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Abstract. A Machine Learning approach has been developed to predict iron threshold 
exceedances in sub-regions of a drinking water distribution network from data collected the 
previous year. Models were trained using parameters informed by Self-Organising Map 
analysis based on ten years of water quality sampling data, pipe data and discolouration 
customer contacts from a UK network supplying over 2.3 million households. Twenty 
combinations of input parameters (network conditions) and three learning algorithms (Random 
Forests, Support Vector Machines and RUSBoost Trees) were tested. The best performing 
model was found to be Random Forests with input parameters of iron, turbidity, 3-day 
Heterotrophic Plate Counts, and high priority dead ends per District Metered Area. Different 
exceedance levels were tested and prediction accuracies of above 70% were achieved for UK 
regulatory concentration of 200 µg/L. Predicted probabilities per network sub-region were used 
to provide relative risk ranking to inform proactive management and investment decisions. 

1.  Introduction 
It is recognised that increased iron concentrations in potable water are associated with customer 
contacts for discoloured water. Past research indicates that high iron concentrations in drinking water 
distribution systems (DWDS) are related either to insufficient water treatment or to corrosion 
phenomena in distribution pipes [1]. While there has been progress understanding the role of iron 
concentrations and discolouration, most of these phenomena are addressed by water utilities in a 
reactive way. This is mainly due to the cost issues – such as that water utilities have to focus activities 
where the reward (or more likely penalty avoided) is greatest – as well as the complex interactions and 
processes occurring within DWDS and the vast scale and individual complexity of networks together 
with a lack of predictive tools. It is therefore important to research and develop methods that when 
applied could transform this reactive approach into a proactive one by providing information that 
could inform decision making regarding strategical interventions and investment within DWDS. 

Water utilities collect a vast number of discrete samples from their customer taps to measure 
various water quality parameters and regulatory compliance. While this is a huge effort and creates 
large datasets it is still sparse (spatially and temporally) data compared to the size and complexity of 
DWDS. Prior work on discolouration that applied machine learning (ML) methodologies to this kind 
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of data indicated that these methods have the potential for both informing the causes of discolouration 
and estimating the risk of iron exceedance in the DWDS [2, 3].  

In this paper, a classification ML methodology for the prediction of iron exceedance in DWDS sub-
regions of a water utility in the UK is presented. The methodology uses as inputs the annual averages 
of various water quality parameters in previous years at the district meter area (DMA) scale for the 
prediction of iron exceedance risk in DMAs for the following year. In addition, the methodology 
provides information regarding the probability of iron exceedance per DMA and thus facilitates 
creating a DMA risk ranking that can direct and prioritise interventions. 

2.  Data and approach 
The datasets used in this study were obtained from a large drinking water distribution network in the 
UK, owned and operated by Yorkshire Water, supplying over 2.3 million households collected over a 
10 year (pre-COVID) period. The dataset includes 134,803 regulatory water quality samples 
(including iron, manganese, turbidity, aluminium, chlorine and many others, but not always the same 
parameters for every sample), 62,695 water quality customer contacts, disinfection type per Water 
Supply Zone (WSZ) and static asset pipe data (material, diameter, length, and age).  

Firstly, a qualitative analysis using an unsupervised ML technique called Self-Organising Map 
(SOM) was used to analyse the raw data and thus identify the major relationships and key parameters 
influencing iron exceedance. Then, a risk model was developed based on supervised ML algorithms to 
quantify the risk of iron exceedance in the network. This was performed by mapping input parameters 
(identified by the SOMs as the major factors influencing iron exceedance) to the output parameter (the 
occurrence of iron exceedance) and then predicting probability of exceedance.  

3.  Identification of key parameters 
SOM is a type of data clustering technique, suitable for sparse and incomplete data, especially when 
the relationships within data are complex and highly non-linear [4]. It uses unsupervised learning 
algorithms to train the model, i.e., all parameters are fed into the model as input, and through 
producing a two-dimensional representation of the high dimensional data set (due to multiple 
variables), the linkages between them are qualitatively and visually investigated. 
 

Table 1. Variables used in the SOM analysis example and as predictors in the risk model. 

Variable (unit) Data source Comments 
Iron (μg/l) Water quality data Regulatory samples 
Manganese (μg/l) Water quality data Regulatory samples 
Total chlorine (mg/l) Water quality data Regulatory samples 
Turbidity (NTU) Water quality data Regulatory samples 
3-day heterotrophic plate 
count (HPC) (no/ml) 

Water quality data Regulatory samples 

Number of customer 
contacts per DMA per year 

Customer contact 
data 

- 

DMA-clustered customer 
contacts per DMA per year 

Calculated Each cluster includes a minimum of 5 
customers contacts per DMA over a 
minimum of a 2-day period. This 
parameter is the sum of these clusters 
per DMA per year   

High priority dead-ends per 
DMA 

Standalone data Total number of dead-end pipes that, 
according to water utility’s estimations, 
are at higher risk of discolouration per 
DMA 
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To uncover the important relationships in the present dataset and identify the key parameters, 
various combinations of the parameters introduced in Section 2 were tested with SOM. It was found 
that, for example, the level of iron within samples is not linked to properties of the pipe (material, 
diameter, age) closest to the location of the property where the water quality sample was collected and 
that the level of iron within samples is linked to iron, manganese, turbidity, 3-day heterotrophic plate 
count (HPC), low chlorine, residual type (chlorine and chloramine), number of customer contacts per 
District Metered Area (DMA) per year, the DMA clustered customer contacts per DMA per year, and 
high priority dead ends per DMA. These parameters were thus suggested to be used in the risk model 
to predict iron exceedance. Some of the parameters used in the SOM analysis are presented in Table 1 
and an example output is shown in figure 1. 
 

 
Figure 1. An example SOM developed in this study. Lattices from top left represent the U-matrix, 

chlorine, iron, manganese, turbidity, and 3-day HPC, respectively. 

Figure 1 shows one example of the many SOMs performed in this study. On the lattices, each 
hexagonal cell (neuron) represents a group of clustered observations; the spatial location of a cell in a 
topographic map corresponds to a particular domain or feature drawn from the input data; colours 
show the value of the variables (red: high, blue: low) and each cell in the same position on different 
maps corresponds to the same cluster of observations/data. In addition to the maps of parameters, an 
additional lattice called unified distance matrix, or ‘U-matrix’ is provided (see Figure 1, top left) 
which shows the strength of the clusters. Blue areas on the U-matrix correspond to the clusters and red 
lines correspond to where the clusters are separated. This example shows that iron is strongly linked 
with manganese and turbidity and that high iron is also correlated with high 3-day HPC numbers and 
low chlorine concentrations in the customers’ taps. 
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4.  Risk model 
Three supervised ML models were developed from classification Random Forests (CRF) [5], Support 
Vector Machines (CSVM)[6], and Boosted Trees (CBT) learning algorithm based on Random 
Undersampling Boosting (RUSBoost) [7]. These models were selected as they provide ‘white box’ 
approaches, such that the role of different parameters in the predictions can be understood and 
appreciated by end users aiding acceptance and uptake. The analysis was performed at a DMA scale, 
with a one-year time lag between input and output. The parameters identified by the SOMs as 
important were averaged per DMA per year and used as input parameters; and occurrence of iron 
exceedance above a certain threshold in DMAs in a year ahead was set as the output parameter. The 
output parameter consists of two classes of ‘exceedance (E)’ and ‘non-exceedance (N)’, referring to 
whether there was at least one event of iron exceedance above the threshold in the DMA, or not. 

The data of years 2009 to 2018 was employed to train the models, and the data of 2019 was used as 
a validation set to test the performance of the model in predicting unseen data. For assessing the 
performance of the models and the accuracy of the predictions, True Positive Rate (TPR), True 
Negative Rate (TNR), Accuracy (ACC), and Matthews Correlation Coefficient (MCC) were measured 
as defined in the following equations. 

TPTPR
TP FN


      (1) 

P
TN

F
NR

TN
T 

      (2) 

TP TN
TP TN FP FN

ACC 
 


     (3) 

    N
M

F
CC TP TN FP FN

TP P TP FN TN FP TN F
  

  


    (4) 

where TP, TN, FP and FN are True Positive, True Negative, False Positive and False Negative, 
respectively. Positive and Negative denote exceedance and non-exceedance events, respectively. For 
example, True Negative means actual observational data is a non-exceedance (Negative), and the 
model predicted it correctly (True). TPR represents the probability that the model will correctly predict 
positive class values (exceedances); TNR represents the probability that the model will correctly 
predict negative class values (non-exceedances); ACC is the proportion of samples, positive or 
negative, predicted correctly; and MCC is a measure of summarising performance even when there is a 
skew in class sizes. 

In the following, the ML models are compared (using a threshold of 150 µg/L to define the output 
parameter, iron exceedance). Then, the model which performs best for the current dataset is used to 
investigate various effects such as bias in the data (imbalance between exceedance and non-
exceedance events), various combinations of input parameters, and exceedance level threshold. 
Finally, the best configuration is employed to estimate risk of iron exceedance. All the calculations 
were performed in MATLAB 2019b. 

4.1.  Comparison of ML models 
CRF is an ensemble learning method for classification which combines a collection of decision trees. 
It improves the prediction by introducing a split on a random subset of features, i.e., it randomly 
selects observations and variables to build multiple decision trees and then averages all the trees. This 
makes it robust in dealing with non-linear data with outliers. CSVM uses classification algorithms to 
find a hyperplane in a multi-dimensional space (due to multiple variables) that distinctly classifies the 
data points into two groups. It has the advantages of high speed and good performance with datasets 
where a limited number of observations is available. CBT-RUSBoost is a type of decision trees 
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suitable for imbalanced datasets. It uses boosting algorithms combined with a random under-sampling 
method to reduce the size of majority class and thus improve the performance of the model. 

The three ML models are compared in terms of training (with the data of 2009 to 2018) and 
prediction of unseen data (data of 2019), and their performance is summarized in Table 2. CSVM 
shows very poor performance. It calculated most of the events as non-exceedance (high TNR and low 
TPR in training, and TPR of zero in validation) due to the highly unbalanced data. Therefore, it is not 
considered as a suitable method for the present application. RUSBoost and CRF algorithms, although 
showing better performance than CSVM, still performed poorly, especially in terms of TPR and MCC. 
This is also due to the high imbalance in the size of classes of the output parameter (rare exceedance 
events). The total number of DMA yearly data used in this analysis is 17,507. With an exceedance 
threshold of 150 µg/L, only 250 of these belong to class ‘E’. This indicates that the bias in the data, if 
defined as MN/ME, where MN = number of non-exceedances, and ME = number of exceedances, is 
equal to 69, a situation which cannot be handled by ML algorithms, even with the RUSBoost which is 
specifically designed for imbalanced datasets. 

Table 2. Performance metrics of training of the ML models (with data of 2009 to 2018) and testing it 
with the validation set (data of 2019). ‘NaN’ indicates ‘Not a Number’. 

 Training set Validation set 
ML model TPR TNR MCC TPR TNR MCC 
CSVM 0.127 1.0 0.354 0 1 NaN 
RUSBoost 0.697 0.739 0.118 0.440 0.819 0.075 
CRF 0.667 0.769 0.123 0.360 0.864 0.073 

 
To overcome the issue, two methods were explored: i) use of synthetic data to improve the balance 

between exceedance and non-exceedance classes by creating examples of the former; and ii) a random 
removal of the non-exceedance class events. Due to concerns that the linear extrapolation in the 
synthetic data generation may be distorting the true underlying patterns in the data it was not 
considered appropriate; therefore, the random removal of the non-exceedance events was employed 
for the present analysis. 

4.2.  Bias in data 
The bias was reduced by random down sampling of the majority class (non-exceedances), i.e., 
reducing MN. Six tests were performed with MN/ME ranging from 69 (original data) to 1 (complete 
removal of skew). 

Tables 3 and 4 present the TPR and MCC calculated by the CRF and RUSBoost models for training 
and validation sets, respectively. 

Table 3. TPR of training and validation of the CRF and RUSBoost models. 

  Training set Validation set 
MN/ME Nt RUSBoost CRF RUSBoost CRF 

69 17507 0.697 0.667 0.440 0.360 
10 2783 0.771 0.709 0.423 0.385 
6 1771 0.822 0.797 0.412 0.471 
4 1265 0.863 0.783 0.630 0.519 
2 759 0.667 0.714 0.421 0.421 
1 506 0.395 0.649 0.475 0.480 

 
As the imbalance in the data decreases, the size of data (Nt) also decreases, but performance of both 

models improves. MCC constantly increases from MN/ME = 69 to 1, especially with CRF, for both 
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training and validation sets, but TPR tends to decrease for MN/ME < 4. The highest value of TPR is at 
MN/ME = 4, but MCC is poor at this value, particularly for the validation set (i.e., potential for 
overfitting), while MN/ME = 1 provides more reliable predictions. In summary, CRF with MN/ME = 1 
performs best and is selected as the best model for the present application. 

Table 4. MCC of training and validation of the CRF and RUSBoost models. 

  Training set Validation set 
MN/ME Nt RUSBoost CRF RUSBoost CRF 

69 17507 0.118 0.123 0.075 0.073 
10 2783 0.359 0.315 0.166 0.137 
6 1771 0.408 0.354 0.168 0.132 
4 1265 0.453 0.389 0.255 0.191 
2 759 0.522 0.455 0.261 0.192 
1 506 0.422 0.483 0.359 0.367 

 

4.3.  Input parameter combinations 
While the number of possible input parameters was reduced by the SOM, there are still a great number 
of combinations of these parameters that can be used for the risk model. The parameters identified by 
SOMs were manganese, turbidity, 3-day HPC, low chlorine, residual type, number of customer 
contacts, DMA clustered customer contacts, and high priority dead ends per DMA. The best model 
from the last section (CRF with MN/ME = 1) was employed to test twenty combinations out of these 
parameters in order to find the best one which gives the highest accuracy of predictions. For brevity, 
the details of the tests are not presented. It was found that using four of these parameters as input, iron, 
turbidity, 3-day HPC and number of high priority dead ends, provided the highest accuracy. The 
performance of the model using these parameters is presented in Table 5. 

Table 5. CRF model performance with best combination of input parameters (iron, 
turbidity, 3-day HPC, and high priority dead ends per DMA). 

Metric Training set Validation set 
TPR 0.612 0.609 
TNR 0.874 0.857 
ACC 0.739 0.727 
MCC 0.502 0.478 

 

4.4.  Exceedance level 
Using the best input parameter combination, iron exceedance threshold was explored to investigate its 
effect on the performance of the model. Four levels were tested: 200, 150, 100 and 50 μg/L. The 
details of the tests and the performance metrics calculated for training and validation sets are presented 
in Table 6. 

For higher iron exceedance thresholds, the size of data is smaller due to rarer exceedance events; 
however, model fitting to the data is more accurate. For example, when the threshold is set to 200 
μg/L, MCC of training is 0.704, while for a threshold of 50 μg/L, it is 0.326. For the validation set, the 
accuracy is highest for the 150 μg/L threshold. However, the misclassification error is also higher. 
Figure 2 shows the CRF misclassification error calculated for these tests. For exceedance level of 200 
μg/L, the error is lower, denoting that more samples contributed to model training, thus the result is 
more reliable.  This analysis shows that the model, including parameters combination, is well suited to 
identifying the higher levels of iron risk. 
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Table 6. CRF model performance for different levels of iron exceedance 

  Training set Validation set 

Exceedance level (μg/L) Nt TPR TNR MCC TPR TNR MCC 
200 254 0.866 0.838 0.704 0.500 0.833 0.354 
150 485 0.612 0.874 0.502 0.609 0.857 0.478 
100 984 0.571 0.797 0.379 0.436 0.906 0.357 
50 3202 0.680 0.646 0.326 0.496 0.748 0.252 

 

 
Figure 2. CRF out-of-bag classification error for exceedance levels of 200, 150, 100 and 50 μg/L, 

from left to right, respectively. 

4.5.  Performance of the preferred model 
Summarising the results of the tests, the CRF model with DMA yearly averaged iron, turbidity, 3-day 
HPC and number of high priority dead ends as input, and with a balanced data (i.e., MN/ME = 1) gives 
the highest accuracy of the prediction of iron exceedance in a year ahead. For an exceedance level of 
200 μg/L (the regulatory threshold), the TPR and TNR of predictions are 0.866, 0.838 for the training 
set, and 0.5 and 0.833 for the validation set. Therefore, this setup is selected as the preferred 
configuration for the current dataset and used for the calculation of probability of iron exceedance. 

Figure 3 presents the confusion matrices of the model training and validation with the best setup. 
These show how many of the ‘E’ and ‘N’ classes were predicted correctly, or incorrectly. For 
example, for the validation set, half of the exceedances and most of the non-exceedances (10 out of 
12) were predicted correctly. 

 

 
Figure 3. Confusion matrices of model training (left) and validation (right) for the preferred setup. 
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Figure 4 shows the predictor importance estimates calculated by the CRF model for the best setup. 
It indicates that the two most important input parameters in the analysis were high priority dead ends 
and iron, respectively. It means these two had the highest correlation with the output parameter, which 
is a year ahead iron exceedance, while turbidity and 3-day HPC had smaller contributions. 

 

 
Figure 4. CRF predictor importance estimates for best setup. Input parameters, p1 to p4, are DMA 

yearly average of iron, turbidity, three-day HPC, and high priority dead ends per DMA, respectively. 

4.6.  Risk of iron exceedance 
CRF grows a collection of individual decision trees. Each tree produces a class prediction ("votes" for 
a class). Then the forest chooses the class having the most votes over all the individual trees. There are 
two classes in our application, ‘E’ and ‘N’, denoting exceedance and non-exceedance events. Thus, if 
the fraction of trees that vote for an event to be in the class ‘E’ is above 0.5, that event is considered as 
an exceedance event, and if it is below 0.5, the event is a non-exceedance. Probability of a class is then 
obtained by counting the fraction of trees in the forest that voted for that certain class. The probability 
calculated for the class ‘E’ is thus inferred as the probability of iron exceedance, which represents the 
likelihood an event falls in the class exceedance. 

 

  
Figure 5. Prediction of relative iron exceedance probability above 200 μg/L of DMAs for the training 

set (left) and all the DMAs in 2020 (right), sorted by probability values. 

The CRF model with the best setup was used to calculate probability of iron exceedance above 200 
μg/L for the DMAs in the training set and the result is presented in Figure 5-left, where the DMAs are 
sorted by the calculated values of probability. The model was then employed to predict exceedance 
probability for all the DMAs in 2020. For this purpose, data from 2019 was fed into the model and the 
probability of iron exceedance in 2020 was estimated. The result of this test is presented in Figure 5-
right, where DMAs are sorted ascendingly by probability. The graph exhibits a ‘kick’ upwards at 
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higher probabilities. The vast majority (90% and over) of DMAs have probabilities of exceedance < 
0.5, while < 10% have values above 0.7~0.8. This suggests that targeting interventions and resources 
to these DMAs should provide the greatest returns for managing iron exceedance risk. 

It is noted that the calculated probability is a relative measure of iron exceedance risk in a DMA 
compared to all the other DMAs in the analysis, rather than being taken as an absolute value of risk. 
As a result, it is suitable for the purpose of risk ranking and informing proactive management.  

5.  Conclusions 
Machine learning was used to analyse a large dataset of water quality samples, discolouration 
customer contacts and static asset data from a drinking water distribution network to understand the 
causes of high iron concentrations at a sub-region (DMA) level, and to thus develop a risk model 
giving predictions of relative probability of iron exceedance above a certain threshold. 

A preferred setup was identified in terms of accuracy and reliability for risk modelling across the 
network. The setup included a CRF model trained with yearly DMA averaged iron, turbidity, 3-day 
HPC, and high priority dead ends per DMA as input parameters, with output a year ahead prediction 
of relative probability of iron exceedance above 200 μg/L. 

The trained model was used to estimate and rank likelihood of iron exceedance for all DMAs in 
year 2020. This ranking showed that less than 10% of DMAs pose a risk compared to the entire 
system, suggesting that targeting these for interventions should provide the greatest return for 
managing iron exceedance risk. 

The developed model can inform proactive management and is easily applicable to investigate 
other discoloration parameters such as turbidity, and transferable to other datasets or regions. 
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