
Specification and Validation of Normative Rules
for Autonomous Agents

Sinem Getir Yaman1, Charlie Burholt1, Maddie Jones1, Radu Calinescu1, and
Ana Cavalcanti1

Department of Computer Science, University of York, United Kingdom

Abstract. A growing range of applications use autonomous agents such
as AI and robotic systems to perform tasks deemed dangerous, tedious
or costly for humans. To truly succeed with these tasks, the autonomous
agents must perform them without violating the social, legal, ethical,
empathetic, and cultural (SLEEC) norms of their users and operators.
We introduce SLEECVAL, a tool for specification and validation of rules
that reflect these SLEEC norms. Our tool supports the specification
of SLEEC rules in a DSL [1] we co-defined with the help of ethicists,
lawyers and stakeholders from health and social care, and uses the CSP
refinement checker FDR4 to identify redundant and conflicting rules in
a SLEEC specification. We illustrate the use of SLEECVAL for two case
studies: an assistive dressing robot, and a firefighting drone.

1 Introduction

AI and autonomous robots are being adopted in applications from health and
social care, transportation, infrastructure maintenance. In these applications,
the autonomous agents are often required to perform normative tasks that raise
social, legal, ethical, empathetic, and cultural (SLEEC) concerns [2]. There is
widespread agreement that these concerns must be considered throughout the
development of the agents [3, 4], and numerous guidelines propose high-level prin-
ciples that reflect them [5–8]. However, to follow these guidelines, the engineers
developing the control software of autonomous agents need methods and tools
that support formalisation, validation and verification of SLEEC requirements.

The SLEECVAL tool introduced in our paper addresses this need by enabling
the specification and validation of SLEEC rules, i.e., nonfunctional requirements
focusing on SLEEC principles. To best of our knowledge, our tool is novel in its
support for the formalisation and validation of normative rules for autonomous
agents, and represents a key step towards an automated framework for specify-
ing, validating and verifying autonomous agent compliance with such rules.

SLEECVAL is implemented as an Eclipse extension, and supports the defi-
nition of SLEEC rules in a domain-specific language (DSL). Given a set of such
rules, the tool extracts their semantics in tock-CSP [9]—a discrete-time variant
of the CSP process algebra [10], and uses the CSP refinement checker FDR4 [11]
to detect conflicting and redundant rules, providing counterexamples when such



2 S. Getir Yaman et al.

Fig. 1: Fragment of the SLEEC specification for an assistive dressing robot.

problems are identified. Our SLEECVAL tool and case studies, together with
a description of its DSL syntax (BNF Grammar) and tock-CSP semantics are
publicly available on our project webpage [12] and GitHub repository [13].

2 SLEECVAL: Notation, Components, and Architecture

SLEEC Rule Specification. As illustrated in Fig. 1, SLEEC DSL provides
constructs for organising a SLEEC specification into a definition and a rule block.
The definition block includes the declarations of events such as UserFallen, which
corresponds to the detection of a user having fallen, andmeasures such as userDis-
tressed, which becomes true when the user is distressed. Events and measures
reflect the capabilities of the agent in perceiving and affecting its environment.

A SLEEC rule has the basic form ‘when trigger then response’. The trig-
ger defines an event whose occurrence indicates the need to satisfy the con-
straints defined in the response. For example, Rule1 applies when the event
DressingStarted occurs. In addition, the trigger may include a Boolean expres-
sion over measures from the definition block. For instance, Rule3 applies when
the event OpenCurtainsRequested occurs and, additionally, the Boolean measure
userUndressed is true. The response defines requirements for that need to be
satisfied when the triggers hold, and may include deadlines and timeouts.



SLEECVAL for autonomous agents 3

//Conflicting Rules

RuleA when OpenCurtainsRequested then CurtainsOpened within 3 seconds

RuleB when OpenCurtainsRequested and userUndressed then not CurtainsOpened

//Redundant Rules

RuleC when DressingStarted then DressingFinished

RuleD when DressingStarted then DressingFinished within 2 minutes

(a) Example of conflicting and redundant rules written in SLEECVAL.

1 // CONFLICT CHECKING

2 SLEECRuleARuleB = timed priority(intersectionRuleARuleB)

3 assert SLEECRuleARuleB:[deadlock-free]

4 // REDUNDANCY CHECKING

5 SLEECRuleCRuleD = timed priority(intersectionRuleCRuleD)

6 assert not MSN::C3(SLEECRuleCRuleD) [T= MSN::C3(SLEECRuleD)

(b) Conflict and redundancy handling in CSP using FDR4.

Fig. 2: SLEECVAL conflict and redundancy checking.

The within construct specifies a deadline for the occurrence of a response.
To accommodate situations where a response may not happen within its required
time, the otherwise construct can be used to specify an alternative response. In
Rule6, the response requires the occurrence of the event HealthChecked in 30
seconds, but provides an alternative to have SupportCalled if there is a timeout.

Importantly, a rule can be followed by one or more defeaters [14], introduced
by the unless construct, and specifying circumstances that preempt the origi-
nal response and provide an alternative. In Rule8, the first unless preempts the
response if userUnderdressed is true, and a second defeater preempts both the
response and the first defeater if the value of the measure userDistressed is ‘high’.

SLEEC Rule Validation. SLEECVAL supports rule validation via conflict
and redundancy checks. To illustrate the process, we consider the conflicting
RuleA and RuleB from Fig. 2a, for the dressing robot presented above. Each rule
is mapped to a tock-CSP process automatically generated by SLEECVAL. To
define the checks, SLEECVAL computes the alphabet of each rule, i.e., the set
of events and measures that the rule references, and examines each pair of rules.

For rule pairs with disjoint alphabets, there is no need to check consistency
or redundancy. Otherwise (i.e., for rule pairs with overlapping alphabets), refine-
ment assertions are generated as illustrated in Fig. 2b. Line 1 defines a tock-CSP
process SLEECRuleARuleB that captures the intersection of the behaviours of the
rules (in the example, RuleA and RuleB). The assertion in Line 3 is a deadlock
check to reveal conflicts. If the assertion fails, there is a conflict between the two
rules, and FDR4 provides a counterexample. For instance, the trace below is a



4 S. Getir Yaman et al.

ScriptSLEEC
Experts

FDR CheckerSLEEC DSL
Tool UI Conflict&

Redundancy
Results

SLEEC Framework

Parser&CSP
 Translator

SLEEC Tock CSP
Document Pass

Fail

Fig. 3: SLEECVAL workflow.

counterexample that illustrates a conflict between RuleA and RuleB.

OpenCurtainsRequested → userUndressed .true → tock → tock → tock

This trace shows a deadlock in a scenario in which OpenCurtainsRequested oc-
curs, and the user is undressed, as indicated by the CSP event userUndressed .true.
In these circumstances, RuleA imposes a deadline of 3 s for CurtainsOpened to
occur, but RuleB forbids it. With a tock event representing 1 s, after three tock
events, no further events can occur: tock cannot occur because the maximum 3 s
allowed by RuleA have passed, and CurtainsOpened is disallowed by RuleB.

To illustrate our check of redundancy, we consider RuleC and RuleD in Fig. 2a.
Line 5 in Fig. 2b defines the CSP process that captures the conjunction of these
rules. Line 6 shows the assertion for checking whether RuleC is redundant under
RuleD. It checks whether the behaviours allowed by RuleD are those allowed (ac-
cording to trace-refinement ‘[T =’) by the conjunction of RuleC and RuleD. If
they are, it means that RuleC imposes no extra restrictions, and so is redun-
dant. The assertion states that RuleC is not redundant. FDR4 shows that the
assertion fails, as expected, since RuleD is more restrictive in its deadline. No
counterexample is provided because the refinement holds.

The complexity of this process of validation is quadratic in the number of
rules since the rules are considered pairwise. We refer the reader to [9] for back-
ground on refinement checking in tock-CSP using FDR4.

Specification and Validation Workflow. The SLEECVAL workflow relies
on the three components shown in Fig. 3. We implemented the parser for the
SLEEC DSL in Eclipse Xtext [15] using EBNF. The SLEEC concrete syntax
provided by SLEECVAL supports highlighting of the keyword elements, and
there is extra support in the form of pop-up warnings and errors. SLEECVAL
also enforces a simple style for naming rules, events, and measures. Conflicts are
treated as errors whereas redundant rules are indicated as warnings.

The tock-CSP processes that define the semantics of the rules are computed
through a visitor pattern applied to each element of the SLEEC grammar’s
syntax tree, with each SLEEC rule converted to a tock-CSP process. The com-
putation is based on translation rules. Each event and measure is modelled in
tock-CSP as a channel, with measure types directly converted into existing CSP
datatypes, or introduced as a new scalar datatype in CSP.



SLEECVAL for autonomous agents 5

Table 1: Summary of evaluation results.

Case study Related SLEEC principles #rules #conflicts #redundancies

assistive dressing
robot

social, ethical, empathetic,
legal, cultural

9 4 2

firefighter drone legal, social, ethical 7 1 7

3 Evaluation

Case studies. We used SLEECVAL to specify and validate SLEEC rules sets
for agents in two case studies presented next and summarised in Table 1.

Case study 1. The autonomous agent from the first case study is an assistive
dressing robot from the social care domain [16]. The robot needs to dress a user
with physical impairments with a garment by performing an interactive process
that involves finding the garment, picking it, and placing it over the user’s arms
and torso. The SLEEC specification for this agent comprises nine rules, a subset
of which is shown in Fig. 1. SLEECVAL identified four pairs of conflicting rules
and two pairs of redundant rules in the initial version of this SLEEC specification
including the conflicting rules RuleA and RuleB, and the redundant rules RuleC
and RuleD from Fig. 2a.

Case study 2. The autonomous agent from the second case study is a firefighter
drone whose detailed description is available at [17]. Its model identifies 21
robotic-platform services (i.e., capabilities) corresponding to sensors, actuators,
and an embedded software library of the platform. We consider scenarios in
which the firefighter drone interacts with several stakeholders: human firefight-
ers, humans affected by a fire, and teleoperators.

In these scenarios, the drone surveys a building where a fire was reported
to identify the fire location, and it either tries to extinguish a clearly identified
fire using its small on-board water reservoir, or sends footage of the surveyed
building to teleoperators. If, however, there are humans in the video stream,
there are privacy (ethical and/or legal) concerns. Additionally, the drone sounds
an alarm when its battery is running out. There are social requirements about
sounding a loud alarm too close to a human. The SLEEC specification for this
agent consists of seven rules, within which SLEECVAL identified one conflict
(between the rules shown in Fig. 4) and seven redundancies. The conflict is due
to the fact that Rule3 requires that the alarm is triggered (event SoundAlarm)
when the battery level is critical (signalled by the event BatteryCritical) and either
the temperature is great than 35℃ or a person is detected, while the defeater
from Rule7 prohibits the triggering of the alarm when a person is detected.

Overheads. The overheads of the SLEECVAL validation depend on the com-
plexity and size of the SLEEC specifications, which preliminary discussions with
stakeholders suggested might include between several tens and a few hundred
rules. In our evaluation, the checks of the 27 assertions from the assistive robot



6 S. Getir Yaman et al.

Rule3 when BatteryCritical and temperature > 35 or personDetected then SoundAlarm

Rule7 when BatteryCritical then SoundAlarm unless personDetected then goGome unless temperature > 35

Fig. 4: Conflicting rules for the firefighter drone case study.

case study and of the 63 assertions from the firefighter drone case study were
performed in under 30s and 70s, respectively, on a standard MacBook laptop.
As the number of checks is quadratic in the size of the SLEEC rule set, the
time required to validate a fully fledged rule set of, say, 100–200 rules should not
exceed tens of minutes on a similar machine.

Usability. We have conducted a preliminary study in which we have asked eight
tool users (including lawyers, philosophers, computer scientists, roboticists and
human factors experts) to assess the SLEECVAL usability and expressiveness,
and to provide feedback to us. In this trial, the users were asked to define SLEEC
requirements for autonomous agents used in their projects, e.g. autonomous cars
and healthcare systems. The feedback received from these users can be summa-
rized as follows: (1) SLEECVAL is easy to use and the language is intuitive;
(2) The highlighting of keywords, errors messages and warnings is particularly
helpful in supporting the definition of a comprehensive and valid SLEEC speci-
fication; (3) Using the FDR4 output (e.g., counterexamples) directly is useful as
a preliminary solution, but more meaningful messages are required to make rule
conflicts and redundancies easier to comprehend and fix.

4 Conclusion

We have introduced SLEECVAL, a tool for definition and validation of nor-
mative rules for autonomous agents. SLEECVAL uses a DSL for encoding of
timed SLEEC requirements, and provides them with a tock-CSP semantics that
is automatically calculated by SLEECVAL, as are checks for conflicts and re-
dundancy between rules. We also presented the results from the SLEECVAL use
for an assistive dressing robot and a firefighter drone.

In the future, we will consider uncertainty in the agents and their environ-
ments by extending the SLEEC DSL with probability constructs. Additionally,
we will develop a mechanism to annotate rules with labels that can be used to
provide more insightful feedback to SLEEC experts. Finally, a systematic and
comprehensive user study is also planned as future work. Our vision is to auto-
mate the whole process in Fig. 3 with a suggestive feedback loop allowing users
to address validation issues within their rule sets.

Acknowledgements

This work was funded by the Assuring Autonomy International Programme, and
the UKRI project EP/V026747/1 ‘Trustworthy Autonomous Systems Node in
Resilience’.



SLEECVAL for autonomous agents 7

References

1. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-
specific modeling and languages in robotics. Journal of Software Engineering for
Robotics 7(1), 75–99 (2016)

2. Townsend, B., Paterson, C., Arvind, T., Nemirovsky, G., Calinescu, R., Cav-
alcanti, A., Habli, I., Thomas, A.: From pluralistic normative principles
to autonomous-agent rules. Minds and Machines (2022), https://cutt.ly/

SLEEC-rule-elicitation, (in print)
3. Dennis, L.A., Fisher, M., Winfield, A.: Towards verifiably ethical robot behaviour.

In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015)

4. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V.,
Luetge, C., Madelin, R., Pagallo, U., Rossi, F., et al.: An ethical framework for a
good AI society: Opportunities, risks, principles, and recommendations. In: Ethics,
Governance, and Policies in Artificial Intelligence, pp. 19–39. Springer (2021)

5. Future of Life Institute: ASILOMAR AI Principles. https://futureoflife.org/
2017/08/11/ai-principles/ (2017), accessed 31 March 2022

6. IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems: Ethically
Aligned Design – Version II (2017), https://standards.ieee.org/news/2017/

ead_v2/

7. BS8611, B.: Robots and robotic devices, guide to the ethical design and application
of robots and robotic systems. British Standards Institute (2016)

8. UNESCO: Recommendation on the Ethics of Artificial Intelligence.
https://unesdoc.unesco.org/ark:/48223/pf0000380455 (2021), Accessed: 2022-
03-18, Document code: SHS/BIO/REC-AIETHICS/2021

9. Baxter, J., Ribeiro, P., Cavalcanti, A.: Sound reasoning in tock-csp. Acta Informat-
ica 59(1), 125–162 (2022). https://doi.org/10.1007/s00236-020-00394-3, https:

//doi.org/10.1007/s00236-020-00394-3

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3 — A Mod-

ern Refinement Checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. Lecture Notes in Com-
puter Science, vol. 8413, pp. 187–201 (2014)

12. SLEECVAL project webpage (2022), sleec.github.io
13. SLEECVAL GitHub repository (2022), anonymous.4open.science/r/SLEEC-tool
14. Brunero, J.: Reasons and Defeasible Reasoning. The Philosophical Quarterly

72(1), 41–64 (04 2021). https://doi.org/10.1093/pq/pqab013, https://doi.org/
10.1093/pq/pqab013

15. Domain-specific language development. https://www.eclipse.org/Xtext (2022),
[Online accessed: 13 October 2022]

16. Camilleri, A., Dogramadzi, S., Caleb-Solly, P.: A study on the effects of cognitive
overloading and distractions on human movement during robot-assisted dressing.
Frontiers in Robotics and AI 9 (May 2022), https://eprints.whiterose.ac.uk/
187214/

17. MBZIRC-OC, “THE CHALLENGE 2020. https://www.mbzirc.com/

grand-challenge (2020), [Online accessed: 13 October 2022]


