al.
(2019)

Heart rate, sweat rate Stress levels Driving simulator, car-
following behaviour

1 A, C, D, E ICLV framework predicting both choices and stress
levels

Starcke et al. (2012) Heart rate Stress levels SP, moral decision-making n/a n/a Repeated measures ANOVA to test differences
across groups

Tarabay and Abou-
Zeid (2021)

Heart rate Stress levels Driving simulator, red-
light violations

1 A, C, D, E ICLV framework predicting both choices and stress
levels

*Note that “n/a” in the Framework column refers to cases where methods other than choice modelling were used.
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3.2.3. Models based on Framework 1
Latent variable approaches in-line with Framework 1 (Figure 1) have also been used for
the incorporation of stress indicator data. Paschalidis et al. (2019) treated stress as a
latent unobserved variable in their car-following behavioural model, thus demonstrating
that estimated stress levels could explain heart rate, blood volume pulse and skin conduc-
tance recordings (In,s) through measurement equations:

In,s = f (an,s), (8a)

= f (ZAn, xn,s,k) (8b)

where the latent variable (an,s) is based on a function of sociodemographics (ZAn) and
driving variables (xn,s,k). The choice to accelerate/decelerate was then also a function of
latent stress:

Un,s,i = f (an,s, xn,s,k). (9)

Tarabay and Abou-Zeid (2021) utilised a similar framework, showing that driving perform-
ance measures, as well as physiological indicators, could be explained by latent variables
representing a driver’s level of stress.

3.2.4. Models based on Framework 2
Whilst most uses of stress indicator data have been either to classify stress levels or
within simple statistical analyses of decision-making, there have been a few incorpor-
ations of stress indicator data within discrete choice models. Paschalidis et al. (2018)
demonstrated that heart rate and skin conductance measures could be used to
show that drivers under stress were more likely to accept a gap when crossing an
unsignalised intersection. They incorporated these measures within the utility to
accept a gap (error terms are omitted):

Un,s = bk · xn,s,k + z · ZAn + u · In,s, (10)

where xn,s,k is a set of gap-specific variables (e.g. size of the gap), ζ and θ are the esti-
mated coefficients for the impact of sociodemographics, ZAn, and the physiological
variables, In,s. A number of physiological sensor indicators were tested, with the partici-
pant’s normalised heart rate and skin conductance responses found to be significant
(higher levels resulted in higher utilities for accepting the gap). Hancock et al. (2022)
built upon this work by demonstrating that these indicators could also be used
within a decision field theory (DFT) model (Busemeyer & Townsend, 1993; Hancock
et al., 2021). The size of the normal error term (which has a similar effect to utility
scale, thus is also labelled μ) within the DFT model was adjusted depending on the
amount of stress:

mn,s = f (In,s), (11)

with results demonstrating that higher levels of stress resulted in “more random”
choice behaviour under the model.
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3.3. EEG and fMRI data

3.3.1. Overview
Whilst psychologists have been at the forefront of research utilising brain imaging tech-
niques, these methods have gradually been used in the context of decision research and
then also travel behaviour research. The two major types, electroencephalogram (EEG)
and functional magnetic resonance imaging (fMRI), differ in terms of their spatial and tem-
poral resolutions. fMRI has a high spatial but low temporal resolution, whilst EEG has a
lower spatial but higher temporal resolution.

In Table 4, example applications are given to demonstrate the variety of sub-types of
data/revealed information, to detail example applications following our twomodel frame-
works, and to illustrate the breadth of uses of EEG/fMRI data.

3.3.2. Subtypes of neural data
fMRI has predominantly been used to identify which parts of the brain contribute to the
completion of different tasks (Rodriguez et al., 2015; Zysset et al., 2006). This includes
many studies on decision-making processes, with the dorsomedial prefrontal cortex
playing a key role in risky decision-making (Rao et al., 2011), the ventromedial prefrontal
cortex and ventral striatum reflecting value, value comparison and confidence (De
Martino et al., 2013; Gluth et al., 2015) and responses in the amygdala and orbitofrontal
cortex correlating with ambiguity in choices (Hsu et al., 2005). Though fMRI has a lower
temporal resolution than EEG, its outputs can be compared across different decisions.
Rodriguez et al. (2015) demonstrated that larger differences in gambling options lead
to less activation from fMRI outputs (implying an easier decision) and Gluth et al.
(2015) demonstrated that stated food ratings correlated with fMRI outputs.

Meanwhile, within the context of travel behaviour research, specific choice task
difficulty has been tested with EEG recordings, with Cherchi et al. (2020) demonstrating
that EEG could be used to infer the difficulty of SP tasks on car purchase decisions. EEG
has also been used to investigate how participants detect collision threats (Markkula
et al., 2021) and can be used to predict when a driver will perform an emergency brake
during simulated driving (Haufe et al., 2011). Furthermore, it has been integrated into
neural networks and Markov models, respectively, to detect fatigue in drivers (Karuppu-
samy & Kang, 2020) and pilots (Wu et al., 2021).

3.3.3. Models based on Framework 1
In the most advanced travel behaviour application of EEG data thus far, Bogacz et al.
(2021) incorporate EEG responses within a hybrid choice model to understand cycling
decisions in a virtual reality experiment. The (latent) relative risk felt by the individual
as they are cycling is then used to approximate alpha-wave activity recordings from
the EEG data. Their model thus has similar components to that of Paschalidis et al.
(2019), with alpha activity (In,s) estimated through measurement equations:

In,s = f (an,s), (12a)

= f (xn,s,k) (12b)

where the latent (risk) variable (an,s) is based on a function of driving variables (xn,s,k) such
as the distance to the next junction and whether there is a car near the cyclist. The utility
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Table 4. A summary across key work utilising neural data, considering types of data, revealed information, how this has been used in mathematical modelling and
the relation to our identified methodological frameworks.
Manuscript Data type Revealed information Data & Application Framework Equations Mathematical modelling/statistics

Bogacz et al. (2021) EEG: alpha wave activity Implied risk preferences Cycling simulator, cycling
speed decisions

1 A, C, D, E ICLV framework predicting both choices and
relative risk

Cherchi et al. (2020) EEG: activity from many
locations

Implied effort in decision-
making

SP, car preferences n/a n/a Repeated measures ANOVA to test
differences across tasks

De Martino et al.
(2013)

fMRI: ventromedial
prefrontal cortex

Implied confidence in choice SP, food preferences n/a D Correlation between neural activity and
stated choice confidence ratings

Gluth et al. (2015) fMRI: activity from many
locations

Location of neural activity
associated with specific tasks

SP, food preferences n/a D Regressions for neural activity based on
(independent) choice modelling outputs

Haufe et al. (2011) EEG: activity from many
locations

Timing of decision-making Driving simulator,
emergency brake responses

n/a n/a Comparison of neural activity time and
action (breaking) times

Hsu et al. (2005) fMRI: activity from many
locations

Location of neural activity
associated with specific tasks

SP, risky and ambiguous
decision-making

n/a D Regressions for neural activity based on
choice task attributes

Karuppusamy and
Kang (2020)

EEG: alpha wave activity Implied drowsiness of driver Driving simulator,
drowsiness when driving

n/a n/a Prediction of driver drowsiness based on
EEG activity

Lusk et al. (2016) fMRI: ventromedial
prefrontal cortex activity

Implied preference for
alternatives

SP, food preferences 2 B, C Probabilities of choice alternatives based on
fMRI activity

Markkula et al. (2021) EEG: activity from many
locations

Timing of detection of stimuli Perceptual, collision threat
detection

n/a D Prediction of neural activity times based on
task variables

Rao et al. (2011) fMRI: dorsomedial
prefrontal cortex activity

Location of neural activity
associated with specific tasks

SP, risky decision-making n/a D Regressions for neural activity based on
choice task attributes

Rodriguez et al.
(2015)

fMRI: activity from many
locations

Location of neural activity
associated with specific tasks

SP, intertemporal choice n/a D Regressions for neural activity based on
(independent) choice modelling outputs

Telpaz et al. (2015) EEG: theta wave activity Implied preference for
alternatives

SP, consumer preferences n/a D Correlation between neural activity and
preferences

Webb et al. (2013) fMRI: medial prefrontal
cortex activity

Implied preference for
alternatives

SP, consumer preferences 2 B, C Probabilities of choice alternatives based on
fMRI activity

Webb et al. (2019) fMRI: medial prefrontal
cortex activity

Implied preference for
alternatives

SP, consumer preferences 2 B, C Probabilities of choice alternatives based on
fMRI activity

Wu et al. (2021) EEG: activity from many
locations

Implied drowsiness of pilot Flight simulator,
measurement of fatigue

n/a n/a Prediction of pilot drowsiness based on EEG
activity

*Note that ‘n/a’ in the Framework column refers to cases where methods other than choice modelling were used.
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(at time point s) for decisions regarding cycling speed (to brake, maintain speed, wait or
accelerate) is then also a function of latent risk:

Un,s,i = f (an,s, xn,s,i,k). (13)

3.3.4. Models based on Framework 2
Lusk et al. (2016) developed a random utility model that incorporated fMRI outputs. First,
they measured the participant’s ventromedial prefrontal cortex response to different attri-
butes of boxes of eggs, presented individually (low prices, high prices, free range or caged
hens). Second, participants completed a number of stated choice tasks, where their pre-
ference for different alternatives could be related to their fMRI responses. Thus, the utility
for a box of eggs was defined:

Un,s,i = f (xn,s,i,k , bk, In,k,l), (14a)

= (bcost1 + bcost2 · In,cost,l) · costn,s,i + (b fr1 + b fr2 · In,fr,l) · freen,s,i + di, (14b)

where costn,s,i is the cost of alternative i in choice task s faced by respondent n, freen,s,i is a
dummy variable set to a value of 1 if the eggs are from free-range hens, and 0 otherwise,
di is an alternative specific constant and In,cost,l and In,fr,l are the ventromedial prefrontal
cortex responses to different attributes levels, l (from the first phase of the experiment).
This specification, as with Equation (4) for eye-tracking information, is thus based on a
standard utility specification but with additional parameters for capturing the relative
importance of attributes based on physiological information.

Furthermore, a “neural random utility model” (NRUM, Webb et al., 2013) was devel-
oped to predict which of a pair of products a consumer will choose on the basis of differ-
ences in fMRI readings. In these models (which have typically been based on probit
models), the utility for a single item is simply based on the fMRI output (In,s,i):

Un,s,i = In,s,i · m, (15)

where the only estimated term is the scale. Extensions to these models include incorpor-
ating measurement error (Webb et al., 2019). Similar approaches have also been adopted
with the use of EEG data, which as a contrast to fMRI, has low spatial resolution but high
temporal resolution. It is consequently easier to use for studying phenomena such as pre-
ference formation. EEG is thus also often used within neuromarketing research (e.g. Telpaz
et al., 2015).

4. Next steps

In this section, we first summarise the key barriers that have thus far hindered the use of
physiological sensor data within travel choice models. We then consider how we might
overcome these barriers and discuss a number of opportunities presented by the
further use of this kind of data.

4.1. Barriers for implementation

Whilst the previous section has demonstrated a number of successful uses of physiologi-
cal sensor data, there are a number of barriers that have thus far stopped the widespread
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use of this kind of data in the context of mathematical modelling of travel choices. These
barriers can be grouped into three key areas of concern: (1) interpretation of physiological
sensor data; (2) methodological; (3) economic.

Firstly, it can be difficult to relate physiological sensor data directly to specific observed
events or effects, even in the context of laboratory settings. This is due to the fact that phys-
iological sensors produce noisy signals which are typically very large due to the high res-
olution. This is particularly an issue for brain imaging data such as EEG, which can easily
produce thousands of observations per second, thus requiring extensive data processing
(Sanders et al., 2020; Sanei & Chambers, 2013), and is subject to perturbations due to volun-
tary (e.g. moving limbs), non-voluntary actions (e.g. blinking eye) and environmental
changes (e.g. change in lighting levels). Consequently, to relate data to observable
effects, significant restraining or simplification of choice tasks is often required. This
becomes a particular challenge in the context of real-world scenarios, where the travel
contexts are less controllable and often only partially observable. Though the level of
noise is comparatively less in the case of biomarker data, they are often more susceptible
to external environmental factors. For example, the effect of weather and humidity can
pose risks in getting consistent skin conductance data and appropriate corrections
factors may be warranted. Further, such data have high levels of state-dependence with
spikes triggered by earlier events leaving residuals that affect the subsequent measure-
ments (i.e. an elevated heart rate caused by a stressful event can take a while to return
to normal). This leads to significant complications in terms of direct interpretation of the
outputs from physiological sensors. Moreover, the properties of the biomarkers tend to
be person-specific. For example, the same level of stress can lead to different amplitudes
of heart rate variations among different people. To address this issue, person-specific base
levels of each biomarker need to be pre-determined (as done for heart rate in Paschalidis
et al., 2019) which results in the requirement of large sample sizes at the individual-level
before these variables can have significant effects in models (as highlighted by Smets
et al., 2018). There are also large differences in brain activity between hypothetical and
real-world contexts (Camerer & Mobbs, 2017). The wider variety of stimuli in the real-
world contexts could not only impact measurements but be impossible to account for.
For example, Engström et al. (2017) show that increased cognitive load (e.g. from a conver-
sation on the phone) can lead to arousal of heart-rate and result in worse driving decisions.
A further complication for use of these types of data in real-world settings is that synchrony
of equipment is crucial, as some events of interest may have temporary effects that are
observable in physiological sensor data for only a few milliseconds (this is particularly
the case for perceptual cues, see Jamal et al., 2015) and can be missed.

Secondly, incorporating the physiological sensor data in choice models is complex and
has several methodological challenges. In fact, this is partly the reason why in a major
share of the previous studies (both in travel and other choice contexts), physiological
sensor data have been used to test only simple statistical measures such as how much
outputs from these sensors correlate with other observed variables. For the behavioural
models that do incorporate physiological sensor data, it is far simpler to use them as
explanatory variables, but more challenging to include them as indicators. On the con-
trary, theoretical arguments and empirical evidence (i.e. Krucien et al., 2017) imply that
among the two approaches (directly observable vs. latent), the latent approach should
be adopted. This difficulty arises from the problem of finding alternative explanatory
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variables to use to explain or inform estimates for physiological indicators. For example,
there are no a priori socio-demographic variables that can easily be linked to where
different individuals will look in a given choice context. As highlighted by the different
equations in the previous section, methodological issues also exist in the form of a lack
of an established practice for the incorporation of physiological sensor data, both in
terms of which type of framework to adopt, and the functional form in which the
sensor data is included. The existing studies adopt many different approaches, with the
result that analysts looking to utilise sensor data have too many options for possible func-
tional forms to incorporate the data. This is partly a result of the fact that utility-based
choice models have few clear conceptually obvious options for where sensor data
should fit into the model. This is even the case for eye-tracking information, for which
different levels of attention could impact attributes/alternatives in different ways, both
psychologically (conceptually) and statistically (the mathematical impact of parameters)
within a model. This issue is of particular concern when considering brain-imaging
data, where having thousands of data points per second means that mapping a signal
to some cognitive process can itself be a complex process, before even introducing
this data into a choice model.

Finally, experimental costs are of course a clear restriction on the use of physiological
sensor data. As well as upfront monetary costs of equipment, there are heavy labour costs
associated with the use of physiological sensor data. Much time is required to set up par-
ticipants with the sensors, which may also be uncomfortable or intrusive (resulting fre-
quently in limited participant numbers), and for some types of sensors, the knowledge
requirement for interpreting data is inhibiting (Gramfort et al., 2013). For example,
some knowledge of physics, signal processing, statistics, and numerical methods is
required to interpret EEG data.

Overall, whilst there may seemmany barriers, the following section highlights methods
for mitigating issues, as well as alternative opportunities presented by the further utilis-
ation of physiological sensor data.

4.2. Opportunities

The barriers listed in the previous sub-section can be used to formulate the agenda for
future research for overcoming the barriers. The key research opportunities in the field
are mapped onto the challenges presented in Figure 3 and are detailed below.

Firstly, with regards to issues pertaining to how to incorporate physiological data, there
is clear scope for further empirical comparisons of our respective frameworks (visualised
in Figures 1 and 2), with Krucien et al. (2017)’s results favouring the adoption of a latent
variable framework. Results may differ across contexts and depending on the type of
physiological sensor data, though hybrid approaches appear to be the more flexible
option given they allow for measurement errors in the sensor data. It should also be
noted that whilst there has thus far been limited uptake of latent variable approaches
for physiological sensor data, this is not a result of it being difficult to predict this data
on its own. There are many examples in Tables 2–4 where the focus is on the prediction
of physiological sensor data alone (without corresponding choice data). This demon-
strates that there is substantial scope for future development of models following Frame-
work 1.
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Further modelling framework tests are also possible through implementations of phys-
iological sensor data into psychological choice models (Hancock et al., 2022). Within the
context of cognitive psychology, a number of psychological choice models exist that have
“process parameters” (Busemeyer et al., 2019; Hancock et al., 2021) that may provide
clearer conceptual links with physiological sensor data. For example, decision field
theory has attribute attention weights as well as attribute importance weights
(Hancock et al., 2021) in addition to a parameter that could be a proxy for how long
the decision-maker considers their alternatives (Hancock et al., 2019), meaning that
elements of the decision-making process have their own distinct parameters. Thus
further use of physiological sensor data will allow for further testing of the behavioural
assumptions of psychological choice models. This may lead to a wider gap between
the psychological choice models and those built on econometric theory compared to
the small differences that are found while using choice-only data (Hancock et al., 2021).

Future work could also incorporate both of the above elements: testing latent variable
versions of psychological choice models (which, as far as the authors are aware, have
never been tested). These models, for example, could then have a latent process
driving ‘speed of information processing’, which would then impact the parameters
within these models that are related to the length of time spent on the decision-
making process (which in turn impacts the probabilities of choosing the different alterna-
tives, e.g. the parameter for the number of preference updating steps in a decision field
theory model, Hancock et al., 2019). Such models can be also extended to quantify well-
being impacts by linking them with measurements of brain activity (e.g. EEG outputs).
This may also help split the decision-making process into distinct parts: the perception
of information and the processing of information. This is in line with research from

Figure 3. Overview of the key barriers, challenges and possible opportunities for the integration of
physiological sensor data into choice models.
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neuroscience, where fMRI studies demonstrate that there are different regions of the
brain associated with the integration of information and the interpretation of it (Zysset
et al., 2006).

Additionally, with regard to reducing the noise in sensor data, it may be possible that
supplementary information or more advanced modelling specifications could be used for
the calibration of person-specific parts of the model. For example, Tarabay and Abou-Zeid
(2021) use a dynamic model to account for serial correlation in their hybrid model quan-
tifying the impact of stress on driving decisions, Wu et al. (2021) demonstrate that hidden
Markov models can be used to dynamically account for the accumulation of stress over
time, and Gao et al. (2019) demonstrate that machine learning methods can be used to
relate EEG measures to how fatigued a driver is. Further development of advanced
methods such as these may allow for easier interpretations of the dynamic effects
observed in physiological sensor data.

There are also a number of other sources/types of physiological data that have thus far
received very little attention within the context of travel behaviour research. For example,
facial expressions could be used, with Katsis et al. (2011a) demonstrating that the
emotional states of drivers could be established with a wearable system that could
record facial expressions, which can then be classified with machine learning methods.
Furthermore, facial electromyography (facial EMG), which records face muscular move-
ments, has been used to interpret a decision-maker’s reaction in consumer stated
choice tasks (Rasch et al., 2015). Alternatively, voice data could be used, with machine
learning methods now advanced enough to, for example, infer stress levels from the
pitch and word intervals (Adams et al., 2014). These new data sources may help to
capture heterogeneity in behaviour within individuals, as well as helping to more
clearly link other physiological sensor data with specific observed events.

Furthermore, research involving self-reported measures (e.g. well-being (Abou-Zeid &
Ben-Akiva, 2012; Carrel et al., 2016) or personality types (Boyce et al., 2019; Calastri et al.,
2017)), are typically subject to significant reporting biases. Physiological sensor data have
significant promise to complement or replace these measures with potentially more
dependable data. For example, EEG can produce biomarkers of well-being (Chilver
et al., 2020) that can be used to recognise emotion by the deployment of supervised
machine learning techniques (Liu et al., 2011). Similarly, preliminary research suggests
that it may be possible to use EEG to identify some elements of an individual’s personality
(Li et al., 2020). Thus, combined with physiological measures of stress, a researcher may be
able to directly estimate participants’ state of mind.

Finally, continuous advances in technology may reduce the monetary costs of equip-
ment, or alternatively provide more advanced equipment that is more user-friendly and
easier to implement (e.g. less intrusive eye-tracking equipment could be used to monitor
real-world driving behaviour (Khan & Lee, 2019)).

5. Conclusions

In this paper, we start by discussing a number of important benefits for travel behaviour
analysis that will arise from the use of physiological sensor data in mathematical models
of travel choices. We then give two generalised frameworks for the inclusion of this data in
choice models, with the key difference between the frameworks being the placement of
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the sensor data within the model. There are key advantages to using the data exogen-
ously to explain choices, such as the fact that they can result in improved prediction of
choices (e.g. Hancock et al., (2022) demonstrate that eye-tracking and stress measurement
data can help predict a driver’s gap acceptance decisions). However, the use of latent vari-
ables avoids potential measurement error (a decision-maker may not be considering the
attributes of an alternative that they are looking at) though comes at a cost of the require-
ment of additional data (usually further characteristics of a decision-maker) to explain the
latent variable that drives both choice data and sensor measurement data.

We discuss a number of results observed from the incorporation of physiological
sensor data, demonstrating the wide variety of methodological setups that have been
used in previous research, and relating these to either one of the generalised frameworks
presented in this paper. Notably, most applications thus far fall into the category of using
physiological sensor data exogenously (Framework 2) though there has been a recent
shift towards the use of latent variables. The aims of the analyst likely influence the
choice of framework, as, for example, additional data or variables (e.g. choice task
difficulty) may be required to also explain sensor data in a latent variable approach.
However, forecasting of choices using a model designed in line with Framework 2
would require some possibly ad-hoc modelling assumptions as well as intensive simu-
lations of sensor data to generate choices for new choice scenarios.

We conclude by detailing a number of barriers inhibiting the use of physiological data
and giving some potential solutions, as well as further opportunities for future research.
Whilst the work in this paper focuses on how to integrate physiological sensor data into
choice models, it should be noted that a separate study on how to use this data more gen-
erally for travel behaviour analysis would likely help increase the use of physiological
sensor data for travel behaviour research.

Overall, key avenues for future research include further direct comparisons of method-
ologies, enriching choice modelling with concepts of neuropsychology and mathematical
psychology, the use of alternative types of physiological sensor data not yet integrated
into choice models (e.g. facial expressions) and further utilisation of physiological
sensor data to help explain both inter and intra-respondent heterogeneity in real-world
contexts. These will undoubtedly advance our understanding of travel behaviour and
result in models that are both more valid and more realistic.
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