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Abstract. A novel method to both assess the strength of connectivity and determine hydraulic 
transit times between water quality monitors from time series data is reported. It was developed 
using a network of over 50 mobile multi-parameter sensors deployed for 18 months across a 
UK drinking water distribution system, and then validated using a network of 18 sensors from 
a different UK utility. Correlation coefficients are calculated at different time shifts for each 
possible sensor pair, with strength of connectivity represented by the highest correlation 
coefficient, and with the temporal lag of this highest correlation also designates the transit 
time. The results demonstrate the potential to derive valuable spatio-temporal information, with 
potential to increase understanding of system performance and connectivity. This information 
can be used to assist with further analytics such as tracking water quality events and improving 
hydraulic and disinfection residual decay modelling. 

1.  Introduction 
Drinking water quality is typically monitored by periodic discrete sampling that fulfils regulatory 
purposes, but this can only provide limited information in understanding daily system performance or 
water quality deterioration processes that are known to occur between treatment and tap, such as 
discolouration [1] and residual disinfection decay. Technological advances now make it possible to 
deploy high-frequency (between 1 and 15 samples/minute) water quality monitors along drinking 
water distribution networks (DWDS), to monitor variables such as turbidity and residual free chlorine. 
The UK is currently pioneering the deployment of such sensor networks, largely driven by 
performance targets that include reducing discolouration customer contacts. The resulting data has 
focussed on identification and recording of events with little analysis to extract greater network 
understanding and hence inform network management. 

There are several challenges and barriers that must be overcome to enable these datasets to be 
transformed into actionable information, many of which stem from the difficulties in obtaining good 
quality data. Water quality sensors measuring parameters like free chlorine and turbidity are sensitive 
scientific instruments that can produce erroneous data when deployed remotely within DWDS. This 
has led to poor quality data, limiting what can be done with analysis. Determining optimal sensor 
deployment strategy [2] and how best to analyse the subsequent datasets are also major challenges. To 
date, water quality analytics has mainly focused on event detection [3–5] and little work has been done 
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to understand how the spatio-temporal combination of water quality sensor data can be used to 
enhance DWDS water quality data analysis. 

The topic of how simultaneously recorded time series are related to each other spatio-temporally 
has been studied in areas such as seismology [6], astronomy [7], ultrasound imagine [8], and 
psychology [9]. Cross-correlation is the most commonly used method for determining the strength of 
relationship and time lag between two time series signals [10]. This involves shifting one time series 
relative to another and calculating a correlation coefficient at each step, with the step giving the 
highest correlation taken as the time lag. Pearson’s correlation coefficient (PCC) is the most used 
coefficient as it measures the linear relationship between two variables. Many variants on cross 
correlation, such as detrended cross correlation analysis have been developed to deal with non-
stationarity and the presence of unwanted periodicity [11].  

The aim of this work is to demonstrate the suitability of applying cross-correlation analysis to 
DWDS water quality time series data, to determine strength of relationship and transit times between 
sensors. To achieve this, a method is developed to calculate the cross-correlation coefficient between 
water quality time series and is tested on multiple real-world UK DWDS datasets. As cross-correlation 
analysis is particularly susceptible to the presence of outliers and erroneous data such as flatline 
periods, suitable data quality assessment is needed for the correlations to be meaningful. 

2.  Method 
A process involving sensor data quality checks [12] and subsequent cross-correlation analysis was 
written in Python, primarily using open-source library Pandas [13]. The flow chart in Figure 1 sets out 
the functionality of the code. This method was initially written to analyse a network of over 50 
turbidity and chlorine multi-parameter sensors deployed for 18 months across a UK network. Data 
quality checks were developed for turbidity and chlorine data to overcome issues experienced by 
scientific monitors and remote communications from field deployed instruments. Cross-correlation is 
then used to determine the strength of relationship and transit time between two water quality sensors. 
These sensors must have sufficient good-quality data in common for the correlations to be meaningful, 
set as 50% of total window length for this work. This 50% commonality limit was selected to ensure 
that correlations were meaningful while also allowing for the long periods of missing or low-quality 
data experienced. PCC’s are calculated at different time shifts for each possible sensor pair, with 
strength of connectivity represented by the highest correlation coefficient, and with the temporal shift 
of this highest correlation also designating the transit time. The transit time is only meaningful if the 
maximum PCC is sufficiently high. For this work, a threshold of 0.7 was used as any values above this 
are widely accepted to indicate a strong correlation [14]. 
 

 

 Figure 1. Process flowchart for calculating strength of connectivity and transit 
time between time series A and time series B. 
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2.1.  Data quality assessment 
A rules-based data quality assessment process was developed for turbidity and chlorine to detect the 
presence of specific anomalies and trends [12]. These are listed in Table 1, and result in the data being 
categorised into ‘removed’, ‘flagged’ or ‘remaining’ classes. Time stamp errors refer to datapoints that 
have an unintended sampling interval, compared to the previous datapoints, which can be problematic 
for analysis and may indicate malfunctioning instrumentation. For mobile sensors as used in this 
study, missing data is likely due to battery or communication issues, automated checks applying these 
rules can provide notification to minimise ongoing errors. Single point outliers refer to values that are 
unrepresentative relative to data before and after. These can occur in turbidity sensor data due to the 
presence of air bubbles or single highly reflective particles and as potentially unrepresentative are 
removed before further analysis. Flatlining data occurs when sensors return the same value repeatedly 
and would not be expected for sensitive instruments in a dynamic environment. Extended periods 
above a threshold can indicate a sensor error or external interference but could also be a real event so 
are flagged but not removed. For chlorine sensors, extended periods below a threshold can equally 
indicate a sensor error and so are flagged. Excessive noise was an issue identified as specific to the 
turbidity sensors during this trial when the sensor fluctuated between two distinct data points 
(considered unlikely for turbidity; as a result of data assessment analysis this was later identified as a 
power-cycle related fault). Drift can occur in turbidity sensors due to optical lens fouling from material 
accumulation or deterioration of membranes, usually manifesting itself in a slow gradual baseline 
increase over several weeks.  

 
Table 1. Rules-based data quality assessment. 

Turbidity Chlorine Removed/Flagged 
Time stamp errors Time stamp errors Removed 

Missing Data Missing Data Removed 
Single Point Outliers  Removed 

Flatlining Data Flatlining Data Removed 
Extended periods above a threshold Extended periods above a threshold Flagged 

Excessive noise Extended periods below a threshold Flagged 
Drift Drift Flagged 

 
An example of these rules applied to a turbidity and chlorine sensor is shown in Figure 2. As the 

legend indicates, any periods greater than 1 hour where the turbidity data was above 1 NTU were 
highlighted. Likewise, any periods greater than 1 hour where the chlorine data was below 0.2 or above 
1 mg/l were highlighted. Any periods where the value did not change for at least 6 hours were 
highlighted as flatlining data. In this example, this sensor produced very little useful data despite 
monitoring for over a year, highlighting the multiple issues that can occur. From these results later 
investigation identified problems with the monitor fitment and sample line flows. 

2.2.  Cross-correlation analysis 
Figure 3 demonstrates how cross-correlation can be used to determine the transit time between two 
sensors. The top plot shows two synthetic time series, over the course of four days. Time Series B is a 
copy of Time Series A, with a lag of 4 hours and an offset applied. The bottom plot displays the cross-
correlation curve, the peak of which is the time shift which results in the strongest correlation. The 
maximum correlation coefficient was found to occur for a time shift of 4 hours (indicated by the 
dotted red vertical line). This method was tried out on multiple real water quality parameters, to 
determine which are most suited, and the calculated transit times were inspected visually on the time 
series data. In some cases, high quantities of missing data meant that there was insufficient data in 
common between two sensors for the cross-correlation to be meaningful. To prevent this, a 50% total 
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window length commonality was added as a process step following data quality assessment as shown 
in Figure 1. If the two time series are over a year in length, cross-correlation analysis was done over 
shorter monthly periods and reporting an average result for the entire length. This is done to avoid the 
correlations being dominated by seasonal trends shared by many unrelated locations, with shorter time 
frames more likely to produce correlations that are meaningful in terms of hydraulic connectivity.  

 

 
Figure 2. Data-quality rules applied to turbidity (a) and chlorine (b) time series. 

 

 
Figure 3. Two example time series (a) and their corresponding cross-correlation curve (b). 
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3.  Results 
Cross-correlation analysis using PCC was done for over 60 sensors, across 2 DWDS from different 
UK water utilities. Selected results are presented in figures 4 and 5. 

 
Figure 4. (a) Bar chart showing data quality rules applied to 51 sensors; (b) Heatmap showing peak 

PCC for same set of 51 sensors. 
 

 
Figure 5. (a) Four interconnected chlorine time series; (b) Cross-correlation curves between the four 
chlorine sensors; (c) Sensors 2, 3 and 4 synced relative to sensor 1 using the calculating transit times. 

Figure 4(a) shows data quality from 51 sensors deployed over 18 months, with 4(b) the 
corresponding heatmap showing the highest calculated PCC coefficient between each possible sensor 
pair, with red indicating sensors that were highly correlated and blue weakly correlated. The 
deployment of instrumentation was not bespoke for this research, but usefully involved deploying 
multiple sensors across a network resulting in a dataset of variable data quality. After performing the 
data quality assessment stage for the entire set of time series data, cross-correlation analysis was done 
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for each month of data, with median PCC values used to obtain the results presented here. Chlorine 
was the parameter used for this analysis and Figure 4b indicates which sensors are hydraulically 
connected to each other and is a good starting point before more detailed cross-correlation analysis is 
done to determine transit times in specific network sections. The empty cells indicate sensor pairs that 
did not have at least 50% of data in common, after erroneous data was removed, with one sensor 
having very little data. As the flow chart in Figure 1 explains, transit times are only taken to indicate 
connectivity and useful information for PCC above 0.7, but the heatmap allows for all PCC’s to be 
visualised. Despite the data quality issues with this dataset, cross-correlation analysis was still able to 
identify sections of strong connectivity and transit time information. 

Figure 5 presents results from four sensors that were found to be closely interlinked through the 
initial cross-correlation analysis presented in figure 4. The upper left plot shows the four chlorine 
time-series profiles for just over a month, with the bottom left plot showing the effects of time-syncing 
the time-series relative to Sensor 1. The right-hand side plot shows the cross-correlation curves for 
each section, with the transit times calculated to be 15 minutes (Sensor 1 to Sensor 2), 45 minutes 
(Sensor 2 to Sensor 3) and 6 hours, 45 minutes (Sensor 3 to Sensor 4). As these sensors were sampled 
every 15 minutes, the transit times cannot be calculated to a higher degree of precision. Though there 
was some missing data in these sensors, there was enough data commonality (i.e. > 50%) to accurately 
calculate the cross-correlation. 

Figure 6 presents data from a second different set of instrument deployment elsewhere in the UK. 
The utility had 18 monitors deployed and following this analysis it was found many had data quality 
issues and some incorrectly sited such that they were not hydraulically connected as planned. 

 
Figure 6. (a) Bar plot showing data quality of 18 sensors originally deployed over course of 12 
months; (b) Bar plot showing data quality from 2 months of 11 sensors being redeployed following 
analysis; (c) Heatmap showing median monthly peak PCC values between 18 sensors originally 
deployed over 12 months; (d) Heatmap showing peak PCC values in 2 months between 11 sensors 
redeployed after analysis. 
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Based on initial analysis and the results in figure 6(a), it was decided to revise the project with a 
more focused monitor deployment, consisting of 11 monitors in a believed-to-be connected network 
section. As figure 6 shows, using data from a 12-month window pre and a 2-month period post the 
focussed sensor deployment, data quality was greatly improved, as fewer sensors now needed to be 
maintained. For the initial 12-months of data, monthly cross-correlations were done, with median PCC 
values reported for each pair. Of the connectivity illustrated by the second cross-correlation heatmap 
(figure 6(d)), there is an overall improvement, and 5 sensors can be observed as highly connected. The 
remaining 6 sensors were less connected, with 2 redeployed in locations considered of specific water 
company interest but with this analysis indicating that these sites display distinctly different behaviour. 
This demonstrates a benefit of cross-correlation analysis to determine if monitors deployed at correct 
location and if system connectivity is as expected. 

4.  Discussion 
Cross-correlation is shown as an effective method for determining strength of connectivity and 
hydraulic transit times between water quality sensors. It relies on there being a detectable pattern in 
each time series. If the time series profile is too flat, the correlation will be difficult to compute due to 
noise.  The method is sensitive to outliers so careful pre-processing and data preparation is required. 
Data quality checks are an essential prior step to cross-correlation, with outliers and erroneous data 
such as periods of flatlining removed so they do not negatively impact the correlations. This is 
particularly essential for water quality monitors which are prone to measurement errors when 
deployed within DWDS. If a single time series has a strong autocorrelation (i.e., correlates with itself 
on some time lag, often a diurnal pattern) then the transit time can also not be trusted. 

The lessons learned from the initial 51-sensor deployment were taken and applied to the 18-sensor 
deployment in a different UK utility. The results shown in figures 5 and 6 show how an initial cross-
correlation can be applied to large datasets, with the results allowing for a more detailed investigation 
into connected network sections. Figure 4 demonstrates how a combination of effective data quality 
assessment and cross-correlation can be used to enhance not only the data quality achieved but the 
amount of inter-connected high-quality data. This enables a move from single sensor analysis to multi-
sensor analysis that can diagnose entire network sections.  

Window size is an important consideration, and this work has shown that month long window sizes 
were effective. This protects against seasonal trends dominating each correlation, while also making 
the process more robust against periods of erroneous data that have not been removed by the data 
quality assessment stage. Even short erroneous periods could interfere with a correlation between long 
time series but would only appear in one of the smaller windows. Shorter windows also allow for 
changes in transit times over time to be looked at. Though not done in this work, overlapping windows 
like those used in detrended cross correlation analysis could be employed to increase the temporal 
resolution of cross-correlation outputs even further. 

The methods developed in this work are designed to be agnostic to sensor manufacturer but 
depends heavily on what parameter is considered. Chlorine is a well-suited parameter for cross-
correlation as it retains a similar time series profile, even several hours downstream. Turbidity was not 
as well-suited due to their being strong local variations even in locations very closely linked. 
Fortunately, chlorine is a key parameter for DWDS water quality monitoring with companies wanting 
to optimise amount dosed (cost and concerns with disinfection by-product formation) whilst aiming to 
retain a residual. The absolute value of chlorine is dictated by the quality and frequency of calibration, 
but cross-correlation is affected by patterns not absolute values. This gives it a unique data quality 
requirement that focuses on finding and removal erroneous sub-sequences rather. This work shows 
that detrending may not be necessary for cross-correlation to be effective on chlorine time series data, 
but the use of overlapping windows could help understand how transit times are changing, while also 
reducing the influence of erroneous data. The availability of flow data could be used to explain transit 
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time variances seen for different time periods. For example, increased transit times between sensors 
could be explained by a drop in average flow rates. 

The connectivity and transit time results can help bridge the current gap between data and 
actionable information. Examples include: 

 Identification of network connectivity, determined through strength of correlation. Useful as 
utilities can be surprised by which locations are not actually connected and have entirely 
different water quality profiles. 

 Improved sensor data quality assessment, which is vital for the successful deployment of such 
sensitive traditionally lab-based instruments in remote locations. By comparing connected 
sensors, erroneous data can be identified and separated from genuine events with greater 
accuracy. 

 Derived transit time information could be used to improve the calibration accuracy of DWDS 
hydraulic models, typically calibrated using pressure data. This could be particularly useful 
when adding water quality functionality to hydraulic models, as higher standards of calibration 
would be required [15]. 

 Use in characterisation of discolouration events. For example, an event could be described as 
local to a specific sensor, or global and seen by multiple sensors. Knowing the connectivity 
and transit times is necessary to be sure about such conclusions. Global events that travel 
through the network can be assessed with knowledge of hydraulic transit times, which could 
help in characterising an event. 

 Calculation of disinfection residual decay rates for different network sections. As this is 
difficult to accurately model [16], decay rates for specific sections can be determined, 
potentially highlighting regions with excessive chlorine decay and improving disinfection 
decay modelling. 

5.  Conclusions 
This work demonstrates how cross-correlation between water quality sensors can be used to identify 
DWDS spatio-temporal connectivity and transit times. Data quality assessment is an essential first step 
to ensure the cross-correlation results are meaningful. The results show that chlorine is a well-suited 
parameter for such cross-correlation analysis. The derived connectivity and transit time information 
can be used to enhance data quality assessment and water quality event tracking; and can improve 
hydraulic and disinfection residual decay modelling. 
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