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SARS-CoV-2-specific nasal IgA wanes 9 months after
hospitalisation with COVID-19 and is not induced by
subsequent vaccination
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Summary
Background Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into
mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody
responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was
introduced.

Methods In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults
hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia.
IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by
electrochemiluminescence and compared with plasma neutralisation data.

Findings Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated
for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with
plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete
data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S
titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months,
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p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12
months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05,
p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination.

Interpretation The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent
vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination
on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.

Funding This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by
grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool
Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study
is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The
funders were not involved in the study design, interpretation of data or the writing of this manuscript.

Copyright © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
While systemic immunity to SARS-CoV-2 is important in
preventing severe disease, mucosal immunity prevents viral
replication at the point of entry and reduces onward
transmission. We searched PubMed with search terms
“mucosal”, “nasal”, “antibody”, “IgA”, “COVID-19”, “SARS-
CoV-2”, “convalescent” and “vaccination” for studies
published in English before 20th July 2022, identifying three
previous studies examining the durability of nasal responses
that generally show nasal antibody to persist for 3–9 months.
However, these studies were small or included individuals
with mild COVID-19. One study of 107 care-home residents
demonstrated increased salivary IgG (but not IgA) after two
doses of mRNA vaccine, and another examined nasal
antibody responses after infection and subsequent
vaccination in 20 cases, demonstrating rises in both nasal IgA
and IgG 7–10 days after vaccination.

Added value of this study
Studying 446 people hospitalised for COVID-19, we show
durable nasal and plasma IgG responses to ancestral (B.1

lineage) SARS-CoV-2, Delta and Omicron (BA.1) variants up to
12 months after infection. Nasal antibody induced by
infection with pre-Omicron variants, bind Omicron virus
in vitro better than plasma antibody. Although nasal and
plasma IgG responses were enhanced by vaccination, Omicron
binding responses did not reach levels equivalent to responses
for ancestral SARS-CoV-2. Using paired plasma and nasal
samples collected approximately 12 months after infection,
we show that nasal IgA declines and shows a minimal
response to vaccination whilst plasma antibody responses to
S antigen are well maintained and boosted by vaccination.

Implications of all the available evidence
After COVID-19 and subsequent vaccination, Omicron binding
plasma and nasal antibody responses are only moderately
enhanced, supporting the need for booster vaccinations to
maintain immunity against SARS-CoV-2 variants. Notably,
there is distinct compartmentalisation between nasal IgA and
plasma IgA and IgG responses after vaccination. These
findings highlight the need for vaccines that induce robust
and durable mucosal immunity.
Introduction
Intramuscular (i.m.) vaccines are remarkably effective in
preventing severe COVID-19, their use being associated
with declining hospitalisation.1,2 However, current vac-
cines provide only transient protection against respira-
tory viral replication, onward transmission and
continuing emergence of variants.3–5 By contrast, respi-
ratory infection with SARS-CoV-2 induces mucosal im-
mune defences that can inhibit viral replication and
transmission, though the correlation between nasal and
systemic immunity is inexact.6,7 To date, there have been
few studies of long-term nasal antibody durability and
those that exist have studied relatively small groups,
giving diverse results – suggesting that nasal antibody
may persist for anywhere between 3 and 9 months.8–10

There is a clear need for additional studies of mucosal
and systemic immunity in those recovered from severe
disease.

Although i.m. vaccination transiently reduces trans-
mission, vaccinees with breakthrough infections have
www.thelancet.com Vol 87 January, 2023
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peak nasopharyngeal viral loads similar to those in un-
vaccinated individuals.4,5 Some studies have shown that
viral loads decline more rapidly in vaccinees,5 but it is
unclear whether this effect is mediated by passive
transudation of plasma antibody into the mucosa, or
whether vaccination can recall mucosal responses
primed by infection (as observed after i.m. influenza
vaccination following an intranasal (i.n.) priming).11

Serum IgA and IgG is mostly monomeric and pro-
duced in the bone marrow, whereas nasal IgA is poly-
meric and can be synthesized locally by mucosal plasma
cells.12,13 It is polymeric nasal IgA that is critical for
efficient neutralisation of virus in the upper respiratory
tract, and so passive transudation of plasma antibody
into the mucosa is unlikely to provide durable sterilizing
immunity.6,12 Understanding whether i.m. vaccination
after COVID-19 can recall nasal IgA responses is an
important step towards developing vaccines which pre-
vent infection and transmission.

During worldwide circulation of SARS-CoV-2, mul-
tiple successive variants have evolved, driven by en-
hancements in transmissibility as well as immune
evasion. The Omicron subvariants appear less suscep-
tible to vaccine-induced immunity and show high rein-
fection rates.14,15 It seems that immunity induced by
successive infection and vaccination may provide supe-
rior protection against Omicron compared with either
alone16,17; and vaccination regimes which combine i.n
and i.m. administration in mice induce enhanced
mucosal protection against SARS-CoV-2 variants.18 This
suggests that priming the nasal mucosa is required to
induce effective local antibody responses that might
provide enhanced immunity against current and future
variants. However, the cross-reactivity of nasal antibody
after infection with pre-Omicron virus is unknown.

We here report the results of a large multicentre
follow-up study of nasal and plasma antibody responses
approximately a year after COVID-19, aiming to un-
derstand the longevity of nasal antibody responses after
COVID-19 and the effect of subsequent vaccination. We
demonstrate durable nasal and plasma IgG responses to
ancestral (B.1 lineage) SARS-CoV-2, Delta and Omicron
variant that are enhanced by i.m. vaccination. However,
nasal IgA responses did not mirror those in plasma,
waned after 9 months and were not substantially boos-
ted by vaccination (Fig. S1).
Methods
Study design and ethics
Clinical data, nasosorption and plasma samples were
collected from hospitalised cases of COVID-19 within
the ISARIC4C and PHOSP-COVID multicentre studies
of UK adult patients (Fig. S2).19,20

Adults hospitalised during the SARS-COV-2
pandemic were systematically recruited into the Inter-
national Severe Acute Respiratory and Emerging
www.thelancet.com Vol 87 January, 2023
Infection Consortium (ISARIC) World Health Organi-
zation Clinical Characterisation Protocol UK study
(IRAS260007 and IRAS126600).20 Written informed
consent was obtained from all patients. Ethical approval
was given by the South Central–Oxford C Research
Ethics Committee in England (reference: 13/SC/0149),
Scotland A Research Ethics Committee (20/SS/0028)
and World Health Organization Ethics Review Com-
mittee (RPC571 and RPC572l; 25 April 2013).

After hospital discharge patients >18 years old who
had no co-morbidity resulting in a prognosis of less than
6 months, were recruited to the PHOSP-COVID study.
Both sexes were recruited and gender was self-reported.
Written informed consent was obtained from all pa-
tients. Ethical approvals for the PHOSP-COVID study
were given by Leeds West Research Ethics Committee
(20/YH/0225).

Control samples were collected from healthy volun-
teers without respiratory disease or symptoms of infec-
tion prior to the COVID-19 pandemic. Written consent
was obtained for all individuals and ethical approvals
were given by London-Harrow Research Ethics Com-
mittee (13/LO/1899).

Samples were collected on day 1–9 of admission
and/or at intervals during convalescence (approximately
1–14 months after discharge). Clinical data were
collected to account for variables which may affect
antibody titre, via hospital records and self-reporting
(Table 1). Where missing, vaccination data were
accessed through linkage between NHS digital data and
the ISARIC4C study within the Outbreak Data Analysis
Platform (ODAP). Disease severity was classified ac-
cording to the WHO Clinical Progression score.21
Procedures
Nasal fluid was collected using a NasosorptionTM FX⋅I
device (Hunt Developments UK Ltd), which uses a
synthetic absorptive matrix to collect concentrated nasal
fluid. Samples were stored and eluted as previously
described, with the addition of 1% (final v/v) Triton-X to
elution buffers to inactivate SARS-CoV-2.22 EDTA
plasma was collected from whole blood taken by ven-
epuncture (full details in the supplement).
Immunoassays
Antibody responses were measured by MSD electro-
chemiluminescence multiplex assay (Mesoscale Di-
agnostics, Rockville, Maryland, USA). Nasal and plasma
IgA and IgG responses to Spike (S), Nucleocapsid (NP)
and the Receptor-Binding-Domain of Spike (RBD) an-
tigens of ancestral (B.1 lineage) SARS-CoV-2 were
measured using MSD V-PLEX COVID-19 Coronavirus
Panel 2 Kits (IgG Cat No: K15369U-4; IgA Cat No:
K15371U-4), which have been demonstrated to have
excellent sensitivity and specificity.23 All reagents used
3
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Demographics (n = 446) Missing data

Age at admission, years 59 (51–67) 28 (6.3)

Sex at birth Female 164 (39.1) 27 (6.0)

Male 255 (60.9)

Ethnicity White 259 (82.0) 130 (29.0)

South Asian 22 (6.9)

Black 20 (6.3)

Mixed 5 (1.6)

Other 10 (3.2)

Clinical characteristics (n = 446) Missing data

Disease severity WHO Class 3-4 60 (14.6) 34 (7.6)

WHO Class 5 193 (46.8)

WHO Class 6 101 (24.5)

WHO Class 7-9 48 (11.6)

WHO Class 10 10 (2.4)

BMI ≥30 164 (62.4) 183 (41.0)

Co-morbidities None 66 (20.8) 128 (28.7)

1 69 (21.8)

≥2 183 (57.4)

First vaccination received during the study Yes 307 (95.0) 123 (27.6)

No 16 (5.0)

Second vaccination received during the study Yes 225 (78.9) 161 (36.1)

No 60 (21.1)

Type of first vaccination Oxford/AstraZeneca (ChAdOx1 nCoV-19) 185 (59.9) 137 (30.7)

Pfizer/Bio-N-Tec (BNT162b2) 124 (40.1)

Moderna 0

Type of second vaccination Oxford/AstraZeneca (ChAdOx1 nCoV-19) 89 (62.7) 304 (68.1)

Pfizer/Bio-N-Tec (BNT162b2) 51 (35.9)

Moderna 2 (1.4)

Data are n (%) or median (IQR). Percentages were calculated after exclusion of missing data. Disease severity is classified according to the WHO Clinical Progression score:
3–4 = no continuous supplemental oxygen needed; 5 = continuous supplemental oxygen only; 6 = continuous or bi-level positive airway pressure ventilation or high-flow
nasal oxygen; 7–9 = invasive mechanical ventilation or other organ support; and 10 = did not survive. BMI = body-mass index.

Table 1: Summary of clinical and demographic data.
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were kit specific and provided by MSD. Nasal and
plasma antibody responses to RBD antigen of Delta
(AY3; AY4; AT4.2; AY5:AY6; AY.7; AY.12; AY.14;
B.1.617.2) and Omicron (B.1.1.529; BA.1) variants were
measured using MSD V-PLEX SARS-CoV-2 panel 22
(IgG Cat No: K15559U-4; IgA Cat No: K15561U-4). The
MSD plates consisted of 96 wells each containing 10
pre-coated antigen spots. BSA served as a negative
control in each well. Plasma was analysed at a fixed
dilution of 1 in 5000, using MSD Diluent 100 as per the
manufacturers protocol.24 The composition of nasal
fluid is more variable than plasma. Thus, a fixed dilution
of 1 in 50 was chosen after a serial dilution experiment
which measured virus-specific IgA and IgG concentra-
tion in acute, convalescent and pre-pandemic nasal fluid
samples, confirming the validity and reproducibility of
this method. To enhance the accuracy and reproduc-
ibility of results, total IgA and IgG concentration in each
nasal sample was measured and antibody titre was
normalised (see ‘Statistics’).
Plates were blocked with MSD blocker A, prior to
sample analysis to prevent non-specific binding. Diluted
samples were incubated followed by addition of MSD
SULFO-TAG Anti-Human IgA or IgG antibody to detect
bound immunoglobulin. Plates were subsequently
measured on a MESO QuickPlex SQ 120 Reader (MSD).
An equivalent assay for responses to RBD from ances-
tral (B.1 lineage) SARS-CoV-2 was present on panel 2
and panel 22 to ensure comparable performance be-
tween kits. Antibody concentrations were calculated
using a reference standard of convalescent plasma and
assigned arbitrary units (AU/mL). All values at or below
the lower limit of detection (LLOD) were replaced with
LLOD. All values at or above the upper limit of detection
(ULOD) were replaced with ULOD.

Total IgA and IgG content of nasal fluid was
measured using a human antibody isotyping Procarta-
Plex protein quantitation immunoassay (Invitrogen,
Massachusetts, United States, Cat No.: EPX070-10818-
901). Nasal samples analysed at a fixed dilution of 1 in
www.thelancet.com Vol 87 January, 2023
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50. Plates were prepared according to the manufacturers
protocol (Publication Number MAN0024721)25 and read
on a BioPlex200 instrument (Bio-Rad, UK). All values at
or below the lower limit of detection (LLOD) were
replaced with LLOD. All values at or above the upper
limit of detection (ULOD) were replaced with ULOD.

Neutralising activity in each plasma sample was
measured by a serial dilution approach.26 Each sample
was serially diluted in triplicate from 1:50 to 1:36,450 in
complete DMEM prior to incubation with HIV (SARS-
CoV-2) pseudotypes, incubated for 1 h, and plated onto
239-ACE2 target cells. After 48–72 h, luciferase activity
was quantified by the addition of Steadylite Plus
chemiluminescence substrate and analysis on a Perki-
nElmer EnSight multimode plate reader (PerkinElmer,
Beaconsfield, UK). Antibody titre was then estimated by
interpolating the point at which infectivity had been
reduced to 90% of the value for the no serum control
samples (full details in the supplement).
Statistics
Analyses were conducted on ODAP. All tests were two-
tailed and statistical significance was defined as a p-value
< 0.05 after adjustment for false discovery rate
(q-value = 0.05). Sample size calculations are detailed in
the supplement.

Nasal virus-specific IgA and IgG (AU/mL) was nor-
malised to total IgA or IgG concentration in each sam-
ple, respectively (pg/mL). This accounted for variability
in concentration of sample obtained and matrix effects.
Plasma and normalised nasal data were log2 trans-
formed prior to all analyses. The data were confirmed to
be non-parametrically distributed using quantile vs
quantile plots. To understand the durability of antibody
responses, comparisons between timepoints were made
using the optimal pooled t-test, which performs well in
non-parametric partially paired data.27 All missing clin-
ical data were excluded, except where date of symptom
onset was missing, in which case time from symptom
onset was approximated according to the visit number
and the date of admission, if known. To estimate the
effect of vaccination on antibody trajectories, a LOESS
regression curve was fitted to data from repeated and
cross-sectional samples taken from those who were
known to be vaccinated.

To explore the relationship between plasma and
nasal responses variables were analysed in a correlation
matrix, measuring the Spearman rank correlation coef-
ficient between variables. Disease severity and age were
included as co-variates. Variables were scaled and cen-
tred prior to analysis. The variables in the correlogram
were hierarchically clustered using Ward’s minimum
variance, minimising the Euclidian distance between
variables.

To further explore the factors determining the rela-
tionship between nasal IgA and plasma responses after
www.thelancet.com Vol 87 January, 2023
vaccination, unsupervised clustering was performed
using hierarchical clustering with Ward’s minimum
variance, minimising the Euclidian distance between
individuals who had samples taken after 10 months. For
any paired or repeated measures within the time frame,
the latter of the samples was selected for analysis. Var-
iables were scaled and centred prior to analysis. Heat-
map rows were annotated with WHO clinical
progression score and age to determine if either factor
associated with clusters. The number of clusters was
determined using the Silhouette score. To understand
how vaccination might affect cluster membership, the
mean time from vaccination was compared between
each cluster using the Kruskal-wallis test. Co-variates
were not included in the LOESS regression or clus-
tering analysis. The proportion of individuals in each
cluster receiving ChAdOx1 nCoV-19 vaccine was
compared using the chi-squared test. Analyses were
undertaken and visualised using the ‘cluster’, ‘ggplot2’,
‘corrplot’, ‘ggpubr’, ‘ggstatsplot’, ‘factoextra’ and
‘pheatmap’ package in R version 4.0.5.

Control samples were used to define a nasal antibody
threshold. The threshold was equivalent to mean + 2 SD
of log2-transformed antibody data, and validated against
standardized WHO BAU/mL thresholds converted into
MSD AU/mL.28

The raw data underlying this study are available upon
reasonable request. Please see the Data sharing
statement.
Role of the funders
ISARIC4C is supported by grants from the National
Institute for Health and Care Research (award CO-CIN-
01) and the Medical Research Council (grant
MC_PC_19059) Liverpool Experimental Cancer Medi-
cine Centre provided infrastructure support for this
research (grant reference: C18616/A25153). The
PHOSP-COVD study is jointly funded by UK Research
and Innovation and National Institute for Health and
Care Research (grant references: MR/V027859/1 and
COV0319). The funders were not involved in the study
design, interpretation of data or the writing of this
manuscript.
Results
A total of 446 adults, hospitalised between February
2020 and March 2021 were recruited, of which 141
provided samples at sequential time points. 569 plasma
samples were collected, of which 338 represented sam-
ples taken at sequential timepoints. In addition, 356
nasal samples were collected, of which 143 were from
sequential timepoints. 174 individuals had paired
plasma and nasal samples taken at a given time point.
Characteristics of the patients providing sequential
samples and the total cohort were comparable (Table 1
5
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and S1). The 6 and 12 month samples were collected
between November 2020 and March 2022, covering the
start of the UK vaccination campaign (Fig. S2).
Plasma antibody responses are more durable than
nasal responses after COVID-19
Nasal anti-S and anti-NP IgA appeared within 4 weeks
after symptom onset but waned after 9 months to levels
equivalent to pre-pandemic controls (p < 0.0001, Wil-
coxon test) (Fig. 1). Anti-S IgG appeared within 14 days
of symptom onset (p < 0.0001, Wilcoxon test) and rose
2181-fold after 9 months (p < 0.0001, pooled t-test) but
unlike IgA responses, remained above pre-pandemic
controls thereafter (p < 0.0001, Wilcoxon test) (Fig. 1A
and B). Both nasal IgA and IgG anti-S titres rose after 10
months, though the median change was only 1.46-fold
in the case of IgA (p = 0.011, pooled t-test). Anti-NP
IgA and IgG responses remained low after 9 months
(p < 0.0001, pooled t-test) (Fig. 1E and F).

Pre-pandemic controls allowed a threshold value for
nasal antibody to be established, equivalent to the
mean+2SD (Fig. 1). Applying the same method to
plasma samples, we found that the threshold was
similar, though more conservative than the WHO
threshold, confirming the validity of the method
(Fig. S3). Using this threshold, we found that the me-
dian nasal IgA response to S and NP fell and remained
below threshold after 9 months (Fig. 1A and E) whilst
the median nasal IgG titre was durable and remained
above threshold for both antigens at 12 months (Fig. 1B
and F).
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Fig. 1: Nasal and plasma antibody responses 12 months after infection
SARS-CoV-2 from 446 COVID-19 patients, compared to 25 pre-pandem
responses to NP of ancestral SARS-CoV-2. Nasal virus-specific antibody ti
lines indicate the trajectory of median titres across timepoints. The horizo
the mean+2SD of controls. * = p < 0.05, ** = p < 0.01, *** = p < 0.001
Plasma IgG anti-S and anti-NP responses developed
within 14 days of symptom onset and remained elevated
after 12 months (p < 0.0001, pooled t-test) (Fig. 1D and
H). Notably, the trajectories of plasma IgA and IgG re-
sponses differed to that of nasal IgA. Whilst nasal re-
sponses peaked between 6 and 9 months for S and
between 3 and 5 months for NP, plasma responses
peaked within 4 weeks before waning (Fig. 1). Notably,
plasma anti-NP responses plateaued after 10 months
and most patients remained seropositive for both anti-
gens at the final time point, indicating durable plasma
responses after COVID-19 (Fig. 1D and H).

Only 2 of 446 individuals showed serological evi-
dence of reinfection (whereby a rise in both anti-NP and
anti-S IgG was observed between 103 and 308 days after
infection for the first individual and between 238 and
463 days for the second). Furthermore, in 61 individuals
where vaccination status was known and from whom
paired samples were taken before and after vaccination,
anti-S titres rose (p < 0.0001, paired Wilcoxon test)
whilst anti-NP titres declined (p < 0.0001, paired Wil-
coxon test), as expected, indicating a low prevalence of
re-infection in our cohort (Fig. S4A and B). These data
therefore demonstrate that nasal and plasma IgG re-
sponses are durable after COVID-19, whilst nasal IgA
responses last only 9 months.
Responses during vaccination campaign
Of those with known vaccination status (n = 323), 95.0%
received their first SARS-CoV-2 vaccination during the
study. Vaccinations occurred between December 2020
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and December 2021. Of these, 59.9% received ChAdOx1
nCoV-19 as the first dose (Table 1). The median date of
vaccination was 13th February 2021 (IQR Jan–March
2021) and samples taken after 12 months were
collected between March 2021 and March 2022 (median
20th June 2021). Therefore, most samples taken after 12
months were taken after vaccination. Vaccines only
induce responses against S protein, making vaccination
the most likely cause of rises seen in nasal anti-S IgG
(and to a lesser extent IgA) responses after 12 months,
given that nasal anti-NP responses declined during this
time (Fig. 1).

We confirmed the effect of vaccination by comparing
nasal S and NP antibody responses in individuals
known to be vaccinated during the study (n = 120)
(Fig. 2). There were clear differences in the nasal IgA
and IgG responses after vaccination (Fig. 2A–B).
Although nasal anti-S IgA responses appeared to tran-
siently rise after vaccination, there was no difference
between the trajectories of the anti-NP and anti-S re-
sponses and the 95% CIs overlapped. By contrast, nasal
IgG anti-S responses rose substantially after vaccination
and peaked approximately 100 days after vaccination,
whilst the anti-NP trajectory declined. There was no
overlap between the 95% confidence intervals (CI) of the
regression curve for anti-S and anti-NP IgG responses
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after vaccination indicating distinct trajectories
(Fig. 2B). Notably, the nasal IgG responses mirrored
that of plasma IgA and IgG (Fig. 2C–D). Thus, in
keeping with our previous analysis (Fig. 1), changes in
nasal IgA titres after vaccination are minor compared to
nasal and plasma IgG which appear substantially boos-
ted. These findings suggest that vaccination may not
fully recall mucosal IgA responses.
Responses to Delta and Omicron (BA.1) variants
All participants were admitted to hospital prior to the
emergence of Omicron variant and 71.1% (n = 317)
were admitted before 10th May 2021 when Delta variant
became the dominant strain in the UK.4,14 However,
nasal IgA and IgG responses binding both Delta and
Omicron RBD were present within 28 days of symptom
onset and remained elevated for at least 9 months
(Fig. 3A–F). Nasal IgA binding Omicron appeared the
most short-lived; while titres were above pre-pandemic
controls between 2 and 4 weeks, the median titre only
passed the threshold for positivity between 3 and 5
months post-infection (Fig. 3C). Furthermore, at its
peak, Omicron binding nasal IgA was only 10-fold above
controls (p < 0.0001), compared to nasal IgA binding
ancestral SARS-CoV-2 RBD which was 28-fold higher
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(p < 0.0001) (Fig. 3A and C). Plasma IgG responses to
Delta and Omicron also developed within 14 days and
were sustained for 12 months (Fig. 3G–I).

To understand the degree of cross-reactivity between
compartments we compared the ratio of antibody
binding RBD of Omicron virus and ancestral SARS-
CoV-2 (Fig. S5). There was no difference in the me-
dian ratio between nasal IgA (0.10) and nasal IgG (0.12,
p = 0.67, Wilcoxon test). However, the nasal IgG ratio
was higher than that of plasma IgG (0.09, p = 0.020,
Wilcoxon test) and the nasal IgA ratio was higher than
that of plasma IgA (0.08, p = 0.00059, Wilcoxon test).
These data indicate that infection with pre-Omicron
SARS-CoV-2 can induce nasal and plasma antibody
that binds Omicron RBD, and that nasal antibody may
have greater cross-binding potential. However, despite
this, Omicron-binding nasal IgA is slow to reach posi-
tive levels and is transiently maintained.

Responses to Delta and Omicron (BA.1) variant
after vaccination
The nasal IgA response to Delta and Omicron variant
did not appear substantially different after vaccination
(Fig. S6A) though a small rise in the median Omicron-
and Delta-binding nasal IgA was seen after 12 months,
when most individuals had been vaccinated (Fig. 3A–C).
However, this difference was small and the median titre
did not reach the positive threshold. Nasal IgG re-
sponses to Omicron and Delta variant rose after vacci-
nation (Fig. S6B), although Omicron-binding responses
did not reach the level of those to Delta and ancestral
SARS-CoV-2 despite vaccination.
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Plasma IgG responses to Delta and Omicron variants
also rose after vaccination but did not reach levels of
responses to ancestral virus (Fig. S6D). To study the
effect of vaccination specifically and validate trends seen
in cross-sectional data, we identified 61 individuals from
whom paired pre- and post-vaccination plasma samples
were collected; these were taken at a median of 54 days
(IQR 25.6–68.8) before the first vaccination dose and
176 days (IQR 113–212) after (Fig. S4). Vaccination
boosted both Omicron-binding (p < 0.0001) and Delta-
binding plasma IgG (p = 0.0019) in most individuals.
These data suggest that vaccination can boost Omicron-
and Delta-binding nasal and plasma IgG responses but
to a lesser degree than ancestral virus responses.
Meanwhile, Omicron- and Delta-binding nasal IgA
responses may not be affected by vaccination.
Plasma neutralising antibody to SARS-CoV-2
variants
Plasma neutralising titres against ancestral, Delta and
Omicron variants of SARS-CoV-2 remained substan-
tially elevated compared with controls between 3 and 12
months (Fig. S7). However, neutralising titres against
Omicron were generally lower: at 10–12 months, 76.2%
had neutralising antibody against Omicron, compared
to 92.5% against ancestral SARS-CoV-2. Neutralising
titres against all three variants were boosted during the
vaccination campaign (p < 0.0001, pooled t-test) indi-
cating that i.m. vaccination after COVID-19 can enhance
neutralising antibody levels to homologous and heter-
ologous variants.

As expected, neutralising antibody titres correlated
with plasma RBD (R = 0.82, p < 0.0001, Spearman’s
rank) and S IgG (R = 0.81, p < 0.0001, Spearman’s rank)
(Fig. S8). Notably, plasma neutralising antibody corre-
lated with nasal anti-RBD IgG (R = 0.62, p < 0.0001,
Spearman’s rank) and anti-S IgG (R = 0.58, p < 0.0001,
Spearman’s rank) but not nasal IgA (anti-RBD
R = 0.0035, p = 0.98, Spearman’s rank). This finding,
alongside the boosting of nasal IgG after vaccination
indicate that nasal IgG responses reflect that of plasma,
whilst the nasal IgA response is distinct and compart-
mentalised (Fig. 2 and S8).
Discordance between plasma and nasal antibody
responses
To characterise the relationship between compartments,
paired nasal and plasma samples from 174 individuals
were examined. Samples were divided into those taken
at approximately 6 months (3–9 months) and 12 months
(>10–12 months) after infection (Fig. 4). At 6 months
nasal anti-S IgA responses correlated strongly with nasal
anti-NP IgA responses (R = 0.71, p < 0.0001, Spearman’s
rank) but showed a weaker association with nasal anti-S
IgG (R = 0.57, p < 0.0001, Spearman’s rank) and plasma
www.thelancet.com Vol 87 January, 2023
anti-S IgA responses (R = 0.50, p < 0.0001, Spearman’s
rank) (Fig. 4A). There was no association between nasal
IgA responses and plasma IgG response to either S
(p = 0.38, Spearman’s rank) or NP (p = 0.56, Spearman’s
rank). Nasal anti-NP IgA did not correlate with either
nasal or plasma anti-NP IgG and correlated weakly with
plasma anti-NP IgA (R = 0.40, p = 0.0021, Spearman’s
rank). Nasal IgG responses correlated with plasma IgG
responses to the corresponding antigen (anti-S R = 0.47,
p < 0.0001 and anti-NP R = 0.6, p < 0.0001, Spearman’s
rank). Compartmentalisation of nasal responses was
even greater at 12 months when there was only weak
association between nasal and plasma anti-S IgA
(R = 0.35, p < 0.0001, Spearman’s rank) (Fig. 4B).

Age and disease severity showed no association with
nasal responses (Fig. 4B) and nasal responses were no
different between male and female sex (Fig. S9A and B).
Thus, we considered that the differences observed be-
tween plasma and nasal antibody responses were driven
by vaccination. At 6 months, 48 of 52 individuals with
known vaccination status had received their first vacci-
nation and 27 had received both doses. The median time
from first vaccination was 24 days (IQR 0.5–86).
Meanwhile at 12 months, 103 of 108 individuals with
known vaccination status had received their first vacci-
nation and 75 had received both. The median time from
last vaccination was 141 days (IQR 71–203). Thus, we
reasoned that the increased compartmentalisation at
12 months may result from vaccination; whereby
plasma responses are enhanced but nasal IgA is mini-
mally and transiently affected.

To further explore the relationship between nasal IgA
and plasma antibody responses after vaccination, we
performed hierarchical clustering of anti-S/RBD
responses from paired samples collected at 12 months.
Compartmentalisation of nasal IgA from plasma re-
sponses was observed with 4 distinct clusters forming
(Fig. 4C). The first cluster exhibited patients with strong
nasal IgA and plasma responses. Patients with the
weakest plasma IgA and IgG responses were present in
cluster 2 whilst patients with the weakest nasal IgA
responses were in cluster 3 and 4. Although not statisti-
cally significant, there was a tendency towards more
recent vaccination in cluster 1 compared with cluster 3
and 4 (Fig. S9C). The date of vaccination was only avail-
able for two members of cluster 2. The proportion of
individuals receiving BNT162b2 vaccination was similar
across clusters (Fig. S9D) and there was no association
between disease severity or age and cluster membership
(Fig. 4C). Thus, we concluded that the clusters resulted
from transient boosting of nasal IgA responses after
recent vaccination, with divergence between the nasal
IgA and plasma responses with increasing time from
vaccination. Given the insubstantial and transient effect
of vaccination on nasal IgA responses relative to plasma
responses, we suggest that i.m. vaccination after COVID-19
does not recall mucosal responses.
9
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Discussion
We demonstrate durable nasal and plasma IgG re-
sponses to ancestral (B.1 lineage), Delta and Omicron
variants of SARS-CoV-2 in 446 adults hospitalised with
COVID-19, who were infected with pre-Omicron virus
and the majority of whom were subsequently vacci-
nated. However, we found that nasal virus-specific IgA
levels fell back to pre-COVID levels after 9 months and
Omicron-binding nasal responses were particularly
short-lived. Our results suggest that nasal IgA responses
are compartmentalised from systemic responses after
vaccination, which boosted nasal and plasma IgG but
had limited effects on nasal IgA.

The durability of nasal antibody responses has hith-
erto been unclear. Whilst a Dutch study of healthcare
workers found that nasal antibody lasted 9 months after
mild infection, others demonstrated rapid waning after
3 months.8,9 Neither study examined a large cohort of
hospitalised patients, and our findings confirm that
COVID-19 can induce durable mucosal immunity. We
also found that sex, disease severity and age did not
impact the longevity of the nasal responses in keeping
with a recent study of 26 unvaccinated individuals.10

By calibrating nasal antibody levels with pre-COVID
samples, we demonstrate that on average, nasal IgA
responses disappear after 9 months and Omicron-
binding IgA is particularly short-lived. Nasal IgA is the
most abundant mucosal antibody and provides an
important first-line defence against respiratory infec-
tion. The importance of nasal IgA in mediating immu-
nity to SARS-CoV-2 is highlighted by a recent study
where nasal IgA but not IgG correlates with nasal neu-
tralisation after COVID-19.10 The short-lived nasal IgA
response demonstrated here may explain the high rates
of infection with Omicron variant, despite vaccination,
and are in-keeping with real-world data showing that
infection with pre-Omicron virus has minimal influence
on the risk of Omicron infection at 15 months.15,29

Whilst we found that i.m. vaccination can boost nasal
IgG, our data suggest it has limited effects on IgA, in
keeping with a previous study of salivary antibody in 107
care home residents.30 We demonstrated correlations
between nasal IgG, plasma IgG and plasma neutralisa-
tion, whilst nasal IgA responses were compartmental-
ised, suggesting that the rise in nasal IgG after
vaccination could derive from plasma. Notably, we
demonstrate that those exhibiting stronger nasal IgA
responses relative to plasma had been recently vacci-
nated. Although this analysis was limited by small
sample size, our findings suggest that vaccination only
transiently boosts nasal IgA. We did not observe dif-
ferences in nasal IgA responses according to the type of
vaccination received. mRNA vaccines tend to induce
stronger circulating antibody responses than those us-
ing adenoviral vectors, but our results suggest this may
not apply to nasal responses.31,32 Taken together, these
www.thelancet.com Vol 87 January, 2023
findings suggest that i.m. vaccination after COVID-19 is
unlikely to recall mucosal responses.

The concept of independent mucosal and systemic
immunity is supported by recent studies showing that
SARS-CoV-2 naïve individuals (whose mucosa have not
been primed) do not produce nasal IgA after i.m.
vaccination, highlighting that an independent response
must occur at mucosal sites.9,33 Moreover, previous work
has demonstrated that transudation of plasma antibody
makes minimal contribution to total antibody concen-
trations in the mucosa, even in cases of para-
proteinaemia where plasma concentrations are
extremely high.34 This would explain why i.m. vaccina-
tion has had only transient effects on transmission,4

which may be mediated by transiently enhanced nasal
IgG responses, which we demonstrate after vaccination.
Given that monomeric IgG does not efficiently
neutralise virus in the mucosa, it is unlikely that
boosting this response will have considerable impact on
mucosal susceptibility to infection.6,10 Future vaccines
will need to substantially boost nasal IgA if they are to
fully prevent infection and transmission. To date,
intranasal and aerosolized vaccines have shown the
most promise in doing so.18,33,35 It is therefore essential
to prioritise development of mucosal vaccines which can
provide better protection against respiratory infections.
Study limitations
This large multicentre study has enabled confirmation
of nasal antibody durability and its relationship to
plasma responses. Our cohort was similar to the general
population of adults discharged from hospital after
COVID-19 in the UK.20 However, given the nature of
this follow-up study it is likely that recruitment was
biased towards patients who had recovered and were
able to attend hospital visits during the convalescent
phase.

Although 141 individuals had sequential samples
taken after hospital discharge, given the circumstances
and scale of this study we were not able to collect lon-
gitudinal samples from all participants. However, given
that most individuals follow similar antibody kinetics,
where longitudinal samples were missing, we approxi-
mated trajectories using cross-sectional samples taken
from individuals in the acute and convalescent phases of
illness.

We were not able to collect paired pre- and post-
vaccination nasal samples in most individuals. Howev-
er, we demonstrated clear differences in nasal anti-S and
anti-NP responses after vaccination in 120 individuals,
enabling inferences to be drawn. Whilst acquisition bias
may have been introduced by this missingness, UK
census data have indicated that 90% of the population
had received one vaccine by August 2022,36 indicating
that our cohort with complete data (in which 95% were
11
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vaccinated) are likely representative of the general
population and that missing data were missing at
random. Notably we estimated a peak of nasal anti-S IgG
titres 100 days after vaccination which is considerably
slower than peak circulating antibody responses after
vaccination (28–42 days).37 Future studies using longi-
tudinal data collected before and after vaccination will
provide further insights into the effect of vaccination on
nasal antibody trajectory.

Individuals in this study were not systematically
screened for reinfection. However, this study was pre-
dominantly carried out during periods of national
lockdown when incidence of infections was low.38

Furthermore, we analysed plasma taken from
individuals for serological evidence of reinfection and
found only 2 cases, suggesting that reinfection did not
contribute to the trends we observed. Future studies
examining the impact of reinfection on nasal IgA titres
will provide further insight into memory formation in
the mucosa.

Selective IgA deficiency (SIgAD) has been associated
with increased risk of severe COVID-19 and we were
unable to test patients for this condition. However, most
individuals had persistently elevated plasma anti-S IgA
responses during the study, suggesting that the preva-
lence of this condition was low. This is in keeping with
one Turkish study of 424 COVID-19 patients which
found only 11/424 had SIgAD.39 Given that Turkey has a
higher incidence of SIgAD than the UK (0.52% in
Turkey and 0.11% in the UK) we anticipate even lower
prevalence in our study.40
Conclusions
This study demonstrates durable but compartmental-
ised nasal IgA and plasma antibody responses to SARS-
CoV-2 after infection and subsequent vaccination. We
show enhancement of nasal and plasma IgG responses
to ancestral SARS-CoV-2, Delta and Omicron variants
after vaccination. However, nasal IgA responses, espe-
cially those to Omicron, are more short-lived and are not
substantially affected by vaccination. Our results explain
the lack of long-term sterilising immunity after previous
infection and/or vaccination and highlight the need for
mucosal vaccines that target nasal IgA responses. By
enhancing nasal antibody responses, mucosal vaccines
might prevent infection and transmission more effec-
tively, enabling greater control of the pandemic and
limiting the emergence of variants.
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