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Abstract—Brain-computer interface (BCI) can provide a direct
communication path between the human brain and an external
device. The steady-state visual evoked potential (SSVEP)-based
BCI has been widely explored in the past decades due to its
high signal-to-noise ratio and fast communication rate. Several
spatial filtering methods have been developed for frequency
detection. However the temporal knowledge contained in the
SSVEP signal is not effectively utilized. In this study, we propose
a canonical correlation analysis (CCA)-based spatio-temporal
filtering method to improve target classification. The training
signal and two types of template signals (i.e. individual template
and artificial sine-cosine reference) are first augmented via
temporal information. Three sets of augmented data are then
concatenated by trials. The CCA is performed twice, between the
newly obtained training data and each template. The trained four
spatial filters can be applied in the following test process. A public
benchmark dataset was used to evaluate the performance of the
proposed method and the other three comparing methods, such
as CCA, MsetCCA, and TRCA. The experimental results indicate
that the proposed method yields significantly higher performance.
This paper also explored the effects of the number of electrodes
and training blocks on classification accuracy. The results further
demonstrated the effectiveness of the proposed method in SSVEP
detection.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), data augmentation

I. INTRODUCTION

Brain-computer interface (BCI) is a human-computer inter-

action technology that enables people to communicate with

an external device directly via brain activities [1]. Among

various brain signals, the steady-state visual evoked potential

(SSVEP)-based BCI system has been widely explored because

it is non-invasive, low cost, and has relatively high information

transfer rates (ITR) and signal-to-noise ratio (SNR). In recent

decades, SSVEP-based BCI technology has been applied in

many applications, such as robotic manipulator grasping [2],

speller system [3] and wheelchair control [4].

SSVEPs are periodic neural signals that indicate the elec-

trical responses to visual stimuli at specific frequencies and

phases [5]. The evoked responses contain oscillations not
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only at the stimulus frequency but also its higher harmonics

[6]. In the past decades, many target recognition methods

were investigated to analyze the features of SSVEPs and

detect the subject’s intent to operate the peripheral device.

The spatial filter-based methods conventionally leverage multi-

channel data to achieve target detection, such as minimum

energy combination (MEC), common spatial pattern (CSP),

multivariate synchronization index (MSI), and canonical corre-

lation analysis (CCA) [7]. Among these methods, CCA gained

the most attention due to its ease of use and high efficiency.

In recent years, many methods have been proposed to further

improve its classification performance. The representatives

include extended CCA (eCCA) [8], L1-regularized multiway

CCA (L1-MCCA) [9], multiset CCA (MsetCCA) [10], filter

bank CCA (FBCCA) [11] and task-related component anal-

ysis (TRCA) [12]. Various studies have demonstrated that

TRCA is more effective than CCA, MsetCCA, and eCCA in

SSVEP-based BCI [12], [13]. Recently, several CCA-based

methods employed the concatenation idea in SSVEP classi-

fication, showing better performance than TRCA. Wei et.al

[14] proposed a training data-driven CCA (tdCCA), in which

concatenated training data and individual templates were used

as the input of CCA to train spatial filters. Similarly, Yuan

et.al [15] proposed a method in which spatial filters are trained

using concatenated individual training signals and sine-cosine

reference signals. Although the methods mentioned above have

shown effectiveness in SSVEP detection, there is still potential

for improvement. The spatial filters designed in most previous

methods normally have two functions: to optimise reference

signals in CCA such as L1-MCCA and MsetCCA [16] or to

optimise a separate correlation analysis procedure (between

test data and individual templates) such as TRCA [12] and

tdCCA [14]. However, the temporal information in SSVEP

signals is not fully utilised and may contribute to improving

the classification performance of a SSVEP-based BCI system.

In this study, we proposed a CCA-based spatio-temporal

filtering method to enhance the SSVEP recognition perfor-

mance. The training trial, individual templates and sine-cosine

reference signals are all augmented via temporal information.

Thus, the augmented data consists of the original data and

its multiple time-delayed copies. Correlation analysis is firstly



Fig. 1. Diagram of the proposed CCA-based spatio-temporal filtering method for SSVEP classification.

performed between two concatenated matrices constituted by

augmented training data and individual templates. Then, CCA

is employed again between augmented training data and

sine-cosine reference signals. Therefore, four spatial filters

are obtained during the training process. The classification

performance was evaluated on a 40-target public benchmark

dataset. The results demonstrated that the proposed method

outperformed CCA, MsetCCA, and TRCA with an average

classification accuracy of 90.5% at 1s time window (TW).

The remaining paper is arranged as follows: The dataset and

CCA-based spatio-temporal filtering target recognition method

are described in Section II. The results and discussion are

presented in Section III. Section IV provides the conclusion.

II. MATERIAL AND METHOD

A. Dataset Description

In the benchmark dataset [3], SSVEP data was recorded

from thirty-five participates (seventeen females and eighteen

males, mean age: twenty-two years). All people were healthy

and had normal or corrected to normal vision.

1) Stimulus Design: The stimulation interface includes 5×
8 stimulus matrix coded using a joint frequency and phase

modulation method. The frequencies range from 8 Hz to 15.8

Hz with an interval of 0.2 Hz. The phase difference between

two neighboring stimuli is 0.5π. For each participant, the data

contains six blocks of forty trials associated with forty stimuli.

2) EEG Recording: The data were selected from nine elec-

trodes, namely Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2.

The ground was located between Fz and FPz. The reference

was placed on the vertex. The sample rate is 250 Hz.

B. Data Preprocessing

Taking into account the latency delay in human visual

system, the signal behind 0.14s is retrieved for analysis. The

Chebyshev Type I Infinite Impulse Response (IIR) filter was

applied in this work to create band-pass filters. The data were

filtered between seven Hz and ninety Hz.

C. Method Description

This study proposed a CCA-based spatio-temporal filtering

method to enhance SSVEP detection. The framework of the

proposed method was shown in Fig. 1. Suppose χi,h ∈

R
Nc×Ns is the h-th training trial from i-th frequency where

h = 1, 2, ..., Nt and i = 1, 2, ..., Nf . Hereafter, Nc, Ns, Nt,

and Nf represent the number of channels, the number of

samples, the number of training trials, and the number of the

frequencies, respectively. For each training trial, an augmented

data matrix χ̃ ∈ R
(d+1)Nc×Ns is defined as:

χ̃i,h = [χT
i,h,χ

T
i,h,1, ...,χ

T
i,h,d]

T (1)

where χi,h,d ∈ R
Nc×Ns represents training trial χi,h delayed

by d samples. Thus, the augmented data matrix contains both

the original training trial and multiple time-delayed copies

[17], [18]. χ̂i = [χ̃i,1, χ̃i,2, ..., χ̃i,Nt
] ∈ R

(d+1)Nc×(Ns·Nt)

is the continuous training data constructed by concatenat-

ing Nt training trials. The augmented individual template is

χi =
1
Nt

Nt∑
h=1

χ̃i,h ∈ R
(d+1)Nc×Ns which is obtained by aver-

aging all augmented training trials. Similarly, the continuous

individual template is concatenated as Si = [χi,χi, ...,χi] ∈
R

(d+1)Nc×(Ns·Nt). SSVEP signals could also be characterized

by sine-cosine waves, and the reference signal Yi ∈ R
2Nh×Ns

for i-th stimulus can be defined as:

Yi =




sin(2πft)
cos(2πft)

...

sin(2πNhft)
cos(2πNhft)



, t = [1/Fs, 2/Fs, ..., Ns/Fs] (2)

where Nh represents the number of harmonics, f is stimu-

lation frequency, and Fs is the sampling rate (i.e. 250 Hz

in this study). Similarly, the augmented reference signal Ỹi

is constructed by original signal and its time-delay copies.

Thus, the concatenated reference signal is represented as

Ŷi = [Ỹi, Ỹi, ..., Ỹi] ∈ R
2(d+1)Nh×(Ns·Nt).



The CCA are performed twice for each stimulus in the

training stage. Firstly, CCA tries to seeks a pair of spatial

filters wi ∈ R
(d+1)Nc×1 and ws ∈ R

(d+1)Nc×1 so that the

correlation between two projections wxχ̂i and wsSi can be

maximized as follows:

r1i = max
wi,ti

E[wT
i χ̂iS

T
i ti]√

E[wT
i χ̂iχ̂

T
i wi]

√
E[tTi SiS

T
i ti]

(3)

Correlation analysis is applied again between χ̂i and Ŷi:

r2i = max
ui,vi

E[uT
i χ̂iY

T
i vi]

√
E[uT

i χ̂iχ̂
T
i ui]

√
E[vT

i ŶiŶ
T
i vi]

(4)

The augmentation procedure is also applied to the text

data X ∈ R
Nc×Ns . Suppose the augmented test data is

X̃ ∈ R
(d+1)Nc×Ns . Once the spatial filter wi, ti, ui, and

vi for i-th stimulus are obtained, the following two Pearson

correlation coefficients can be calculated as follows:

ρ1i = corr(X̃Twi,χ
T
i ti), i = 1, 2, ..., Nf (5)

ρ2i = corr(X̃Tui, Ỹ
T
i vi), i = 1, 2, ..., Nf (6)

The above two correlation coefficients are weighted as the final

feature for SSVEP recognition:

ρi =

2∑

n=1

sign(ρni )(ρ
n
i )

2, i = 1, 2, ..., Nf (7)

The frequency of the test data X can be determined by the

following equation:

f = argmax
fi

ρi, i = 1, 2, ..., Nf (8)

III. RESULTS AND DISCUSSION

A. Performance Evaluation

Fig. 2 shows performance comparison results for CCA,

Msetcca, TRCA, and the proposed method in terms of (a)

average classification accuracy and (b) ITRs with the public

benchmark dataset. Empirically, Nh = 5, d = 1 for this

dataset. The results illustrate that the proposed method out-

performed three comparing methods at all TWs. The highest

accuracy for the proposed method is 90.50% with 1 s TW,

whereas the highest ITRs is 189.12 bits/min with 0.8 s TW.

The one-way repeated measures ANOVA was performed to

explore the difference in accuracy and ITRs between the four

methods. The results revealed that there are statistically sig-

nificant differences between these methods at all data lengths.

Fig. 3 shows the probability density of classification accu-

racy across all subjects for the proposed method and three

comparing methods. The violin indicates not only the median

values but also the distribution of numeric data. It is apparent

that the accuracy provided by all methods show scattered dis-

tributions, this is because the dataset collected SSVEP signals

from thirty-five subjects. More subjects may result in the violin

plot showing more scattered distributions. As shown in Fig. 3,

the proposed method always indicates higher median values
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Fig. 2. Performance comparison among various methods using different TWs
in terms of (1) averaged classification accuracy and (b) average ITRs across
subjects. The error bars indicate standard errors. The asterisks represent sig-
nificant difference between the four methods provided by one-way repeated-
measures ANOVA (∗ p < 0.0001).
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Fig. 3. Violin plots represent the distributions of SSVEP recognition accuracy
of all subjects achieved by the four methods with various TWs on the
benchmark dataset. Black solid line in each violin indicates median, and two
black dotted lines represent interquartile ranges (25% and 75% percentiles).

and a more concentrated distribution. It indicates that the

proposed CCA-based spatio-temporal filtering method could

attain a more stable performance for SSVEP classification.

B. Discussion

The proposed method augments the training data and

templates by considering temporal information. Thus, more

feature-related knowledge was included in the training process.

Besides, in this study, the CCA was employed twice in which

the correlation analysis was performed between the training

data and each type of template. As a result, both individual-



and frequency-related features are extracted in the spatial

filters, which results in higher classification performance.

We further explore the influence of the number of channels

on classification accuracy. Fig. 4 depicts the averaged accuracy

of four methods with different numbers of channels at 0.6s

TW. The heat map depicted the comparison results among

the four recognition methods. The x-axis indicates the method

with corresponding number of channels (from five to nine).

The y-axis refers to the subject index, ranging from one to

thirty-five. The darker colors indicate that the corresponding

method and number of electrodes provide higher accuracy. The

proposed method usually shows deeper color than the other

three methods with various numbers of electrodes. Besides,

when the number of channels increases, the accuracy for four

methods generally increases simultaneously.
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Fig. 4. Heat maps of the SSVEP detection accuracy of four methods with
different number of channels at 0.6s TW.
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Fig. 5. Barcharts of the four methods’ classification accuracy with different
numbers of training blocks. The error bars represent standard errors. The
asterisks represent significant difference between the four methods provided
by one-way repeated-measures ANOVA (∗ p < 0.0001).

Fig. 5 depicts how the number of training blocks affects the

SSVEP detection performance of the four methods at a 0.6 s

TW. It is obvious that the proposed method always provides

the best performance. Besides, one-way repeated-measures

ANOVA shows that there are significant differences among

the four methods with various numbers of training blocks.

IV. CONCLUSION

In this study, a CCA-based spatio-temporal filtering method

was proposed to enhance the classification performance of

SSVEP-based BCI systems. Our method achieved data aug-

mentation for the training data, individual template, and sine-

cosine reference signals via temporal information. The CCA

was employed twice, firstly between augmented training data

and individual templates, and secondly between augmented

training data and artificial references. Thus, four spatial filters

are applied in the test stage. Results based on a public

dataset showed that the proposed method could achieve higher

classification performance than some popular methods.
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