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Abstract. A data-driven model that uses 4 different machine learning (ML) algorithms (Feed 
forward artificial neural networks (ANN), Nonlinear autoregressive exogeneous (NARX) 
ANN, support vector machine and Random Forest) was designed for the prediction of chlorine 
loss events in water distribution trunk mains. The model, firstly, identifies past chlorine loss 
events and their associate flow or temperature events. Then, the detected past flow events and 
their associate past chlorine loss events are used to train the ML algorithms. The model was 
tested in 3 trunk mains of the same drinking water distribution system with similar diameter 
but with different characteristics, using each time a different combination of parameters (flow 
(input) - past chlorine losses (output) or flow, temperature, and chlorine (input) - past chlorine 
losses (output)) and machine learning algorithms. Results indicate that the model could predict 
a future chlorine loss event with a period between 2 to 10 hours depending on the parameter 
and ML algorithm used and the trunk mains’ hydraulic characteristics.  

1.  Introduction  
Chlorine (Cl) is the most common disinfectant used to minimise the bacteriological activity in the 
drinking water exiting the treatment processes and prevent bacterial regrowth in the water distribution 
systems (WDS). Chlorine concentration in the water exiting the works is particularly high; however, 
due to chlorine reactions in the bulk water and in the pipe walls, it decreases during the water travel to 
the customer taps through the WDS [1]. Therefore, it is required by the water utilities to monitor the 
chlorine residual and, if possible, to accurately predict the chlorine behaviour in the WDS. 

Traditional approaches in predicting chlorine decay in the WDS are made using a combination of 
processed based models and hydraulic models. Generally, these models produce accurate results; 
however they require a large number of accurate data and a good understanding of the physical 
chemical and hydraulic characteristics of the WDS for their implementation. In addition, these models 
require a determination and a continuous recalibration of a number of parameters (e.g. chlorine decay 
constant) in order to accurately simulate the chlorine behaviour. This process could be complicated 
and sometimes it requires a vast amount of computational time for its completion.   

Data-driven models that apply machine learning (ML) algorithms for understanding the trends over 
the collected data and predict future behaviour could be an alternative solution for the prediction of 
chlorine decay in the WDS. In the past, data-driven models have been applied in various projects in 
the water sector for analysing the quality of the source water [2], improving the water treatment 
processes [3] and predicting turbidity events in trunk mains [4, 5]. As regards the chlorine decay 
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prediction, Gibbs et al. presented a promising data-driven model using artificial neural networks 
(ANNs) to predict chlorine concentrations in customer taps [6]. 

In this paper, the model that Kazemi et al. [4] developed for the prediction of turbidity events in the 
water distribution trunk mains is redeveloped and adapted to predict chlorine loss events. More 
specifically, the model, presented here, is a regression model that predicts chlorine loss events, in 
terms of periods with low chlorine concentrations, at the end of the water distribution trunk mains up 
to several hours ahead. The model initially detects past chlorine loss events in the dataset and then it 
uses these events in combination with past water quality data related to these events (temperature, flow 
and chlorine concentration) as inputs in 4 ML algorithms (Feed Forward ANN (FF-ANN), non-linear 
autoregressive exogeneous ANN (NARX-ANN), random forest (RF) and support vector machines 
(SVM)) for the prediction of future chlorine loss events. The model was tested in 3 real world trunk 
mains of the same WDS and the prediction performance of the various ML algorithms was compared. 

2.  Site details and available datasets 
The datasets used in this work were created for a case study on the impact of hydraulic interventions 
for managing the discolouration risk in the trunk mains [7]. The study area (figure 1) is a WDS located 
in the north of the UK consisting of 3 different trunk mains (TM-1, TM-2, TM-3) fed with water from 
the same water treatment plant. Chlorine concentrations were monitored with a frequency of 15 
minutes at the plant outlet and at the outlet of each one of the trunk mains. Water temperature was also 
measured at the end of each trunk main, and flow was measured at the start of each trunk main with 
the same frequency. The main pipe characteristics for all the trunk mains are similar (table 1), 
however, during the study period, their hydraulic characteristics differed for the purposes of the case 
study [7]. 
 

 
Figure 1. Schematic of the DWDS trunk mains [7]. 

Table 1. Water distribution trunk mains characteristics. 

Trunk 
main 

Mean internal 
diameter [mm] Pipe material 

Velocity 
[m/s] 

Length from WTW outlet to 
downstream logger [km] 

TM-1 304.8 Unlined CI (25% lined) 0.6 6.4 
TM-2 406.8 Unlined CI 0.3 5.6 
TM-3 304.8 Unlined CI 0.4 5.9 
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For our work, we assumed that there is no leakage in the trunk mains, and therefore for each trunk 
main and for each time step there were no changes in the monitoring flow during the travel of the 
water through them. Overall, three different datasets, one for each water distribution trunk main, are 
collected. Each dataset consists of 15 minutes time chlorine, flow and temperature data for a period of 
7 months. During this period, there are some months with no available chlorine or temperature data 
that are excluded from the analysis. 

3.  Methodology 

3.1.  Data preparation 

3.1.1.  Removing data anomalies and outliers. In the collected datasets there were several outliers, 
either spikes or zero and negative values that could influence the methodology’s results. These were 
identified and removed using a gradient algorithm created in MATLAB (version 2019b). More 
specifically, the algorithm followed these steps: 

 It identified and replaced the zero and the negative chlorine values with missing values; 
 It calculated the gradient between a data point and its previous one and if this was found 

greater than 0.4 mg/l it was replaced with a missing value; 
 If the consecutive missing values were more than 12 (3 hours without measurement, the points 

were ignored, otherwise these were filled using the spline interpolation. 

3.1.2.  Smoothing the data. The last data preparation step was to smooth the data for removing the 
noise that could influence the training of the data-driven methodology. For the smoothing of the 
dataset the cubic spline function was used in MATLAB (version 2019b). The smoothing length was 
set equal to 2Δt (30 minutes) due to the increased noise in the Chlorine dataset. Figure 2 shows the 
original and the smoothed Cl, flow, and temperature data in a small part of the TM-3 dataset. 

3.2.  Chlorine loss event detection 
A model was designed to capture and extract the chlorine loss events from the dataset. These events 
are identified as the periods of the dataset where unusually low chlorine concentrations are measured. 
The model extracted the chlorine loss events by following these steps: 

 The event peaks were identified as the local minimum Chlorine values; 
 For each peak the event starting and finishing points were detected using the gradient of the 

timeseries before and after the event. The model traced the data up to certain hours before the 
event to find a gradient that surpassed the gradient threshold of 0.02mg/l per 15 min (0.02mg/l 
per timestep).  If no gradient higher than the threshold was found the peak was ignored. If a 
gradient higher than the threshold was found, the chlorine event was detected. The detected 
event consisted of equal datapoints prior the peak and after the peak depending on the defined 
forecasting period. For example, if the forecasting period was set as 4 hours ahead, the event 
consisted of datapoints 2 hours before and 2 hours after the peak; 

 A “base value” was set as equal to the pre-event chlorine concentration in the dataset and 
baseline that connected all the base values was generated; 

 The event magnitude was calculated as the difference between the peak and the base value of 
each event. The final events were then selected as those that exceeded the magnitude threshold 
of -0.15mg/l. 

3.3.  Flow and temperature event detections 
Once the final chlorine events were detected a similar model was used to detect their associate flow or 
temperature events. These events were detected by searching the dataset over a period of certain hours 
before the detected chlorine event. This detection model identified the associate flow or temperature 
events by following 5 steps. The first four were same steps as the ones that the chlorine loss event 
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detection model was using. The magnitude threshold in the fourth step was set equal to 10l/s 
(0.01m3/s) when the flow dataset was used and to 0.3C when the temperature dataset was used. The 
final step in this model was to remove all the Chlorine loss events that no flow event or no temperature 
event was found. 
 

 

Figure 2. Original and smoothed flow (top), temperature (middle) & chlorine (bottom) data in TM-3. 

The model was applied in all three trunk mains and on average there were 30 chlorine loss events 
associated with high flow events per trunk main in comparison with 12 chlorine loss events associated 
with temperature events. Therefore, the events used in the predictive model were chlorine loss events 
as outputs and their associate flow events as inputs. Figure 3 shows two detected chlorine events with 
their associated high flow events for TM-1. 

3.4.  Predictive model 
A multistep data-driven prediction model was constructed in MATLAB (version 2019b) for the 
prediction of future chlorine loss events. In the predictive model, 4 ML algorithms (RF, SVM, FF-
ANN and NARX-ANN) were selected for the chlorine loss forecasting and a comparison between 
their performances was made.   

3.4.1.  ML algorithms. The selected ML algorithms tested here were as follows: 
Random Forest (RF) [8]: RF is an ensemble decision tree algorithm that uses the outputs of large 

number of equal weak decision trees for making predictions. Each weak tree makes its splitting 
decision using randomly a small part of training dataset and part of the available input parameters. The 
final RF prediction is equal to the mean of the predictions made by the week trees. In this predictive 
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model the number of weak trees was set equal to 1000 and the minimum number observations per tree 
were set to 5.  

 

 
Figure 3. Detected chlorine and their associated flow events in TM-1. 

Support vector machine (SVM) [9]: SVMs is trained to find the maximum margins between the 
boundaries that separate the input dataset and thus reducing the generalisation error. In this predictive 
model, the 5-Fold cross-validation was used for the data calibration and the Gaussian kernel for its 
training. 

FF-ANN [9]: ΑNNs were constructed to simulate the human brain function. The FF-ANN is an 
ANN where the information is moving only forward from the input layer to the output layer through 
the hidden layers. The FF-ANN used here had one hidden layer with 14 neurons and it was using the 
regularization backpropagation function for training. 

NARX-ANN [10]: NARX-ANN is an ANN that uses the non-linear version of the autoregressive 
exogenous model. There are two versions of the algorithm architecture, the open and closed loop. The 
former uses the past and presents inputs and the past targets for predicting the future targets and the 
latter uses past and present inputs and past targets and predicted past targets by the model for the 
prediction of future targets. The NARX-ANN selected here was using a hidden layer with 10 neuros 
and the input and feedback delays were set to 3 empirically.  

3.4.2.  Predictive model input variables. The model initially collected the past chlorine loss events and 
their associated flow events. Then, either the flow measurements or the flow with the temperature and 
the chlorine measurements during the flow event period were used as inputs in the predictive model 
and the chlorine loss events were used as targets (outputs). 

The model is trained using a few past events combinations (10-20 events) to predict a future 
chlorine loss event given new unseen input data (flow or flow, chlorine, and temperature) during the 
current flow event. To remove the seasonality effect in the dataset, instead of the absolute chlorine 
values, the predictive model uses the magnitude of the event i.e. the difference between each data 
point of the event and the its base value. A simplified schematic of the predictive model that used 10 
past chlorine events and all the inputs in their associated flow events is presented in figure 4. 

3.4.3.  Performance metrics. Three performance metrics were selected for quantifying the performance 
of the predictive model and justify which of the ML models was better, the mean absolute error 
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(MAE), the root mean squared error (RSME) and the Nash-Sutcliffe Model Efficiency Coefficient 
(NSE). MAE is used as an indication of the overall agreement between predicted and targeted values, 
RMSE is used as a metric for the identification of high errors in the prediction and NSE is used for the 
comparison of the predictive skills of the model with the mean of the observed data. 
 

 
Figure 4. Schematic of the predictive model for the prediction of the Nth Chlorine event using for 
training the data from 10 past chlorine events (N-10…N-1) as outputs and all the inputs (chlorine, 
temperature, flow) from their associated flow events (FN-10…FN-1). 

4.  Results and discussion 
The model was tested using 8 different combinations of ML algorithms and input variables (NARX-
flow, NARX- flow/temperature/chlorine, FF-flow, FF - flow/temperature/chlorine, SVM-flow, SVM- 
flow/temperature/chlorine, RF-flow, RF-flow/temperature/chlorine) in each trunk main and for 
different forecasting periods (4-10 hours). In each trunk main different combinations of inputs and 
outputs were used for training and testing. Overall, the model managed to have accurate predictions 
with a forecasting horizon of up to 8 hours in TM-1 and up to 10 hours in TM-2 and TM-3. In table 2, 
the average performance results from all the model’s tests in all 3 trunk mains are presented. 

The model performance metrics as presented in table 2, indicate that the RF algorithm is the best 
out of all the tested ML algorithms and the NARX - ANN is the worst one. More specifically, NARX 
outputs produced only negative NSE results when tested in all three trunk mains while the RF, using 
flow, chlorine, and temperature as input variables, produced the highest NSE average and lowest MAE 
and RMSE average in TM-2 and TM-1. In addition, in one of the test events in TM-3, RF produced 
the highest NSE (0.92) of all simulations. This result disagrees with the finding that Kazemi et al 
found using the NARX algorithm with timeseries data in their work [4]. However, in their case their 
aim was to predict turbidity timeseries events instead of chlorine events. 

Figure 5 shows a 9-hour event in TM-2 with 10 hours ahead forecasting period and figure 6 shows 
a 12-hour event in TM-3 with 10 hours ahead forecasting period. Both figures 5 and 6 shows that RF, 
FF and SVM follow the measured data changing trend in comparison with NARX which, especially in 
TM-3, produced completely different to the measured data outputs. 

Regarding the other models, SVM with only the flow parameter used as input was the second-best 
predictive model in TM-1 and TM-2 with an NSE of 0.3 and 0.425 respectively. However, in TM-3 
the SVM with all input parameters outperformed the SVM with flow input. 
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Table 2. Performance of the model using different ML algorithm-input combinations. 

Trunk 
Main 

ML 
Method 

Prediction 
horizon 

Parameters 
used MAE RMSE NSE Highest 

NSE 

TM-1 

RF 

8 

cl flow 
temperature 0.0205 0.02645 0.543 0.579 

flow 0.0275 0.03475 0.280 0.386 

SVM 
cl flow 

temperature 0.02625 0.03375 0.274 0.54 

flow 0.02425 0.03125 0.300 0.5 

FF 
cl flow 

temperature 0.02895 0.03075 0.296 0.65 

flow 0.03025 0.04025 -0.002 0.473 

NARX 
cl flow 

temperature 0.2545 0.35175 -2.878 -1.62 

flow 0.07825 0.12355 -1.225 -1.09 

TM-2 

RF 

10 

cl flow 
temperature 0.0245 0.031 0.448 0.796 

flow 0.028 0.0365 0.32 0.327 

SVM 
cl flow 

temperature 0.04 0.046 -
0.1475 0.378 

flow 0.0245 0.033 0.425 0.591 

FF 
cl flow 

temperature 0.0425 0.0465 0.403 0.74 

flow 0.0275 0.0355 0.3535 0.449 

NARX 
cl flow 

temperature 0.145 0.196 -1.85 -1.8 

cl flow 0.1285 0.1925 -0.55 0.33 

TM-3 

RF 

10 

cl flow 
temperature 0.028 0.036 0.530 0.920 

flow 0.0385 0.048 0.308 0.569 

SVM 
cl flow 

temperature 0.0273 0.035 0.587 0.644 

flow 0.033 0.046 0.395 0.440 

FF 
cl flow 

temperature 0.119 0.138 -0.410 0.780 

flow 0.0395 0.0485 0.313 0.320 

NARX 
cl flow 

temperature 0.164 0.1895 -1.865 -1.800 

flow 0.3985 0.4615 -1.350 -1.300 
 

FF also produced good results, but the algorithm had completely different predictions in each TM 
depending on the inputs used. In TM-1 the FF algorithm when all the inputs were used, outperformed 
the one that used the flow as input in contrast with the other 2 TMs where the opposite occurred. 
Because all 3 trunk mains had different hydraulic characteristics during the study period, this finding 
indicates that both SVM and FF algorithms are influenced by the noise in the data due to the different 
hydraulic characteristics of the 3 trunk mains. In contrast, the predictive model that used the RF 
algorithm with either the flow or all the parameters as inputs, produced good outputs in all three trunk 
mains which indicates its ability to absorb the noise in the data. Moreover, in all the trunk mains the 
RF with all the outputs outperformed the RF where only the flow was used as input parameter which 
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potentially indicates that the more the relevant parameters are given to RF the better the results would 
be. Overall, this investigation demonstrated the potential of this model in predicting chlorine events in 
this dataset with a forecasting horizon of up to 10 hours ahead. However, further work is required in 
other water distribution networks with larger available datasets that cover a period of at least 2 years. 
This investigation will aim to examine how the model behaves in periods with different hydraulic 
conditions and its adaptation to seasonality changes. 
 

 
Figure 5. Chlorine predicted vs Measured data of a chlorine loss event in TM-2. 

    
Figure 6. Chlorine predicted vs Measured data of a chlorine loss event in TM-3. 

5.  Conclusions 
A data-driven methodology for the forecasting of a future chlorine loss event at the end of a water 
distribution trunk main is presented. This methodology, firstly, identifies past chlorine loss events and 
their associated flow events. Then, it imports either the flow, or the flow, the temperature, and the 
chlorine measurements during the flow event as inputs and the chlorine events as outputs in a 
predictive model that uses one of the following ML techniques: NARX, FF, SVM and RF. The 
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methodology was tested in a WDS that consists of 3 trunk mains (TM-1, TM-2, TM-3). The aim was 
to investigate the predictive ability of the model when different input parameters (flow or flow, 
temperature chlorine) - ML algorithms (NARX, SVM, FF, RF) combinations were used. 

For the quantification of the model’s performance, 3 main performance metrics were used, MAE, 
RMSE and NSE. The main conclusions are as follows: 

 The predictive model managed to predict accurately a future chlorine loss event with a period 
of 8 hours ahead in TM-1, 10 hours ahead in TM-2 and 10 hours ahead in TM-3; 

 The performance metrics (MAE, RMSE, NSE) indicated that best overall algorithm was the 
one that was using the RF algorithm with all the parameters as inputs; 

 NARX was the worst algorithm in all three datasets for this predictive model; 
 FF and SVM models had acceptable performances but both models appeared to be influenced 

by the different noises in the 3 datasets caused by the different hydraulic conditions in each 
trunk main; 

 This predictive model has the potential of becoming an accurate supporting tool for supporting 
water utilities decision making regarding proactive intervention. However, as the available 
data for this work were taken for a small period (overall less than 5 months of data were 
available if we include the spikes and the missing data), further research is required using 
larger datasets - with at least 2 year of data - to investigate the ability of the model to adapt in 
the seasonality changes and different hydraulic conditions. 
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