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a b s t r a c t

As with many socio-techno transitions, rural areas often get left behind and Electric Vehicles (EVs) are
no exception. This paper aims to highlight the lack of academic discourse surrounding the transition
to EVs for rural areas as well as presenting the modelling and results of several potential scenarios for
rural EV charging habits. Utilising 7-day travel patterns for a small rural village in the Peak District
National Park, UK, this paper investigates the energy requirements and potential recharging patterns
should this settlement switch all vehicles to EVs. Two key parameters have been incorporated into the
EV charging model; electricity tariffs and charging behaviour based on current battery State of Charge
(SoC). The model simulated a 4 week period, from which a time period, with a minimum length of
one week, where energy balance could be assured for the whole system was extracted. Results show
that instantaneous energy and power requirements can vary drastically depending on electricity tariffs
and charging behaviours which could be a major cause for concern for rural grid infrastructure, and
for the larger EV transition across the UK.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Over the past 50 years, the global temperature has been in-

creasing at an unprecedented rate (NRDC, 2016). This global

temperature increase leads to the interchangeable phenomenon

of Climate Change, and furthermore, can be attributed widely to

the results of human activities; mostly through pollution from

burning fossil fuels (Greenhouse Gases, GHG) (Syed and Khan,

2008). The UK’s latest response to Climate Change is a ‘‘net-zero’’

target by 2050 (BEIS, 2019). This target aims for a 100% decrease

in GHG emissions by 2050, relative to 1990 levels. To achieve this

goal, all sectors of our society will need to reduce their carbon

footprints. One of the most crucial sectors, and the larger focus

of this paper, is the transport sector.

In 2019, transport in the UK was responsible for 122 MtCO2e

of GHG emissions, over 55% of which can be attributed to ‘Cars

& Taxis’ (DfT, 2021). It is worth mentioning that provisional data

for 2020 has since been released (BEIS, 2021), which indicates a

drastic decline of 19.6% compared to 2019 in the transport sectors

GHG emissions. However, this fall is associated with the transport

restrictions placed in response to the COVID 19 pandemic during
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2020 and so are likely to not represent a permanent fall that will
continue through to post-COVID times.

In order to achieve the 2050 target, it is therefore imperative
for the transport sector to reduce its GHG emissions, in par-
ticular from the private passenger vehicle mode. Following this
requirement, a large socio-techno transition is currently under-
way to transition from an internal combustion engine (ICE) based
transport sector to an electric one. Electric Vehicles (EVs) are
low emission vehicles that have been gaining popularity due to
the multiple benefits they can offer society, with sales increasing
600% between 2019 and 2021 (Jolly, 2022). This transition will
one day become non-optional for motorists, since the UK Govern-
ment, as part of their new Ten Point Plan (Energy Saving Trust,
2021) has now agreed to ban the sale of new petrol and diesel
cars and vans from 2030. The sale of hybrids will be allowed to
continue until 2035, at which point all new vehicles sold in the UK
will be fully electric (Energy Saving Trust, 2021). These resolute
timelines are of particular concern for rural communities of the
UK, where private vehicle ownership is a necessity given the lack
of public transport options in these areas (Better Transport, 2018).
Car ownership levels within these communities illustrate this
disparity, with 93% of rural households owning a car, compared
to only 66% for their urban counterparts (DfT, 2018).

Considering the UK Governments ‘Road to Zero’ strategy, this
transition is expected ‘‘to be industry and consumer led’’ (DfT,
2018). As shown by previous socio-techno transitions, such as
Internet connectivity (Williams et al., 2016), rural areas are often
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left behind their urban counterparts. Morton et al. (2018) already
supports this with data indicating the trend towards an urban
switch to EVs beginning to emerge across the number of EV
registrations against location. However, as electric cars will soon
become the only option, it is imperative rural areas are also ready
for EVs, both in terms of the local grid infrastructure as well
as ensuring confidence that the electric vehicles themselves are
sufficient for rural inhabitant’s travel requirements.

As of March 2020, there were 11,293 public charging points in
Great Britain (Hirst, 2020), this equates to 31,504 connections, of
which 24% (7630 charge points) were rapid (+25 kW). However,
there is an uneven geographical distribution of this charging
network (Jolly, 2022) as the majority of the infrastructure pro-
vision has been market-led (DfT, 2020). This unevenness can
be attributed largely to variations in population density, and by
extension, the level of urbanism or rurality of a location. There
are over 100 local authorities in the UK with fewer than 10
public charging devices per 100,000 population (GOV.UK, 2019),
compared to the UK average of 27, and the densest charge point
location, London, with 57 public charging devices per 100,000
population (DfT, 2020).

The focus of this paper is to investigate the impact on a UK
rural community, should their current vehicle population fully
convert to EVs, with respect to the energy and power require-
ments that will be imposed on the local utility grid infrastructure.
Upon understanding their impact, solutions to potential problems
can be devised, so that these rural communities do not struggle
with the EV transition moving forward.

The remainder of this paper is organised as follows: the re-
search approach, including background literature and the high-
lighting of this paper’s contribution will be discussed in Section 2.
The EV Charging model and its simulation process will then be
discussed in Section 3, along with the various scenarios that have
been investigated. Section 4 is the presentation and discussion of
the results and finally, conclusions are made in Section 5.

2. Research approach

The quantity of academic discourse surrounding the EV tran-
sition specific to rural areas is far lower than that for urban
locations, however some studies have highlighted this disparity
and produced work to compensate. Cowie et al. (2020) highlights
not just the lack of consideration regarding EVs in rural areas,
but that the current debates surrounding a wide range of techno-
logical developments which will fundamentally change society,
often referred to as the 4th Industrial revolution, are centred
on the urban scenario. With respect to EVs themselves, Cowie
et al. (2020) points out the ‘‘lack of thinking’’ with using EVs as
regulators for peaks and troughs in renewable energy generation,
as the rural vehicle is much less likely to be spending as much
time parked compared to their urban counterparts, upon which
this demand side management idea is based.

There have been some trials of electric vehicles in rural areas,
most notable, Jones et al. (2020) study of electric vehicles and
rural businesses, who reports the promising suitability of electric
vehicles in a rural setting, given the required support (infras-
tructure enhancement and technical developments) is provided.
As adopted in the model presented in this paper, Jones et al.
(2020) reported the Nissan Leaf as the most popular electric ve-
hicle adopted by the businesses monitored in this trial. Although
Jones et al. (2020) focused on rural businesses and the travelling
required by such, many findings are still applicable to the private
passenger scenario in rural areas.

Compared to urban areas, rural locations and their commu-
nities experience different nuances when it comes to vehicle
usages and grid infrastructure. Most notably is the larger longer

journey distances/times (DEFRA, 2021), see Fig. 1 below, which
gives rise to a much larger cause for concern amongst rural
residents over range anxiety (Jones et al., 2020). Having these
different travel patterns, when conducted by an EV, will result
in differing charging behaviour/profiles compared to their urban
counterparts.

Additionally, rural electrical grids typically consists of less
robust grid infrastructure in general (i.e. smaller substations, or
transformers, attached to wooden poles) (Western Power Distri-
bution, 2022). This has already led to the weaker business cases
when it comes to EV charger point installation (Cooper, 2018)
due to the higher grid connection costs (Parliament House of
Commons, 2018).

It is widely understood and expected that EV uptake will
lead to a greater demand for electricity. From a grid perspective,
this transition will change current load profiles witnessed by the
electricity grid. The most likely scenario being increased local
peaks in consumption, something current grid infrastructure may
struggle with Ridder et al. (2013). Therefore, understanding this
relationship between the EV usage/charging and current electrical
grid capabilities is imperative. Particularly in rural areas where
current infrastructure may already be lacking (Western Power
Distribution, 2019).

Determining EV charging profiles can be achieved in two ways,
and both require the knowledge of travel patterns: (1) conducting
large scale EV trials and analysing empirical data for deduc-
tions and predictions; (2) modelling EV usage and using those
results, alongside potential charging scenarios and assumptions
to determine power and energy demands of the EVs (Brady and
O’Mahony, 2016).

From an empirical data perspective, Kim (2019) analysed em-
pirical meter-level data to investigate the energy load profiles
of residential customers under the Time-Of-Use (TOU) rate with
and without EV charging. When considering the TOU tariffs, a
high correlation was found between charging schedules and the
electricity rate tariff structure participants were contracted to. In-
dividuals’ electricity tariffs heavily influenced the time of day that
people would start charging their EV. TOU and smart charging
tariffs have been recognised as a method to not only shift peak
demands to off-peak times and by doing so alleviate pressures
on grid infrastructure, but also lower the cost of charging an EV
(Hardman et al., 2018). Given the lack of EV trial empirical data
(Jones et al., 2020) for this study, the second approach will be
employed.

Brady and O’Mahony (2016) used simulation to generate a
schedule of daily travel, then based on the daily travel calculated
the State of Charge (SOC) of the EVs through that simulation
period. The energy consumption of the vehicles was set at 0.265
kWh/km. For calculating EV charging, a probabilistic charging
decision model was used to determine when charging takes place.
This decision was based on the State of Charge (SOC) of an
EV at a destination, the duration a vehicle is parked for, and
the current journey number (i.e. how many trips the car has
already undertaken that day, assuming a higher probability that
an individual would charge after the last journey of the day). A
noteworthy consideration is Brady and O’Mahony’s (2016) simu-
lation period, two consecutive days are modelled to reduce the
influence of initial assumptions. This is a common problem faced
when modelling EVs over multiple days — the initialisation of the
SOC on the first day of simulation. Pareschi et al. (2020) used a
‘Day 0’ approach, where an extra day was added to the start of the
simulation time period. On Day 0, all EVs would begin with full
charge, and the end SOC’s used as initial SOC’s on the actual first
day of simulation. The Day 0 approach has been incorporated into
the model presented in this paper, as well as extended periods of
simulation in order to overcome the initial transient state of the
simulation results.
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Fig. 1. Average trips made, and miles travelled per person per year by rural and urban classification of residence: England, 2021 (GOV.UK, 2022).

Brady and O’Mahony (2016) having only modelled 2 days, also
fail to address effects in charging behaviour and thus the impact
on the grid due to longer simulation time periods, i.e. the variance
seen in activity between different days of the week. In particular,
weekday to weekend activity differences, where weekend travel
activity will be significantly less than weekday activity (GOV.UK,
2020).

Hardman et al. (2018) conducted a review into consumer pref-
erences for charging infrastructure, and how they interact with
this infrastructure. It was found that the most popular locations
for EV charging are at home (usually overnight), followed by at
work, and then public locations (i.e. supermarkets). Additionally,
Hardman et al. (2018) showed that 50%–80% of all charging
events occur at home which explicitly links the majority of the
refuelling process of EVs to the vehicle owners’ home (Ofgem,
2018), and by extension the residential energy sector. Hardman
et al. (2018) also highlighted the importance of home charging,
as a mitigation to issues that relate to large-scale public charge
point usage (i.e. congestion) – suggesting pricing and policies
implementation that limits public charging and pushes for home
charging. Hardman et al. (2018) shows that a 100% home charging
scenario is a meaningful basis for investigation and will be the
focus of location for EV charging in this study. Rural areas are
ideal for home charging due to the number of households with
dedicated off-street parking space (driveway or garage), which
can be difficult to find in the built up urban areas.

Crozier et al. (2021) examined various methods for modelling
the variability of EV charging and categorised these methods into
three groups: (1) bottom-up charging models applied to varied
vehicle use, (2) stochastic bottom-up charging models applied to
a fixed set of vehicle usage, and (3) top down stochastic charging
models.

The first group refers to the use of a set of rules which define
the conditions for charging to take place, the most common of
these being for charging to begin after the final journey of the
day (Pashajavid and Golkar, 2012) which is usually at the EV
owners’ home (Kang and Recker, 2009; Hardman et al., 2018).
Expanding this, others have instigated charging whenever the
vehicle is at home (Grahn et al., 2013; Wu et al., 2011). The

second group of models take a given vehicle use and produce a
stochastic estimate of charging. Creating these models requires
large amounts of data pertaining to the usage and charging of
EVs. The variability in charging can be captured through the use
of Monte Carlo simulations, but this approach can overestimate
the peak aggregated charging demand when considering many
agents (vehicles) together (Crozier et al., 2021). The third group
directly models charging, rather than the relationship between
vehicle use and charging. In other words, these are top-down
models for EV charging. This approach is most suited to public
charging investigations, where questions of charge point numbers
and availabilities are the focus (Crozier et al., 2021). The model
presented in this paper adopts a bottom-up charging model ap-
proach (group one) as the basis for the EV charging, the specifics
of the conditions will be discussed in Section 3.

2.1. Research contribution

This paper presents an EV charging model which has been
used to investigate multiple scenarios of charging behaviour for
a small rural village in the UK. This paper aims to contribute
through:

• Addressing the lack of academic discourse on the EV transi-
tion for rural areas

• The development of an EV charging model, adaptable to any
rural community given their travel patterns are known

• Investigating multiple charging scenarios to thoroughly cap-
ture their potential impact on rural grid infrastructure

3. Electric vehicle charging model

To ensure this work has a rural focus at its centre, the small
rural village of Bradbourne, in the Peak District, UK, was chosen
as the base. With this chosen area, the 2011 UK Census provides
the latest figures on the number of households and vehicles via
the surveys published tables, Table QS406EW (Nomis, 2013a) and
Table QS416EW (Nomis, 2013b) respectively, so that this work
may accurately reflect a real life scenario. Bradbourne is home to
49 households and 84 vehicles.
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As highlighted before, a key factor to accurate EV charging pre-
dictions is the knowledge of the underlying travel patterns, as this
will determine when cars are in use or not and thus available for
charging. Travel patterns for this rural scenario were developed
using data from the 2019 National Travel Survey (GOV.UK, 2020).
A detailed 7-day forecast for all 84 vehicles of Bradbourne was
achieved, where the location and miles driven of each vehicle at
a time resolution of every 30 min resulted. The details of this
process will not be discussed any further as it is outside the scope
of this paper.

This section presents a model which takes these travel pat-
terns, and calculates the energy consumed should the car pop-
ulation be replaced by Electric Vehicles. Further to this, poten-
tial charging scenarios are then simulated via a custom written
python script. These processes are all encapsulated into a single
model which will henceforth be referred to as the EV Charging
Model.

3.1. EV charging model parameters

To determine the resulting charging profiles from this travel
activity, certain information is required. This includes:

3.1.1. EV model and specifications

A 100% homogeneous EV car population has been assumed,
composed solely of the 40 kWh Nissan Leaf. This vehicle was
chosen as the authors have access to this car, thus enabling
the possibility of future real-world data collection and analy-
sis. The consumption rate of each Nissan Leaf was set at 26.5
kWh/100mile (Electric Vehicle Database, 2018).

3.1.2. Charge points

As the Nissan Leaf has been selected as the focus of this study,
the Charge Points that will be modelled are Pod Point’s 7 kW
Chargers, a Nissan preferred brand (Nissan, 2021). The Nissan leaf
has one or two on-board charge ports, an optional fast 46 kW
DC port and a standard 6.6 kW AC port. Thus 7 kW Pod Point
charge points will be used to support the standard 6.6 kW AC
port on the Nissan Leaf. The efficiency of the charger and the
battery input have been assumed to be 100%. Every vehicle will be
assumed to have its own Chargepoint, i.e. the number of vehicles
belonging to a household dictates the number of chargepoints at
that household. For example, a 3 vehicle household will have 3
chargers.

3.1.3. Battery capacities

As stated above, the car chosen to act as the EV’s conducting
the predicted travel for the residents of Bradbourne is the 40kWh
Nissan Leaf. For battery life improvement measures, the manu-
facturer limits the range a consumer has ‘access’ to with regards
to the kWh’s of their EV battery. In the case of the Nissan Leaf,
this is 37 kWh (Electric Vehicle Database, 2018). In the model, it
was decided this 3 kWh difference would be split between empty
and fully charged. As another measure to improve the EVs battery
life, the model has been set to keep the batteries state of charge
between 20%–80% (from the consumers perspective, i.e. 20%–80%
of 37 kWh). These various battery charge limits are illustrated in
Fig. 2.

3.1.4. Electricity tariffs and charging times

The start time of a charging event, should it be triggered, is
dependent on the electricity tariff serving the household to which
the current electric vehicle being modelled belongs to. Details
of the requirements to trigger a charging event are dependent
on the type of scenario being modelled and will be discussed in
further details in Section 4.4

Table 1

Electricity Tariff Distribution for 50:50 split scenarios.

House ID Electricity Tariff

1, 2, 6, 9, 11, 14, 15, 17, 18, 19, 21, 22, 23,

24, 25, 28, 29, 30, 32, 35, 38, 39, 41, 47, 49

Standard

3, 4, 5, 7, 8, 10, 12, 13, 16, 20, 26, 27, 31,

33, 34, 36, 37, 40, 42, 43, 44, 45, 46, 48

Economy 7

The electricity tariff is a critical factor which largely influences
charging behaviour, specifically the time of charging (Kim, 2019).
The electricity tariff serving a household is largely dependent on
the type of electricity meter installed at a given house. Whilst
there are multiple types of electricity meters available in the UK,
the standard and economy meters will be focused on in this study
due to their commonplace in UK households.

Corresponding to these two meter types are the electricity
tariffs the households will be presumed to have. Households with
a standard meter will be assumed to be on a standard electricity
tariff (flat rate tariff), and households with an economy meter
will be assumed to be on an economy 7 tariff. At the time of
writing, the average price per kWh on a standard flat rate tariff
is 22.77 p/kWh (Power Compare, 2022), whereas for economy 7
tariffs the higher day unit rate of 27.55 p/kWh is compensated by
the reduced night unit rate of 15.93 p/kWh (Consumer Council,
2022). For households with a standard electricity tariff, charging
the EV will begin as soon as the vehicle is plugged into the charge
point, as timing is no concern from a financial point of view due
to the flat rate pricing nature of the tariff. For households with
an Economy 7 tariff, the charging of the EV will not begin until
00:00 (midnight), when the cheaper, off-peak hours of the tariff
begin. It is assumed that the off-peak hours for the Economy 7
tariff range from 00:00-07:00. Four scenarios for electricity tariff
popularity have been analysed:

1. 100% Economy tariffs

In this scenario every household will be assumed to have
Economy 7 electricity tariffs. As these tariff plans come
recommended for EV charging (Hardman et al., 2018), to
take advantage of cheaper night-time (off-peak) price rates
for charging, they are predicted to become more common
place so it is important to understand impact this could
have.

2. 100% Standard tariffs

In this scenario every household will be assumed to have
Standard Electricity tariffs. This investigation provides con-
trast to the solely Economy 7 scenario due to the timing of
charge events not determined by time of day but when the
vehicles return home.

3. A 50:50 split of the two tariff types

4. 37.5% Standard, 62.5% Economy split of the two tar-

iff types In this scenario, half of the households will be
designated standard tariffs, with the remaining assigned
Economy tariffs. This mixture scenario is aimed at under-
standing the possible demand side management solutions
that tariff options could provide from a grid impact per-
spective. A random number generator was used for the
assignment process of electricity tariffs to each household,
the results of which can be seen in Table 1 below.

This scenario aims to provide the most realistic approach to
the electricity tariff split in the village of Bradbourne. The ‘split’
was determined by postcode level electricity data released by the
UK Government every year which includes the number of meters
and type of meters (BEIS, 2022). Since Bradbourne is comprised
of 6 postcodes (ONS, 2021), the tariffs have been split accordingly
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Fig. 2. Battery Capacity (*Not to Scale).

Table 2

Postcode Level Electricity Meter Data for the postcodes of Bradbourne.

Postcode 2013 2015 2016 2017 2018

Standard Standard Standard Economy Standard Economy Standard Economy

DE6 1NP – – – – – – – –

DE6 1PA 19 19 6 10 6 10 – 10

DE6 1PB 20 15 – 14 – 13 – 13

DE6 1PD – – – – – – – –

DE6 1QY – – – – – – – –

DE6 1RG – – – – – – – –

Table 3

Electricity Tariff Split for realistic scenario.

Standard Electricity Meters Economy 7 Meters

6 10

37.5% 62.5%

Table 4

Electricity Tariff Distribution for 37.5:62.5 split scenarios.

House ID Electricity Tariff

2, 4, 8, 9, 13, 15, 16, 19, 20, 21, 22, 25, 26,

27, 30, 35, 37, 45,

Standard

1, 3, 5, 6, 7, 10, 11, 12, 14, 17, 18, 23, 24,

28, 29, 31, 32, 33, 34, 36, 38, 39, 40, 41,

42, 43, 44, 46, 47, 48, 49

Economy 7

across the households. The number of electric meters, and their
types across Bradbourne’s six postcodes are shown in Table 2.

As shown in Table 2, the published data lacks continuity
across the years and due to their sampling methodology, many
postcodes which serve small numbers of households (<10 – a
common occurrence for rural areas) lack data. For this study, data
from 2016 & 2017 (BEIS 2022) for the postcode DE6 1PA (one of
the six postcodes which make up Bradbourne) was used to derive
a ratio for the two types of electricity meters measured in this
dataset; Standard and Economy 7. These years and this postcode
show the most continuity in readings. The results are shown in
Table 3, as well as the percentage split.

This percentage split was then extrapolated to all the house-
holds of Bradbourne (49), and a random number generator was
used to assign each house one of the two electricity meter types.
Table 4 shows the results of this process, each household, and its
assigned Electricity Tariff.

3.2. The simulation process

The model presented is carried out by a custom written
python script which follows a flowchart like design of rules and
decisions for generating the energy consumed by each vehicle
and the charging events that occur during the simulation time
periods. The overall model process is presented below in Fig. 3.

As detailed by Fig. 3, the predicted 7-day travel patterns for
each of the 84 vehicle belonging to Bradbourne act as the input
for the EV charging model. The simulation can be set for any
number of weeks to run, as the travel pattern is simply re-
peated as many times as required. Additionally, the first Monday’s
travel is replicated and added to the start to act as a ‘Day 0’
(Pareschi et al., 2020). On Day 0, all vehicles start with 100%
battery capacity, and thus a range of State of Charges (SOC’s)
are generated from this Day 0 to act as the starting SOC for the
first Monday of simulation. Using the Nissan Leaf’s consumption
rate of 26.5 kWh/100mile, and the mileages driven forecasted
by the predicted travel patterns, the battery depletion through
the day can be calculated. Once this has completed, should the
battery capacity reach a set lower threshold (<20% taken in the
illustration above) after the last journey of the day (Kang and
Recker, 2009), this will initiate a charging event for that vehicle.
The start time of this charging event depends upon the household
the vehicle belongs to, and specifically the electricity tariff of
said household. As described in Section 3.1.4, if the household is
served by a standard tariff, the charging shall begin immediately
upon the vehicle returning home. On the other hand, should
the household be served by an Economy tariff, the vehicle will
begin charging at midnight, i.e. the start of the following day to
align with the cheaper electricity rates. The vehicle is then either
charged back to a pre-set upper limit threshold (80% taken in the
illustration above), or till the vehicle is set to leave the house the
following day. This whole process then continues for each day
of the week, and for the number of weeks the simulation has
been set to run for. Further charging behaviour scenarios were
also developed, whereby the vehicles were charged every night.
This was achieved through changing the lower 20% threshold in
the model (highlighted in the bold red box) to 80% (i.e. any SoC
less than the 80% capacity limit would initiate a charging event).
This will now be discussed in more detail in the following section.

3.3. Charging scenarios

In total 8 scenarios have been simulated using the EV Charging
Model presented in this paper, these are listed below in Table 5. In
principle, two different charging behaviours have been modelled
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Fig. 3. Flowchart representing the Simulation Process (Charging Initiated when SoC < 20% Scenario).

across a range of electricity tariff combinations. The two charg-
ing behaviours have been chosen as they provide a contrasting
insight into the effects that different EV charging behaviour will
have on the energy and power demand. The first behaviour being
that described previously in Fig. 3, where individuals let their ve-
hicle discharge until 20% remains before charging. This behaviour
is more in line with the refuelling process experienced in the
current ICE regime (Berkeley et al., 2018). In contrast to this,
the other recharging behaviour is that of plugging in the vehicle
to charge every night, regardless of the amount of driving and
or charge undertaken that day. This scenario has been inspired
by the charging behaviour consumers hold for other electrical
devices around the house, i.e. mobile phones, laptops. This is
achieved by setting the lower threshold for initiating charging
in the model to 80%, i.e. any use of the vehicle each day will
initiate a charging event upon that vehicles return following its
last journey of the day. These two charging behaviours aim to
achieve the extreme opposites that is the highly variable nature
of EV charging, a phenomenon due to the inherent variable nature
of human behaviour (Fotouhi et al., 2019).

4. Results and discussion

Simulations ran for a time period of 4 weeks. This was to
ensure no divergences in the longer term, i.e. the scenario would

not end up losing all the energy within the system. From these
results, to ensure an energy balance, a time period was selected
from these 4 weeks. The criteria for this time period being se-
lected was as follows:

• The start and end total battery capacity of the entire EV
population (the sum of all vehicles’ battery capacities at
any one time) would be equal, or as close as possible given
the half-hour resolution of the model. This ensures the 1st
law of thermodynamics of the system is met, i.e. energy in
equals energy out, and thus the system is sustainable.

• The total battery capacity values at the chosen start times
were equal for the four different electricity tariff options, as
well as at the end. This ensured that the electricity tariff
options for each of the two behaviour scenarios could be
compared.

As simulations ran for 4 weeks in total, a weekday and week
number system was employed to differentiate across the weeks.
For these four weeks, the days ran from ‘Mon1’ to ‘Sun4’, where
the day of the week is followed by the week number.

First looking at Scenarios 1, 2, 3 and 4, the results of running
the EV charging model for 4 weeks are shown below, see Fig. 4,
with the selected time period superimposed.

For scenarios 1, 2, 3 and 4, the time period from ‘Week 2
Tuesday’ to ‘Week 4 Monday’ was selected, 03:30 and 10:00
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Table 5

Details of the 8 charging scenarios to be investigated.

No. of Chargers Electricity tariff Scenario

Charging initiates once EV falls

to below 20% SoC1 per car

0% Standard : 100% Economy 1

37.5% Standard : 62.5% Economy 2

50% Standard : 50% Economy 3

100% Standard : 0% Economy 4

No. of Chargers Electricity tariff Scenario

Charging initiates every night
1 per car

0% Standard : 100% Economy 5

37.5% Standard : 62.5% Economy 6

50% Standard : 50% Economy 7

100% Standard : 0% Economy 8

Fig. 4. Total Battery Capacity for the vehicle population of Bradbourne (Scenarios 1, 2, 3 and 4).

respectively. This 13 day period provides an energy balance to
the system when the charging energy and power is investigated
as well as comparable values for the four electricity tariff options.
From Fig. 4, the first indication of scheduled charging events do
not appear until the Tuesday of Week 1. With a population of
84 Nissan Leaf’s, each with capacity of 40 kWh, of which only
37 kWh is available to the consumers, this yields a maximum of
3108 kWh to exist in the system at any one time. The simulation
starts (Monday, Week 1) at roughly 2600 kWh, this is due to
the implementation of the ‘Day 0’ SOC initialisation, i.e. the 84
vehicles do not start with the same full capacity battery, but
rather a range of already depleted batteries. The start and end
SOC’s for each vehicle will be presented later in the paper for only
the selected time period of the scenarios. To reiterate, scenarios
1, 2, 3 and 4 follow the charging behaviour of vehicles not
being charged until they reach the lower threshold of 20%. With
this behaviour in mind, we can see it leads to Bradbourne’s EV
population holding on average 1500 kWh of charge across its 84
vehicles, that equates to an average battery charge of 18 kWh
(48%) at any one time. Turning the focus to the selected time
period of Scenarios 5, 6, 7 and 8, the results of these simulations
can be seen in Fig. 5 below.

Scenarios 5, 6, 7 and 8 focus on charging behaviour centred
around charging every night and the most noticeable difference
this creates compared to the opposing charging behaviour in-
vestigated is the much higher amount of stored energy in the
vehicles at any one time. The average energy in the system has
roughly increased to 2250 kWh due to the much higher frequency
of charging events. With the higher charge threshold set at 80%,

the maximum energy in the system at any one time, i.e. all 84 EVs
holding 80% battery capacity, is 2486 kWh, which the population
in these scenarios achieve almost every night in each of the
four electricity tariff options. Additionally, compared to the other
modelled charging behaviour, the charging pattern is much more
predictable day-to-day, which is beneficial for grid demand man-
agement solutions. The time period selected for these scenarios is
from ‘Monday Week 2’ to ‘Friday Week 3’. Again, this time period
for these scenarios meets the criteria described previously. The
specifics of these selected time periods can be found in Table 6
below.

The time periods detailed in Table 6 will be the period of time
for which the in-depth analysis of the EV charging model results
will be focused on. These results will be presented and discussed
in the following two subsections (4.1 & 4.2).

4.1. Scenarios 1, 2, 3 and 4

Fig. 6 below shows the predicted power consumption across
the selected time periods for these four scenarios given the pop-
ulation of 84 electric vehicles in Bradbourne. The highest peak
energy demands consistently belong to the 100% Economy tariff
scenario, with the consumption spread out over a longer period
of time with the higher the number of standard tariff house-
holds. This is expected as the charging events for standard tariff
households can begin at any time and are thus dictated by the
travel patterns of the individual vehicles, which vary from vehicle
to vehicle and thus give rise to this spread. When considering
the higher proportion of Economy tariff scenarios, the charging
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Fig. 5. Total Battery Capacity for the vehicle population of Bradbourne (Scenarios 5, 6, 7 and 8).

Table 6

Selected Time Periods for the 8 scenarios investigated.

No. of Chargers Electricity tariff Scenario

Charging initiates once

EV falls to below 20%

SoC

Time Period (Tue2

03:30–Mon4 10:00)

(kWh)

Delta (kWh)

1 per car

0% Standard : 100% Economy 1 1872.16–1896.987 +24.827

37.5% Standard : 62.5% Economy 2 1875.787–1877.915 +2.128

50% Standard : 50% Economy 3 1898.89–1896.987 −1.903

100% Standard : 0% Economy 4 1884.796–1790.598 −94.198

No. of Chargers Electricity tariff Scenario

Charging initiates every

night

Time Period (Mon2

05:00–Fri3 05:30) (kWh)

Delta (kWh)

1 per car

0% Standard : 100% Economy 5

2486.4–2484.534 −1.866
37.5% Standard : 62.5% Economy 6

50% Standard : 50% Economy 7

100% Standard : 0% Economy 8

events are largely dominated by the midnight start time, resulting
in the higher peaks at midnight. The difference between peak
power demands of the opposing tariff scenarios (100% Econ-
omy vs. 100% Standard) is significant, over 200 kW compared to
roughly 100 kW respectively. Indicating the types of electricity
tariffs in this community can result in an 100% increase in peak
energy demands.

The energy demand due to the 84 chargers follows a similar
profile with only half the magnitude of the power demand. This
is due to the nature of the 7 kW charger and half-hourly time
resolution used by the model. Fig. 6 indicates that the ‘50% Econ-
omy, 50% Standard’, provides the largest balance of delivering the
required power and energy over the longest period of time, thus
proving the least cause for concern from a grid perspective.

Looking at the State of Charge of the vehicles in the model,
in particular the start and finish SOC’s, Figs. 7 and 8 show that
great variability in these parameters was achieved through this
model. Fig. 7 presents just the 100% Economy tariff, with the start
and end SOC for each vehicle, as well as the direction of the SOC
change over the course of the selected time period for scenario 1
(Tue2 03:30–Mon4 10:00). Whereas, to show this same variability
across the other tariff scenarios, a subplot has been created for all
three, see Fig. 8.

It should be noted that in Scenario 1, 2, 3 and 4, as a conse-
quence of the simulation methodology, multiple vehicles reached

0% capacity during usage and thus would not suffice for these
required journey routes. Due to the nature of charging events
only occurring once the 20% threshold has been reached, if a
vehicle reaches a low state of charge, for example 22% after the
last journey of the day, a charging event for this vehicle will
not be triggered that night and thus this vehicle is required to
complete the travel activities of the following day with only
22% capacity. Should this day’s activity require more than 22%
capacity of the battery, this results in the vehicle modelled to
reach 0% battery capacity, being unable to continue the days
travel journeys should this happen in real life. The worst case
being a total of 29 vehicles experiencing an empty battery at
some point during the simulation period for the 100% Economy
scenario. This could be solved by adding a ‘foresight’ aspect to
the custom written python algorithm which considers the next
day’s travel activity in its decision to initiate a charging event,
a behaviour likely to be shown by a real-life EV consumer. This
is also solved by raising the lower charging threshold, as will be
shown in the following scenarios 5, 6, 7 and 8.

4.2. Scenarios 5, 6, 7 and 8

Scenarios 5, 6, 7 and 8 focused on the charging behaviour
whereby each vehicle is charged every night, regardless of the
days travel. This was repeated for a range of different electricity
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Fig. 6. Charging Power for scenarios 1, 2, 3 and 4.

Fig. 7. Start and End SOC’s for scenario 1 (100% Economy tariffs).

tariff combinations for the various households of Bradbourne
to create these four scenarios. Fig. 9 below shows the power
demand for each of these four scenarios over the selected time
period. What becomes most apparent when comparing these four
scenarios (scenarios 5, 6, 7 and 8) to the first four (scenario 1, 2, 3
and 4) is the much higher magnitude for the high Economy tariff
scenarios, which has almost doubled. This is due to the number
of chargers in use at any one time, due to the much higher
frequency of charging events in these scenarios. Thus resulting
in a higher peak demand but existing for a much shorter amount
of time. Conversely, when comparing the higher standard tariff
scenarios of both charging behaviours (scenarios 2 and 4 against
scenarios 7 and 8), the power demand at any one time decreases
for the latter charging behaviour (charging every night). This is
due to the higher frequency of charging in these latest scenarios,
combined with the high standard tariff distributions enabling
charging events to occur over a larger period of time and thus
reducing the larger instantaneous demands seen in scenarios 3
and 4.

Overall, in scenarios 5, 6, 7 and 8, the charging times have

dropped compared to scenarios 1, 2, 3, and 4. These behaviours,

likewise again are seen in the energy demand, which can be en-

visaged as the same problem but with half the magnitude. When

considering the grid impact, the drastically higher power demand,

not only compared to the previous four scenarios (scenarios 1,

2, 3 and 4), but especially considering the higher Economy split

tariff options (scenarios 5 and 6) is cause for concern. Should

the current grid load be considered, local rural grid infrastructure

capabilities will need to be thoroughly assessed to withstand peak

demand increases up to 0.5 MW. This paper only considers 84

vehicles (or in other words, 84 charge points), when in reality,

many more would be expected to be linked to the local substation

that serves not only Bradbourne but other surrounding villages.

Looking at the vehicles SOC’s in scenarios 5, 6, 7 and 8. This

time the 100% Standard is presented by itself, see Fig. 10 as this

had the most variability in start and end SOC’s compared to the

other 3 tariff split options, presented in Fig. 11.
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Fig. 8. Start and End SOC’s for scenarios 2, 3 and 4.

Fig. 9. Charging Power for scenarios 5, 6, 7 and 8.

As shown by Figs. 10 and 11, some vehicles end up with less

than 80% SOC at the end of the selected time period. For these

four scenarios where every car is recharged back to 80% every

night, this would seem to highlight an error. However, some

vehicle’s travel patterns belong to individuals simulated to have

overnight work patterns, resulting in these few vehicles either

having not yet returned home to charge, or already returned but

yet to complete their latest charging event.
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Fig. 10. Start and End SOC’s for scenario 8 (100% Standard tariffs).

Fig. 11. Start and End SOC’s for scenarios 5, 6 and 7.

When considering the EV chargers by themselves, i.e. not in
relation to the grids current demand, these results indicate that
a push for more standard tariffs to become the mainstream tariff
option for households would be the more ideal case for demand
side management. This would go against the perceived notion
that EV charging should be pushed to the early hours for demand
management, a fact that many energy companies are basing their
EV specific tariffs on (cheaper rates overnight). However, inves-
tigations into the addition of these energy and power demands

with current grid readings for energy and power will be required
in order to draw a final conclusion on this matter.

A key parameter of this model which requires further atten-
tion is the allocation of one charger per vehicle. In reality this
would not be practical given the fact some households own 4
vehicles, as household electrical wiring would prohibit the use
of so much power being drawn at any one time. Whilst the per-
mission of 84 charge points being used from the grid perspective
still stands, scenarios considering the number of charge points per
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Fig. 12. Grid Impact for Scenarios 1, 2, 3 & 4.

household should be devised and investigated. Additionally, the

two charging behaviours themselves investigated in this study

could be improved upon. One such improvement would be the

use of more sophisticated charging algorithms, whereby vehicles

are charged based on their upcoming usage patterns, knowledge

which would be known by drivers and thus reflect a more real life

scenario. The incorporation of less restricted charging patterns,

which in this model are largely dictated by the electricity tariffs

pricing plans, would also reflect users who may choose to pay

higher rates of electricity in order to make sure their vehicles

have enough charge to complete their upcoming driving trips.

4.3. Grid impact

Using data acquired from Western Power Distribution, real

world power measurements from the primary substation (Long-

cliffe 890067), enabled a thorough analysis into the grid impact

the results of this EV Charging model would give rise to. This

substation feeds an area much larger than Bradbourne alone, and

thus to ensure a proper analysis the results previously discussed

have been scaled by a factor of 16.43 to compensate. A total of

1380 vehicles are registered to the households within the distri-

bution network of primary substation 890067. This scaling factor

was computed from the relationship between the 84 vehicles

simulated for Bradbourne and the total 1380 potential EVs that

would be demanding energy and power from this transformer.

Once the scaling up process was completed, the results of all 8

scenarios were combined with the readings from Western Power.

Figs. 12 and 13 present the results of scenarios 1, 2, 3 & 4 and

scenarios 5, 6, 7 & 8 respectively.

Depending on the charging scenario, a 100% EV population

has major implications for the grid. With the 100% Economy

tariffs resulting in the most cause for concern, an increase of

over 100% for the ‘20% charging behaviour’ and over 200% for

the ‘charging every night’ behaviour. Whereas the results for the

100% standard tariff scenarios actually place very little increases

in peak demand for grid operators’ perspective. Again reinforcing

the position against the current push for EV only tariffs operating
on an economy (TOU) type plan.

It should be noted that this 100% EV penetration scenario
is far away given current market penetration figures in the UK
and so there are multiple possible solutions for mitigating these
increases in peak demands. One of which is Demand Side Man-
agement (DSM), which utilises pricing signals and behavioural
changes (López et al., 2015) to manage fluctuating loads and re-
duce peak demands. An example investigated by Ciabattoni et al.
(2021) limited the power availability to EV chargers, although
this would increase duration of charging it reduced peak power
demands.

Additionally, alongside these increases in power, the required
energy generation is also cause for concern. This is exacerbated
by the need for this additional energy to be produced from re-
newable sources so as to align with the underlying goal of this EV
transition — to reduce GHG emissions. Future work is expected
to look into the incorporation of wind turbines and solar panels
as locally generated renewable energy combined with suitable
energy storage solutions to offset the increases in demand due
to EV consumption.

5. Conclusion

This paper presents the results from 8 scenarios of EV charging
for the 84 vehicles belonging to the residents of a small rural
village, Bradbourne, located in the Peak District, UK. The energy
consumption and charging energy and power requirements have
been modelled for a period of 4 weeks. From this 4 week period, a
specified time period was selected to ensure all results presented
are in accordance with the 1st Law of Thermodynamics. The
results presented were for 4 variations of household electricity
tariff options (combinations of Economy and Standard tariffs)
and 2 behavioural options (charging upon the battery reaching
a lower threshold and charging every night regardless) to create
the 8 scenarios investigated.

It was found that for a charging behaviour whereby the batter-
ies of EVs are depleted to a low level before recharge, the whole
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Fig. 13. Grid Impact for Scenarios 5, 6, 7 & 8.

system exists at a much lower average state of charge, compared

to a charging behaviour whereby the vehicles are recharged every

night regardless of their state of charge before recharging. This is

influenced heavily by the varying travel patterns which result in

fewer overlaps of charging events for multiple vehicles at any one

time, and thus reduces the peak demand requirements. However,

in general, this charging behaviour leads to longer charging times

once charging events begin. When compared to the scenarios

whereby the EVs are charged every night, more chargepoints are

in use at any one time, especially for high economy tariff scenar-

ios where charging start times are all similar. This results in much

larger peak demands which may be a cause for concern for local

rural grid infrastructure. Although, the benefits of this charging

behaviour regime are much smaller charging dwell times, this

means the higher energy/power requirements do not last long.

The results from these various scenarios analysed with the EV

Charging Model where then combined with real-life measure-

ments from a local distribution substation serving Bradbourne to

investigate their impact on local grid infrastructure. This showed

the addition of EV’s, and their charging profiles, can be done so

in a way which leads to very little impact on grid infrastructure.

For both charging behaviours, which represent the two extremes,

a 100% standard tariff (flat rate regime) has minimal impact, and

due to the pre-existing electricity demands, the addition of EVs

is able to fit into that pre-existing profile. However, problems are

envisaged for scenarios with increasing Economy tariff market

shares, which although forces EVs to charge during the troughs

of the pre-existing profile, the coalescences of all EVs beginning

charging at the same time leads to detrimental power spikes.

The findings from this study have multiple implications for

policy makers, electrical grid planners, and energy generation and

storage, as well as extending the academic discourse for the EV

transition in rural areas. Most critical is the determination of the

timing and magnitude of the peak load, both in terms of energy

and power, placed on the grid when considering a rural landscape

undertaking large EV adoption.
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