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We study the canonical quantization of a massless charged scalar field on a Reissner-Nordström

black hole background. Our aim is to construct analogs of the standard Boulware, Unruh and Hartle-

Hawking quantum states which can be defined for a neutral scalar field, and to explore their physical

properties by computing differences in expectation values of the scalar field condensate, current and stress-

energy tensor operators between two quantum states. Each of these three states has a non-time-reversal-

invariant past and future charged field generalization, whose properties are similar to those of the

corresponding past and future states for a neutral scalar field on a Kerr black hole. In addition, we present

some tentative, time-reversal-invariant, equilibrium states. The first is a “Boulware”-like state which is as

empty as possible at both future and past null infinity. Second, we posit a “Hartle-Hawking”-like state

which may correspond to a thermal distribution of particles. The construction of both these latter states

relies on the use of nonstandard commutation relations for the creation and annihilation operators

pertaining to superradiant modes.

DOI: 10.1103/PhysRevD.106.125013

I. INTRODUCTION

In the absence of a definitive theory of quantum gravity,

quantum field theory in curved space-time has proven to be a

fruitful avenue for research. In this approach, the space-time

background is regarded as purely classical, and quantum

fields propagating on a fixed background are studied. Some

of the earliest and deepest results arising from this setup are

pertinent to black hole physics, including the thermal

Hawking radiation emitted by black holes formed by the

gravitational collapse of a compact body [1,2].

The simplest black hole space-time is the Schwarzschild

black hole, and quantum fields propagating on this back-

ground have been studied extensively. The primary physi-

cal quantities of interest are expectation values of quantum

operators in a particular quantum state. For example, the

expectation value of the quantum stress-energy tensor

(SET) operator T̂μν governs the backreaction of the

quantum field on the space-time geometry via the semi-

classical Einstein equations

Gμν ¼ 8πhT̂μνi; ð1:1Þ

where Gμν is the Einstein tensor, hi denotes an expectation

value, and we are using units in which c ¼ G ¼ ℏ ¼
kB ¼ 1, as we shall throughout this paper. In order to

compute the right-hand side of (1.1), one needs to first

specify a quantum field, and then consider a particular

quantum state. Defining quantum states on a general curved

space-time background is nontrivial because the notion of

particle is observer-dependent and, as a result, there may

not be a unique or natural vacuum state.

On a Schwarzschild black hole, three standard quantum

states have been studied in the literature [3]:

Boulware state [4]: This is defined as the quantum state

which is as empty as possible far from the black hole.

However, this state diverges on the event horizon of the

black hole and physically represents the vacuum state
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outside a star which does not have a horizon. This state

respects thesymmetriesof theunderlyingSchwarzschild

space-time and, in particular, is time-reversal invariant.

Unruh state [5]: Unlike the Boulware state, the Unruh

state is not time-reversal invariant. It is the state

pertinent to modeling a black hole formed by gravi-

tational collapse. While the state is empty at past null

infinity, it contains an outwards flux of particles (the

Hawking radiation) at future null infinity. The Unruh

state is regular across the future event horizon, but not

the past event horizon of an eternal black hole.

Hartle-Hawking state [6,7]: This state represents a

black hole surrounded by thermal radiation at the

Hawking temperature. As well as being time-reversal

invariant, this state has attractive regularity proper-

ties, being regular across both the future and past

event horizons.

The properties of these three states for various quantum

fields on Schwarzschild space-time have been extensively

studied via computations of renormalized expectation

values (for a sample of the literature, see [8–23]).

Prior to the discovery of Hawking radiation, it was

already known that rotating Kerr black holes emit quantum

Unruh-Starobinskii radiation [24,25]. Classical bosonic

fields propagating on a Kerr black hole space-time exhibit

superradiance [26,27], whereby low frequency modes

incident from infinity are amplified upon reflection from

the black hole. Unruh-Starobinskii radiation is the quantum

analog of classical superradiance, and occurs for fermionic

as well as bosonic fields [25].
The presence of superradiant modes complicates the

definition of quantum states on a Kerr black hole back-
ground, particularly for bosonic fields [28–32]. For a
quantum scalar field, it is no longer possible to define
a Boulware-like state which is as empty as possible at
both future and past null infinity [29,31] (there is such a state
for a quantum fermion field [30], but it diverges on the
stationary limit surface). Instead, the analog of the Boulware
state for a quantum scalar field is no longer time-reversal
invariant.Although it is empty at past null infinity, it contains
an outgoing flux of particles in the superradiant modes at
future null infinity, corresponding to the Unruh-Starobinskii
radiation [25,29,30,33]. While the Unruh state is
well-defined and has similar properties to that on
Schwarzschild space-time [34], this is not the case for the
Hartle-Hawking state. In particular, for a quantum scalar
field on aKerr black hole there does not exist a quantum state
respecting all the symmetries of the space-time and which is
regular across both the future and past event horizons
[35,36]. Attempts to define analogs of the Hartle-
Hawking state for either bosonic or fermionic fields on a
Kerr black hole lead to states which are either divergent in at
least part of the space-time exterior to the event horizon [28–
32] or which do not describe an equilibrium state [30,37].

The study of quantum field theory on a Kerr black hole is

further complicated due to the fact that the space-time has

fewer symmetries than a Schwarzschild black hole, being

only axisymmetric rather than spherically symmetric.

Indeed, renormalized expectation values for the Unruh

state have only been computed comparatively recently for

the whole region exterior to the event horizon [34].

One of the reasons why quantum field theory on Kerr

black holes is so challenging is because there are two

interlinked effects at play: superradiance and rotation. Even

in flat Minkowski space-time, defining rotating quantum

states is nontrivial [38–40], and rigidly rotating thermal

states do not exist for bosonic fields on the unbounded

space-time [41] (for fermionic fields, such states can be

constructed [42,43] but they are not regular everywhere

[43]). The question then arises as to whether it is possible to

disentangle these two effects. As outlined above, it is

possible to study the effects of rotation separately in flat

space-time, but what about the consequences of super-

radiance? There is a simpler black hole system which

exhibits superradiance without rotation, and that is the

focus of our work in this paper.

A classical charged scalar field propagating on a charged

Reissner-Nordström (RN) black hole space-time exhibits

the phenomenon of charge superradiance [44] (see, for

example, [45,46] for more recent work). This is analogous

to superradiance for bosonic fields on Kerr black holes,

namely low-frequency modes can be amplified on scatter-

ing by the charged RN black hole, thereby extracting some

of the charge of the black hole. There is a quantum analog

of charge superradiance [47,48], and particles are sponta-

neously emitted by the black hole in those modes which are

subject to charge superradiance. The interaction between

the charge of the scalar field and the charge of the black

hole also affects the Hawking radiation [47,49–52] and

hence also the evolution of an evaporating black hole

(studied using an adiabatic approximation in [53–56]).

Recently, the Unruh state for a charged scalar on an RN-de

Sitter black hole has been constructed and its properties

explored both inside and outside the event horizon [57,58].

However, the physical properties of the analogs of the other

standard quantum states discussed above for charged fields

on the RN space-time have been little studied to date.

Here we consider in detail the canonical quantization of a

massless charged scalar field, minimally coupled to the

space-time geometry, and propagating on an RN black hole.

As well as fixing the classical space-time geometry, we

regard the background electromagnetic field as fixed and

classical. We discuss in detail the construction of analogs of

the Boulware, Unruh and Hartle-Hawking states on this

background, paying particular attention to the consequences

of charge superradiance. The physical properties of these

states are then explored by considering differences in

expectation values between two quantum states, which do

not require renormalization. In addition to the quantum

stress-energy tensor operator, we also examine the expect-

ation value of the scalar field current operator Ĵμ (considered
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in [57,58] on an RN-de Sitter black hole), which acts as a

source for the semiclassical Maxwell equations

∇μF
μν ¼ 4πhĴνi ð1:2Þ

(in Gaussian units), where Fμν is the electromagnetic gauge

field strength. The semiclassical Maxwell equations (1.2)

govern the backreaction of the quantum field on the

electromagnetic field. We also consider the simplest non-

trivial expectation value, the scalar field condensate.

The outline of this paper is as follows. In Sec. II we

briefly review the RN geometry and describe the classical

charged scalar field modes which will be used extensively

throughout the paper. The canonical quantization of the

charged scalar field is the focus of Sec. III. We construct in

detail a wide range of quantum states, inspired by the

standard Boulware, Unruh and Hartle-Hawking states on

the Schwarzschild black hole. Differences in expectation

values of observables between two quantum states are

studied in Sec. IV, first by considering the asymptotic

behavior of the states near the horizon and infinity, which

can be derived analytically for at least some states, and

second by full numerical computations valid everywhere

outside the event horizon. From these computations we

examine some key properties of the states we have defined,

including symmetry with respect to time-reversal, regular-

ity (including on the event horizons) and the presence of

fluxes. Our conclusions are presented in Sec. V.

II. CLASSICAL CHARGED SCALAR FIELD ON A
REISSNER-NORDSTRÖM BLACK HOLE

In this section we review the key properties of the RN

black hole geometry, and define the classical charged scalar

field modes on this background.

A. Reissner-Nordström black hole geometry

The background space-time is a four-dimensional,

spherically symmetric RN black hole with metric

ds2¼−fðrÞdt2þfðrÞ−1dr2þr2dθ2þr2 sin2θdφ2; ð2:1Þ

where the metric function fðrÞ is given by

fðrÞ ¼ 1 −
2M

r
þQ2

r2
; ð2:2Þ

withM the mass andQ the electric charge of the black hole.

If M2 > Q2, the metric function fðrÞ has two zeros, at

r ¼ r�, where

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð2:3Þ

In this case, rþ is the location of the black hole event horizon

and r− is the location of the inner horizon. WhenM2 ¼ Q2,

the two horizons coincide and the black hole is extremal. For

M2 < Q2, there is a naked singularity. In this paperwe restrict

our attention to the case M2 > Q2. Part of the Penrose

diagram for the nonextremal black hole is depicted in Fig. 1.

Our primary interest in this paper is in defining states in

the region exterior to the event horizon, region I in Fig. 1.

However, in order to do so we will need to employ scalar

field modes which are defined in the other regions shown in

Fig. 1. It is therefore useful to define Kruskal coordinates

U, V which are regular in all four of regions I–IV. In region

I, ingoing and outgoing null coordinates u, v are given

respectively by

u ¼ t − r�; v ¼ tþ r�; ð2:4Þ

in terms of the usual “tortoise” coordinate r�, defined by

dr�
dr

¼ 1

fðrÞ ; ð2:5Þ

where the metric function fðrÞ is given by (2.2). In region I,
the tortoise coordinate has the range −∞ < r� < ∞.

Kruskal coordinates can then be written in terms of u
and v in region I as follows:

U ¼ −
1

κ
e−κu; V ¼ 1

κ
eκv; ð2:6Þ

where

κ ¼ 1

2
f0ðrþÞ ¼

1

r2þ
ðrþ −MÞ ð2:7Þ

FIG. 1. Penrose diagram of nonextremal RN space-time. The

future and past event horizons are denoted H�, while I� are

future and past null infinity. Future and past timelike infinity are

labeled i�, and i0 is spacelike infinity. There is a space-time

singularity at r ¼ 0. The diagram also shows regions I, II, III and

IV, which will be required in our constructions.
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is the surface gravity of the event horizon. In region I, the

Kruskal coordinate U ¼ 0 on the future event horizon Hþ,
and tends to−∞ at past null infinityI−. Similarly, in region I,

the Kruskal coordinate V ¼ 0 on the past event horizon H−

and tends to∞ at future null infinityIþ. Values ofU andV on

someother key surfaces in the space-time are shown in Fig. 1.

The RN black hole is a solution of Einstein’s equations

with an electromagnetic field. The background electromag-

netic potential has components Aμ ¼ ðA0; 0; 0; 0Þ where

A0 ¼ −
Q

r
; ð2:8Þ

and we have chosen a constant of integration so that the

gauge field potential vanishes far from the black hole. As

observed in [57,58], by means of a gauge transformation it

is possible to set the gauge field potential to zero at any

fixed chosen value of r. In this paper we fix the gauge so

that (2.8) holds throughout. The electromagnetic potential

Aμ (2.8) satisfies the Lorenz gauge condition ∇μAμ ¼ 0.

B. Classical charged scalar field

The focus of this paper is a massless, charged, complex

scalar field Φ with charge q, minimally coupled to the

space-time geometry, and satisfying the equation

DμD
μ
Φ ¼ 0; ð2:9Þ

where Dμ ¼ ∇μ − iqAμ is the covariant derivative, with Aμ

the electromagnetic potential (2.8). We consider mode

solutions of the scalar field equation (2.9) of the form

ϕωlmðt; r; θ;φÞ ¼
e−iωt

r
N ωXωlðrÞYlmðθ;φÞ; ð2:10Þ

where we emphasize that the frequency ω may take any

positive or negative value. In (2.10), the integer l ¼
0; 1; 2;… is the total angular momentum quantum number,

m ¼ −l;−lþ 1;…;l − 1;l is the azimuthal angular

momentum quantum number, ω the frequency of the mode,

N ω is a normalization constant and Ylmðθ;φÞ is a spherical
harmonic. The spherical harmonics are given by

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s

Pm
l
ðcos θÞeimφ; ð2:11Þ

where Pm
l
is a real Legendre function and we have fixed the

normalization such that

Z
Ylmðθ;φÞY�

l0m0ðθ;φÞ sin θdθdφ ¼ δll0δmm0 ; ð2:12Þ

where � denotes complex conjugation. In terms of the

“tortoise” coordinate r�, defined by (2.5), the radial

equation for XωlðrÞ takes the form

�
−

d2

dr2�
þ VeffðrÞ

�
XωlðrÞ ¼ 0; ð2:13Þ

where the effective potential VeffðrÞ is

VeffðrÞ¼
fðrÞ
r2

½lðlþ1Þþ rf0ðrÞ�−
�
ω−

qQ

r

�
2

: ð2:14Þ

Near the black hole event horizon, as r → rþ and

r� → −∞, and at infinity, as r; r� → ∞, the effective

potential Veff (2.14) has the asymptotic values

VeffðrÞ ∼
�
−ω̃2 ¼ −ðω −

qQ
rþ
Þ2; r� → −∞;

−ω2; r� → ∞;
ð2:15Þ

where we have defined the quantity

ω̃ ¼ ω −
qQ

rþ
: ð2:16Þ

The charges of both the black hole and of the scalar field do

not appear in the effective potential far from the black hole

since we have chosen a gauge in which the electromagnetic

potential vanishes there. Under a gauge transformation of

the form

Aμ → Aμ þ ∂μϒ; Φ → eiqϒΦ; ϒ ¼ Qt

r0
; ð2:17Þ

for a constant r0, the gauge potential Aμ transforms to

ðA0; 0; 0; 0Þ with

A0 ¼ −
Q

r
þ Q

r0
: ð2:18Þ

We have chosen a gauge with r0 ¼ ∞, but we could equally

well have chosen r0 ¼ rþ. In this case the gauge potential

A0 would vanish at the event horizon rather than at infinity,

and the effective potential Veff (2.14) at the horizon would

be independent of the charge.

Under a gauge transformation (2.17), the frequency ω of

a scalar field mode (2.10) is transformed to

ω ¼ ω −
qQ

r0
: ð2:19Þ

Therefore the frequency of a scalar field mode is not a

gauge-invariant quantity. A constant shift in the frequency

corresponds to a gauge transformation (2.17), which will

affect the final term in the effective potential Veff (2.14),

and hence the form of the scalar field modes near the

horizon and at infinity. Our choice of gauge means that the

quantity ω in (2.10) has a natural physical interpretation; it

is the frequency of a mode as measured by a static observer

far from the black hole.
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With our choice of gauge, we see from (2.15) that the

charge does affect the form of the effective potential close

to the horizon. This turns out to have important conse-

quences for both the form of the scalar field modes, and, in

Sec. III, for the canonical quantization of the scalar field. A

further important feature of the radial equation (2.13) is that

it is not invariant under the transformation ω → −ω. This

means that, while X�
ωlðrÞ satisfies the same radial equation,

namely (2.13) as XωlðrÞ, the function X�
ωlðrÞ is not the

same as X−ωlðrÞ. This subtlety will be important in Sec. III

when we quantize the field.

In region I, a basis of solutions to the radial equa-

tion (2.13) consists of the usual in and up scalar field

modes, which have the asymptotic forms

Xin
ωlðrÞ ¼

(
Bin
ωle

−iω̃r� ; r� → −∞;

e−iωr� þ Ain
ωle

iωr� ; r� → ∞;
ð2:20aÞ

and

X
up
ωlðrÞ ¼

(
eiω̃r� þ A

up
ωle

−iω̃r� ; r� → −∞;

B
up
ωle

iωr� ; r� → ∞;
ð2:20bÞ

respectively, where A
in=up
ωl and B

in=up
ωl are complex constants.

The in modes represent scalar waves incoming from I−,

which are partly reflected back to Iþ and partly transmitted

down the future horizonHþ. The up modes represent scalar

waves which are outgoing near the past horizon H−, partly

reflected back down the future horizon Hþ and partly

transmitted to Iþ. Our in and up modes are the same as

those constructed in [57,58], although our different choice

of gauge means that the asymptotic forms (2.20a), (2.20b)

are not identical.

We will also make use of an alternative basis in region I,

given by the following out and down modes, whose radial

functions are defined by:

Xout
ωlðrÞ ¼ Xin�

ωlðrÞ; Xdown
ωl ðrÞ ¼ X

up�
ωl ðrÞ; ð2:21aÞ

and whose asymptotic forms are therefore

Xout
ωlðrÞ ¼

�
Bin�
ωle

iω̃r� ; r� → −∞;

eiωr� þ Ain�
ωle

−iωr� ; r� → ∞;
ð2:21bÞ

and

Xdown
ωl ðrÞ ¼

�
e−iω̃r� þ A

up�
ωl e

iω̃r� ; r� → −∞;

B
up�
ωl e

−iωr� ; r� → ∞;
ð2:21cÞ

respectively. The out and down radial mode functions can

be written as linear combinations of the in and up radial

mode functions as follows:

Xout
ωlðrÞ ¼ Ain�

ωlX
in
ωlðrÞ þ Bin�

ωlX
up
ωlðrÞ;

Xdown
ωl ðrÞ ¼ A

up�
ωl X

up
ωlðrÞ þ B

up�
ωl X

in
ωlðrÞ: ð2:22Þ

The out modes correspond to a combination of in and up

modes such that there is no flux going down the event

horizon, while the down modes have no outwards flux at

infinity. The in, up, out and down modes are depicted

in Fig. 2.

Since the effective potential (2.14) in the radial equa-

tion (2.13) is real, for any two solutions X1, X2 of the radial

equation the Wronskians

X1

dX2

dr�
− X2

dX1

dr�
; X�

1

dX2

dr�
− X2

dX�
1

dr�
ð2:23Þ

are independent of r�. Using the asymptotic forms (2.20),

we obtain the following Wronskian relations, valid for any

value of the frequency ω:

ω½1 − jAin
ωlj2� ¼ ω̃jBin

ωlj2;
ω̃½1 − jAup

ωlj2� ¼ ωjBup
ωlj2;

ω̃Bin
ωl ¼ ωB

up
ωl;

ω̃A
up�
ωl B

in
ωl ¼ −ωAin

ωlB
up�
ωl ; ð2:24Þ

where it should be stressed that both ω and ω̃ can take

any real value. For scalar field modes with ωω̃ < 0, the

reflection coefficient jAωlj2 > 1. This is the classical

phenomenon of charge superradiance [44]. An in mode

FIG. 2. In, up, out and down modes depicted in region I of the

RN space-time.
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withωω̃ < 0will be reflected back to Iþ with an amplitude

greater than it had coming in from I−, and, similarly, an up

mode with ωω̃ < 0 will be reflected back downHþ with an

amplitude greater than it had coming out from H−.

In Fig. 3 we show the reflection jAin
ωlj2 and transmission

ω̃jBin
ωlj2=ω coefficients for in modes with l ¼ 0, and fixed

scalar field and black hole charges. We find similar

qualitative behavior for other values of these parameters.

It can be seen that for small positive frequency ω, we have

jAin
ωlj2 > 1 and hence superradiance. In this frequency

range, we have ω̃ < 0 and hence the transmission coef-

ficient is negative. One notable feature of charge super-

radiance is that the amplification of low-frequency waves is

much greater than the corresponding effect on Kerr black

hole backgrounds [27] (cf. Fig. 16 in [59]).

The inner product hΦ1;Φ2i between any two solutions

Φ1, Φ2 of the scalar field equation (2.9) is defined by

hΦ1;Φ2i ¼ i

Z

Σ

½ðDμΦ1Þ�Φ2 −Φ
�
1DμΦ2�

ffiffiffiffiffiffi
−g

p
dΣμ

¼ i

Z

Σ

½ð∇μΦ
�
1ÞΦ2 −Φ

�
1∇μΦ2

þ 2iqAμΦ
�
1Φ2�

ffiffiffiffiffiffi
−g

p
dΣμ; ð2:25Þ

where Σ is a Cauchy surface. The inner product (2.25)

depends on the electromagnetic potential Aμ, and this will

have an effect on the normalization of the scalar field

modes. We compute the inner product of two in or up scalar

field modes (2.20) on a Cauchy surface close to H− ∪ I−.

The in modes vanish close to H−, and hence we find

hϕin
ωlm;ϕ

in
ω0l0m0i¼ 4πωN in�

ω N in
ω0δðω−ω0Þδll0δmm0 : ð2:26aÞ

Similarly, the up modes vanish close to I− and we obtain

hϕup
ωlm;ϕ

up

ω0l0m0i ¼ 4πω̃N
up�
ω N

up

ω0 δðω − ω0Þδll0δmm0 :

ð2:26bÞ

For the out and down modes (2.21), it is most convenient to

perform the integration over a Cauchy surface close to

Hþ ∪ Iþ. The out modes vanish close to Hþ, giving

hϕout
ωlm;ϕ

out
ω0l0m0i ¼ 4πωN out�

ω N out
ω0 δðω − ω0Þδll0δmm0 ;

ð2:26cÞ

while the down modes vanish close to Iþ and we have

hϕdown
ωlm ;ϕdown

ω0l0m0i ¼ 4πω̃N down�
ω N down

ω0 δðω − ω0Þδll0δmm0 :

ð2:26dÞ

In all cases, modes with different values of the frequency ω

and quantum numbers l and m are orthogonal. It is also

straightforward to see that any in mode is orthogonal to any

up mode and any out mode is orthogonal to any down

mode. From (2.26), the modes are normalized by taking

N
in=out
ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p ; N

up=down
ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p : ð2:27Þ

The in and out modes then have positive norm when ω > 0,

while the up and down modes have positive norm when

ω̃ > 0. This will turn out to be crucial when we perform the

canonical quantization of the scalar field in the next section.

Using the normalization constants (2.27) and the relation-

ships (2.22) between the radial mode functions for the in,

up, out and down modes, we find the following equations

connecting the in, up, out and down modes:

ϕout
ωlm ¼ Ain�

ωlϕ
in
ωlm þ

����
ω̃

ω

����
1
2

Bin�
ωlϕ

up
ωlm;

ϕdown
ωlm ¼ A

up�
ωl ϕ

up
ωlm þ

����
ω

ω̃

����
1
2

B
up�
ωl ϕ

in
ωlm: ð2:28Þ

We will make use of these results in the quantization of the

scalar field in the next section.

III. CANONICAL QUANTIZATION OF THE
CHARGED SCALAR FIELD

In this section we schematically review the method of

canonical quantization for defining states of a charged

quantum scalar field on a general static curved space-time,

before applying this method to the charged scalar field on

the RN space-time. We will see that the presence of

superradiant modes complicates the canonical quantization

of a charged scalar field compared with the neutral case.

FIG. 3. Reflection jAin
ωlj2 and transmission ω̃jBin

ωlj2=ω coef-

ficients for in modes with l ¼ 0 as a function of frequency ω, for

a particular choice of scalar field charge q ¼ M=2 and black hole
charge Q ¼ M=2. Superradiance occurs when the reflection

coefficient is greater than unity.
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Similar challenges occur due to superradiance on a Kerr

black hole [28–32].

A. General approach

We begin with an orthonormal basis of classical mode

solutions ϕj of the charged scalar field equation (2.9),

labeled by an index j. The modes are normalized using the

inner product (2.25), so that

hϕj;ϕj0i ¼ ηjδjj0 ; ð3:1Þ

where δjj0 is either the Kronecker delta or the Dirac delta

function, depending on whether the label j is discrete or

continuous. The product (2.25) is not, strictly speaking, an

inner product because the norm of any mode ϕj is not

necessarily positive. We have therefore defined a quantity

ηj given by

ηj ¼
�
1; if ϕj has positive norm;

−1 if ϕj has negative norm:
ð3:2Þ

The basis modes are then split into two sets, corresponding

to positive and negative frequency modes. Consider a scalar

field mode ϕj having harmonic dependence on a particular

timelike coordinate T, so that

∂

∂T
ϕj ¼ −iϖϕj; ð3:3Þ

whereϖ ∈ R is the frequency of the mode. Such a mode is

positive frequency if ϖ > 0. From (2.19), this definition

depends on the choice of gauge. More generally, a mode is

positive frequency with respect to the coordinate T if, when

Fourier decomposed with respect to the time coordinate T it

only contains positive frequency components, which means

that the mode, considered as a function of T, is analytic in
the lower-half of the complex plane. The way in which the

basis of field modes is split into positive and negative

frequency components therefore depends on a choice of

time coordinate T. Denoting the positive frequency modes

by ϕþ
j and the negative frequency modes by ϕ−

j , any

classical solution Φ of the scalar field equation (2.9) can

therefore be written schematically as

Φ ¼
X

j

ðajϕþ
j þ b†jϕ

−
j Þ; ð3:4Þ

where aj, b
†
j are complex constants and the sum is taken

over the basis of modes.

The scalar field Φ is quantized by promoting the

expansion coefficients aj, b
†
j to operators:

Φ̂ ¼
X

j

ðâjϕþ
j þ b̂†jϕ

−
j Þ: ð3:5Þ

Since we are considering a charged, complex scalar field,

we have distinct operators âj for particles and b̂j for

antiparticles.

With a choice of time coordinate T, the canonical

momentum conjugate to the field operator Φ̂ is, since

we are assuming that the space-time is static,

Π̂ ¼ 1

2
gTμðDμΦ̂Þ� ¼ 1

2
gTμð∂μ þ iqAμÞΦ̂�: ð3:6Þ

The quantum scalar field Φ̂ and its conjugate momentum Π̂

then satisfy the equal-time canonical commutation relations

½Φ̂ðT; xÞ; Π̂ðT; x0Þ� ¼ iδ3ðx; x0Þ;
½Φ̂ðT; xÞ; Φ̂ðT; x0Þ� ¼ 0 ¼ ½Π̂ðT; xÞ; Π̂ðT; x0Þ�: ð3:7Þ

Using the orthonormality relations (3.1), the operators âj,

b̂j are found to satisfy the commutation relations

½âj; â†j0 � ¼ ηþj δjj0 ; ½b̂j; b̂†j0 � ¼−η−j δjj0 ;

½âj; âj0 � ¼ 0¼ ½â†j ; â†j0 �; ½b̂j; b̂j0 � ¼ 0¼ ½b̂†j ; b̂†j0 �; ð3:8Þ

where ηþj and η−j are the quantities in (3.1) for the positive

and negative frequency modes respectively.

In the standard approach to canonical quantization, the

positive frequency modes ϕþ
j are such that ηþj ¼ 1 for all j,

while the negative frequency modes ϕ−
j are such that η−j ¼

−1 for all j. In this case the nonzero commutation relations

(3.8) take the usual form

½âj; â†j0 � ¼ δjj0 ; ½b̂j; b̂†j0 � ¼ δjj0 ; ð3:9Þ

leading to the interpretation of the operators âj, b̂j as

annihilation operators and â†j , b̂
†
j as creation operators.

On the other hand, suppose there exist positive frequency

modes ϕþ
j with negative norm for which ηþj ¼ −1 and/or

negative frequency modes ϕ−
j with positive norm so that

η−j ¼ 1. In this situation one could consider that the modes

have effectively been “mislabeled.” In this section, we will

be defining positive and negative frequency modes using

various physical choices of the time coordinate T, and we

will see that in some cases this leads to effectively

mislabeled modes. A similar situation arises in the quan-

tization of a neutral scalar field on a Kerr black hole space-

time (see [28], where details of the “η-formalism” devel-

oped to deal with such mislabeled modes can be found).

Nonetheless, in this situation, as in standard quantum

field theory, once we have an expansion of the scalar field

of the form (3.5), a natural “vacuum” state j0i can be

defined as that state which is annihilated by the operators âj

and b̂j:
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âjj0i ¼ 0; b̂jj0i ¼ 0: ð3:10Þ

When the operators âj and b̂j satisfy the conventional

commutation relations (3.9), the state j0i contains zero

quanta in both the ϕþ
j and ϕ−

j modes, as measured by the

standard number operators â†j âj and b̂†j b̂j. When there are

mislabeled modes, the definition of the number operators

n̂aj, n̂bj for particles and antiparticles respectively are

modified to be [28]:

n̂aj ¼ ηþj â
†
j âj; n̂bj ¼ η−j b̂

†
j b̂j: ð3:11Þ

Therefore the “vacuum” state j0i still contains zero quanta,
since n̂ajj0i ¼ 0 and n̂bjj0i ¼ 0. Furthermore, applying an

operator â†j or b̂†j to the state j0i results in a state which

contains one quantum, as measured by the relevant number

operator (3.11), so that the operators â†j and b̂†j have their

usual interpretation as creation operators (and âj, b̂j are

annihilation operators).

B. Past quantum states

We first consider the construction of past quantum states,

defined with respect to a Cauchy surface close toH− ∪ I−.

The past Boulware state jB−i considered in Sec. III B 1 was

constructed in [48] (where it was referred to as the in

vacuum), while the past Unruh state jU−i (Sec. III B 2) was

first studied by Gibbons [47], and more recently in [57,58].

1. Past Boulware state

Near past null infinity I−, it is natural to use the

Schwarzschild-like coordinate t as the time coordinate.

This corresponds to the proper time of a static observer far

from the black hole. Restricting attention to region I, a

suitable set of in modes having positive frequency with

respect to t near I− is then

ϕinþ
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p

r
Xin
ωlðrÞYlmðθ;φÞ; ω > 0; ð3:12aÞ

where Xin
ωlðrÞ is given by (2.20a). From (2.26a), these

modes have positive norm. Similarly, in region I, a suitable

set of in modes having negative frequency with respect to t
near I− is

ϕin−
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p

r
Xin
ωlðrÞYlmðθ;φÞ; ω < 0: ð3:12bÞ

A key subtlety here is that ϕin−
ωlm ≠ ϕinþ�

ωlm because the radial

equation (2.13) is not invariant under the transformation

ω → −ω and hence X−ωlðrÞ ≠ X�
ωlðrÞ.

Near the past event horizon H−, the natural time

coordinate for a static (and hence accelerating) observer

is still the Schwarzschild-like coordinate t. However, from

(2.26b), the up modes ϕ
up
ωlm have positive norm only if

ω̃ > 0, where ω̃ is given by (2.16). Working in region I

only, we therefore consider the set of positive norm up

modes given by

ϕ
upþ
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
X
up
ωlðrÞYlmðθ;φÞ; ω̃ > 0: ð3:13aÞ

If qQ > 0, these modes all have ω > 0 and hence have

positive frequency with respect to t, but if qQ < 0, then

some of the positive norm up modes (3.13a) will have

ω < 0 and hence be considered to have negative frequency

as measured by a static observer. Similarly, in region I, the

set of negative norm up modes is given by

ϕ
up−
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
X
up
ωlðrÞYlmðθ;φÞ; ω̃< 0: ð3:13bÞ

If qQ < 0, then all the negative norm up modes haveω < 0

and are negative frequency with respect to t, but if qQ > 0,

some negative norm up modes will have ω > 0 and hence

a static observer will regard them as having positive

frequency.

The quantum scalar field is then expanded in terms of

these in and up modes as follows:

Φ̂ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dωâinωlmϕ
inþ
ωlm þ

Z
0

−∞

dωb̂in†ωlmϕ
in−
ωlm

þ
Z

∞

0

dω̃â
up
ωlmϕ

upþ
ωlm þ

Z
0

−∞

dω̃b̂
up†
ωlmϕ

up−
ωlm

	
: ð3:14Þ

Note that the in operators âinωlm are defined for ω > 0 and

b̂inωlm are defined for ω < 0, while the up operators â
up
ωlm

have ω̃ > 0, and the b̂
up
ωlm have ω̃ < 0. Since the ϕin=upþ

modes all have positive norm, and the ϕin=up− modes all

have negative norm, the operators â, b̂ satisfy standard

commutation relations:

½âinωlm; âin†ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; ω > 0;

½b̂inωlm; b̂in†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω < 0;

½âupωlm; â
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω̃ > 0;

½b̂upωlm; b̂
up†

ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; ω̃ < 0: ð3:15Þ

All commutators not given explicitly above vanish. The

past Boulware state jB−i is then defined as the vacuum state

which is annihilated by the following â and b̂ operators:
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âinωlmjB−i ¼ 0; ω > 0;

b̂inωlmjB−i ¼ 0; ω < 0;

â
up
ωlmjB−i ¼ 0; ω̃ > 0;

b̂
up
ωlmjB−i ¼ 0; ω̃ < 0: ð3:16Þ

In [48] we referred to this state as the in vacuum. The past

Boulware state has no particles or antiparticles incoming

from past null infinity I− nor emanating from the past

horizon H−. It is therefore that state which is as empty as

possible as seen by a static observer at past null infinity.

However, this state is not empty as seen by a static observer

at future null infinity Iþ, where it contains an outgoing flux
of particles in the superradiant regime [48].

2. Past Unruh state

To define the past Unruh state jU−i, we consider inmodes

having positive frequency with respect to Schwarzschild

time t near past null infinity I−. Therefore, in region I, the

positive frequency in modes are given by (3.12a) and the

negative frequency in modes are given by (3.12b).

Near the past horizon H−, the natural choice of time

coordinate is Kruskal retarded time U, which is an affine

parameter along the null generators of the past horizon. We

now describe in some detail how to construct a set of up

modes which have positive frequency with respect to U
near the past horizonH−, since this differs in some respects

from the corresponding derivation for a neutral scalar field

(see, for example, [5,60]). Our construction is analogous to

that presented in [57,58], although we use a different gauge

for the electromagnetic potential, which affects the detailed

form of the scalar field modes.

The up modes are defined in region I by their radial

function X
up
ωlðrÞ (2.20b), and this definition can be

extended across the past horizon H− into region III. In

terms of the Kruskal coordinates U, V, near the past

horizon H− an up mode ϕ
up
ωlm takes the form

ϕ
up
ωlm¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
e
iðωþω̃Þ

2κ
lnð−κUÞe−

iðω−ω̃Þ
2κ

lnðκVÞYlmðθ;φÞΘð−UÞ;

ð3:17Þ

where the surface gravity κ is given by (2.7), and Θ the

Heaviside step function

ΘðxÞ ¼
�
1; x ≥ 0;

0; otherwise:
ð3:18Þ

By definition, the up modes vanish in region IV of the

space-time. Next we define a set of modes denoted by

ψdown
ωlm in regions II and IV by making the transformation

U → −U, V → −V in the up modes ϕ
up
ωlm. It should be

emphasized that the modes ψdown
ωlm , as defined, are nonzero

in region IV of the space-time diagram in Fig. 1 and

therefore are not the same as the down modes whose radial

functions are given by (2.21c), and which vanish in

region IV.

Near the surface V ¼ 0, the modes ψdown
ωlm take the

form

ψdown
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
e
iðωþω̃Þ

2κ
ln ðκUÞe−

iðω−ω̃Þ
2κ

ln ð−κVÞYlmðθ;φÞΘðUÞ:

ð3:19Þ

Like the up modes ϕ
up
ωlm, the norm of the modes ψdown

ωlm

depends on the sign of ω̃. However, unlike the up modes

ϕ
up
ωlm, we find that the modes ψdown

ωlm have negative norm

when ω̃ > 0 and positive norm when ω̃ < 0. This differ-

ence is crucial in the construction below.

To define a set of modes having positive frequency with

respect to the Kruskal coordinate U, we make use of the

Lemma in Appendix H of [60], which states that, for

positive real p and arbitrary real q

Z
∞

−∞

dXe−ipX½e−iq lnXΘðXÞ þ e−πqe−iq ln ð−XÞΘð−XÞ� ¼ 0:

ð3:20Þ

We wish to apply (3.20) to a linear combination of the up

modes (3.17) and the modes ψdown
ωlm (3.19), integrating over

a surface close to V ¼ 0 for which V > 0. Comparing

(3.17) and (3.20), we take X ¼ U and q ¼ −ðωþ ω̃Þ=2κ.
Before we can apply (3.20), we need to simplify the terms

involving lnð−κVÞ in (3.19). Positive frequency modes are

analytic in the lower half plane and therefore we need to use

a branch of the logarithm which is also analytic in the lower

half plane. Making an appropriate branch cut (for example

along the positive imaginary axis), we have lnð−1Þ ¼ −iπ
and hence, bearing in mind that κV > 0 for the surface over

which we want to integrate,

exp

�
−
iðω − ω̃Þ

2κ
lnð−κVÞ

�

¼ exp

�
−
πðω − ω̃Þ

2κ

�
exp

�
−
iðω − ω̃Þ

2κ
lnðκVÞ

�
: ð3:21Þ

Applying (3.20) then gives

Z
∞

−∞

dUe−ipU½eπω̃
2κϕ

up
ωlmþe−

πω̃
2κψdown

ωlm � ¼ 0; p> 0: ð3:22Þ

From this we deduce that the modes e
πω̃
2κϕ

up
ωlm þ e−

πω̃
2κψdown

ωlm

have positive frequency with respect to Kruskal time U for

any value of ω̃. Therefore a set of normalized modes having
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positive frequency with respect to U near the past horizon

H− is, for all values of ω̃,

χ
upþ
ωlm¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ðeπω̃
2κϕ

up
ωlmþe−

πω̃
2κψdown

ωlm Þ; all ω̃:

ð3:23aÞ

Similarly, a set of normalized modes having negative

frequency with respect to U near the past horizon is, for all

values of ω̃,

χ
up−
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j sinhðπω̃
κ
Þj

q ðe−πω̃
2κϕ

up
ωlm þ e

πω̃
2κψdown

ωlm Þ; all ω̃:

ð3:23bÞ

The modes χ
up�
ωlm are defined throughout regions I–IV. It is

straightforward to check that the positive frequency modes

χ
upþ
ωlm have positive norm for all ω̃, while the negative

frequency modes χ
up−
ωlm have negative norm for all ω̃.

We now expand the quantum scalar field in terms of the

modes ϕin
ωlm and χ

up
ωlm. Working only in region I, the modes

ψdown
ωlm vanish and we are left with

Φ̂ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dωĉinωlmϕ
inþ
ωlm þ

Z
0

−∞

dωd̂in†ωlmϕ
in−
ωlm

þ
Z

∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j sinhðπω̃
κ
Þj

q ϕ
up
ωlm½e

πω̃
2κ ĉ

up
ωlm þ e−

πω̃
2κ d̂

up†
ωlm�

	
:

ð3:24Þ

The commutation relations satisfied by the ĉ and d̂
operators take the standard form (commutators not given

explicitly below vanish)

½ĉinωlm; ĉin†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω > 0;

½d̂inωlm; d̂in†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω < 0;

½ĉupωlm; ĉ
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½d̂upωlm; d̂
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃; ð3:25Þ

since the modes ϕinþ
ωlm, χ

inþ
ωlm that we have designated to be

positive frequency have positive norm, and the negative

frequency modes have negative norm. The past Unruh state

jU−i is then defined as that state which is annihilated by the
following ĉ and d̂ operators:

ĉinωlmjU−i ¼ 0; ω > 0;

d̂inωlmjU−i ¼ 0; ω < 0;

ĉ
up
ωlmjU−i ¼ 0; all ω̃;

d̂
up
ωlmjU−i ¼ 0; all ω̃: ð3:26Þ

Like the past Boulware state jB−i, the past Unruh state

jU−i contains no particles or antiparticles as seen by a static
observer at past null infinity I−. There is however an

outgoing thermal flux of particles/antiparticles as seen by a

static observer at future null infinity Iþ, corresponding to

the Hawking radiation at all frequencies, in agreement

with Ref. [47].

3. Past CCH state

We next define a further past quantum state, denoted by

jCCH−i (where “CCH” stands for Candelas, Chrzanowski
and Howard) [37]. As we shall see in Sec. IV B 1, the past

Unruh state jU−i contains a thermal distribution of particles

in the up modes and no particles in the in modes. The past

CCH state jCCH−i will also contain a thermal distribution

of particles in the in modes, although, as we shall find in

Sec. IV B 2, the thermal factors in the in and up modes are

not the same.

We construct this state by employing a suitable ortho-

normal basis of field modes. Our basis is formed of the

χ
up�
ωlm modes (3.23), together with a set of modes χin�ωlm,

which are constructed from the in modes ϕin
ωlm using a

method similar to that for the χ
up�
ωlm modes.

In region I, the in modes are defined by their radial

function Xin
ωlðrÞ (2.20a), and this definition can be

extended across the future horizon Hþ into region II. By

definition, the in modes vanish in regions III and IV. We

define a set of modes ψout
ωlm in regions III and IV (and

vanishing in regions I and II) by taking the in modes ϕin
ωlm

and performing the mappingU → −U, V → −V. From this

definition, the modes ψout
ωlm have negative norm for ω > 0

and positive norm for ω < 0.

Using the in modes ϕin
ωlm and the ψout

ωlm modes, we then

define, for all ω, and throughout regions I–IV,

χinþωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω

κ
Þj

p ðeπω
2κϕin

ωlm þ e−
πω
2κψout

ωlmÞ; ð3:27aÞ

and (again for all ω and throughout regions I–IV)

χin−ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω

κ
Þj

p ðe−πω
2κϕin

ωlm þ e
πω
2κψout

ωlmÞ: ð3:27bÞ

The modes χinþωlm have positive norm for all ω, and the

modes χin−ωlm have negative norm for all ω. Therefore we

may use (3.27), together with the modes (3.23) constructed
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in the previous subsection, to form an orthonormal basis of

field modes.

The question is then whether the modes (3.27) have a

natural interpretation in terms of being positive or negative

frequency with respect to a particular coordinate. Near the

surfaceU ¼ 0 (Hþ in region I), the in modes ϕin
ωlm take the

form

ϕin
ωlm¼ Bin

ωlffiffiffiffiffiffiffiffiffiffiffi
4πjωj

p
r
e
iðω−ω̃Þ

2κ
lnð−κUÞe−

iðωþω̃Þ
2κ

lnðκVÞYlmðθ;φÞΘðVÞ:

ð3:28Þ

Similarly, near the surface U ¼ 0 the modes ψout
ωlm are

given by

ψout
ωlm ¼ Bin

ωlffiffiffiffiffiffiffiffiffiffiffi
4πjωj

p
r
e
iðω−ω̃Þ

2κ
lnðκUÞe−

iðωþω̃Þ
2κ

lnð−κVÞYlmðθ;φÞΘð−VÞ:

ð3:29Þ

We now seek to combine (3.28), (3.29) using Lemma

(3.20). Considering modes having positive frequency with

respect to the Kruskal coordinate V (an affine parameter

along the null generators of the future event horizon Hþ)
we set, as before, lnð−1Þ ¼ −iπ. Integrating over a surface

for which U ¼ −ϵ < 0, we have

exp

�
iðω − ω̃Þ

2κ
lnðκUÞ

�

¼ exp

�
πðω − ω̃Þ

2κ

�
exp

�
iðω − ω̃Þ

2κ
lnð−κUÞ

�
: ð3:30Þ

Applying (3.20) with X ¼ V and q ¼ ðωþ ω̃Þ=2κ then

gives

Z
∞

−∞

dVe−ipV ½ϕin
ωlm þ e−

πω
κ ψout

ωlm� ¼ 0; p > 0; ð3:31Þ

with the result that the modes (3.27a) have positive

frequency with respect to the Kruskal coordinate V, along
the surface U ¼ −ϵ < 0, part of which lies close to the

future horizon Hþ in region I of the space-time. Similarly,

the modes (3.27b) have negative frequency with respect

to V.
Restricting attention to region I of the space-time, the

modes ψout
ωlm vanish, and we therefore expand the quantum

scalar field as

Φ̂¼
X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω
κ
Þj

p

×ϕin
ωlm

�
e
πω
2κ f̂inωlmþe−

πω
2κ ĝin†ωlm

�

þ
Z

∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕ
up
ωlm

�
e
πω̃
2κ f̂

up
ωlmþe−

πω̃
2κ ĝ

up†
ωlm

�	
;

ð3:32Þ

and define the past CCH state jCCH−i as that state

annihilated by the following f̂ and ĝ operators:

f̂inωlmjCCH−i ¼ 0; allω;

ĝinωlmjCCH−i ¼ 0; allω;

f̂
up
ωlmjCCH−i ¼ 0; all ω̃;

ĝ
up
ωlmjCCH−i ¼ 0; all ω̃: ð3:33Þ

Since the χ
in=upþ
ωlm modes all have positive norm, while the

χ
in=up−
ωlm modes all have negative norm, the operators f̂

in=up
ωlm

and ĝ
in=up
ωlm satisfy the standard commutation relations (all

other commutators vanish)

½f̂inωlm; f̂in†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½ĝinωlm; ĝin†ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½f̂upωlm; f̂
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½ĝupωlm; ĝ
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃: ð3:34Þ

The properties of the state jCCH−i will be investigated

further in Sec. IV, along with the other past quantum states

defined in this section. From the expansion (3.32), we

anticipate a thermal distribution of particles/antiparticles in

both the in and up modes, but with the frequency ω in the

thermal factor for the in modes, while the thermal factor for

the up modes contains the quantity ω̃ (2.16).

C. Future quantum states

Following [29,30], we next define future Boulware,

Unruh and CCH states which are the time-reverse of the

past Boulware, Unruh and CCH states constructed in the

previous subsection. The future states are defined by using

the out and down basis modes rather than the in and up

modes as considered for the past quantum states. The future

Boulware state jBþiwhich we construct in Sec. III C 1 was

previously considered in Ref. [48], where it was called the

out vacuum state.

1. Future Boulware state

Near future null infinity Iþ, we consider a set of out

modes which have positive frequency with respect to
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Schwarzschild time t, which is the natural frequency for a

static observer in this region:

ϕoutþ
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p

r
Xout
ωlðrÞYlmðθ;φÞ; ω > 0; ð3:35aÞ

where Xout
ωlðrÞ is given by (2.21b). These modes have

positive norm. The corresponding out modes with negative

frequency and negative norm are

ϕout−
ωlm¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p

r
Xout
ωlðrÞYlmðθ;φÞ; ω< 0: ð3:35bÞ

Near the future horizon Hþ, we consider positive norm

down modes

ϕdownþ
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
Xdown
ωl ðrÞYlmðθ;φÞ; ω̃> 0; ð3:36aÞ

where Xdown
ωl ðrÞ is given by (2.21c). The restriction ω̃ > 0 is

required for these modes to have positive norm. Similarly, a

suitable set of down modes having negative frequency (and

negative norm) is

ϕdown−
ωlm ¼ e−iωtffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
Xdown
ωl ðrÞYlmðθ;φÞ; ω̃< 0: ð3:36bÞ

The modes (3.35), (3.36) form an orthonormal basis in

region I, hence, expanding the scalar field in terms of these

modes, we find

Φ̂ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dωâoutωlmϕ
outþ
ωlm þ

Z
0

−∞

dωb̂out†ωlmϕ
out−
ωlm

þ
Z

∞

0

dω̃âdownωlmϕdownþ
ωlm þ

Z
0

−∞

dω̃b̂down†ωlm ϕdown−
ωlm

	
;

ð3:37Þ

where the operators â and b̂ satisfy the standard nonzero

commutation relations

½âoutωlm; â
out†
ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; ω > 0;

½b̂outωlm; b̂
out†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω < 0;

½âdownωlm ; âdown†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω̃ > 0;

½b̂downωlm ; b̂down†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω̃ < 0; ð3:38Þ

and all commutators not given above vanish. The future

Boulware state jBþi is then defined as the state which is

annihilated by the following â and b̂ operators:

âoutωlmjBþi ¼ 0; ω > 0;

b̂outωlmjBþi ¼ 0; ω < 0;

âdownωlm jBþi ¼ 0; ω̃ > 0;

b̂downωlm jBþi ¼ 0; ω̃ < 0: ð3:39Þ

The future Boulware state jBþi was referred to as the out

vacuum in our previous work [48]. It corresponds to an

absence of outgoing particles/antiparticles as seen by a

static observer at future null infinity [48].

2. Future Unruh state

In a similar fashion, we next define the future Unruh state

jUþi. The out modes take the form (3.35) in region I (which

can be extended into region III) and have positive/negative

frequency with respect to Schwarzschild time t near future

null infinity Iþ. We consider down modes having positive/

negative frequency with respect to Kruskal time V near the

future horizon Hþ. The derivation of these modes follows

that for the up modes in Sec. III B 2.

The down modes are defined in region I by their radial

function Xdown
ωl ðrÞ (2.21c), and this definition can be

extended across the future horizon Hþ into region II.

Near Hþ we have:

ϕdown
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
e
iðω−ω̃Þ

2κ
lnð−κUÞe−

iðωþω̃Þ
2κ

lnðκVÞYlmðθ;φÞΘðVÞ:

ð3:40Þ

We then define a set of modes denoted by ψ
up
ωlm, which are

obtained by taking the down modes ϕdown
ωlm and making the

coordinate transformation U → −U, V → −V. These new

modes are nonvanishing in regions III and IV and have

negative norm when ω̃ > 0 and positive norm when ω̃ < 0.

Near the surface U ¼ 0 they take the form

ψ
up
ωlm¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p

r
e
iðω−ω̃Þ

2κ
lnðκUÞe−

iðωþω̃Þ
2κ

lnð−κVÞYlmðθ;φÞΘð−VÞ:

ð3:41Þ

In a similar fashion to the approach of Sec. III B 2, we seek

to apply the Lemma (3.20) to a suitable combination of the

modes (3.40), (3.41) with X ¼ V and q ¼ ðωþ ω̃Þ=2κ,
integrating over a surface near U ¼ 0 with U ¼ ϵ > 0 (part

of this surface lies close to the future event horizon Hþ in

region II of the space-time). Again we use a branch of the

logarithm which is analytic in the lower half plane to give,

for κU > 0,
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exp

�
iðω − ω̃Þ

2κ
lnð−κUÞ

�

¼ exp

�
πðω − ω̃Þ

2κ

�
exp

�
iðω − ω̃Þ

2κ
lnðκUÞ

�
: ð3:42Þ

We can now apply (3.20) to obtain

Z
∞

−∞

dVe−ipV ½e−πðω−ω̃Þ
2κ ϕdown

ωlm þe−
πðωþω̃Þ

2κ ψ
up
ωlm� ¼ 0; p> 0;

ð3:43Þ

from which we deduce that the modes in square brackets in

(3.43) have positive frequency with respect to the Kruskal

coordinate V for any value of ω̃. Therefore a suitable

orthonormal basis of field modes defined throughout

regions I–IV and having positive frequency with respect

to V near Hþ is

χdownþωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jsinhðπω̃

κ
Þj

q


e
πω̃
2κϕdown

ωlm þe−
πω̃
2κψ

up
ωlm

�
; allω̃;

ð3:44aÞ

while an orthonormal set of modes having negative

frequency with respect to V near Hþ is

χdown−ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jsinhðπω̃

κ
Þj

q


e−

πω̃
2κϕdown

ωlm þe
πω̃
2κψ

up
ωlm

�
; all ω̃:

ð3:44bÞ

All our positive frequency modes χdownþωlm (3.44a) have

positive norm, and all negative frequency modes χdown−ωlm

(3.44b) have negative norm. In region I (where the ψ
up
ωlm

modes vanish), the expansion of the field in terms of the

modes ϕout
ωlm and χdownωlm takes the form

Φ̂¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dωĉoutωlmϕ
outþ
ωlmþ

Z
0

−∞

dωd̂out†ωlmϕ
out−
ωlm

þ
Z

∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕdown
ωlm ½eπω̃

2κ ĉdownωlm þe−
πω̃
2κ d̂down†ωlm �

	
:

ð3:45Þ

The commutation relations satisfied by the ĉ and d̂
operators take the standard form (with all commutators not

given below vanishing)

½ĉoutωlm; ĉ
out†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω > 0;

½d̂outωlm; d̂
out†
ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; ω < 0;

½ĉdownωlm ; ĉdown†
ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½d̂downωlm ; d̂down†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃: ð3:46Þ

The future Unruh state jUþi is then defined as that state

which is annihilated by the following ĉ and d̂ operators:

ĉoutωlmjUþi ¼ 0; ω > 0;

d̂outωlmjUþi ¼ 0; ω < 0;

ĉdownωlm jUþi ¼ 0; all ω̃;

d̂downωlm jUþi ¼ 0; all ω̃: ð3:47Þ

In this state there are no outgoing particles/antiparticles as

seen by a static observer at Iþ, but the down modes are

thermally populated.

3. Future CCH state

Our final future state is the future CCH state jCCHþi, in
which the down modes are thermalized with respect to the

quantity ω̃ near the future event horizonHþ, as in the future
Unruh state jUþi. In addition, the out modes are also

thermalized, but with respect to ω, which is the natural

frequency for a static observer far from the black hole.

Our orthonormal basis of modes consists of χdown�ωlm ,

(3.44) and new modes χout�ωlm, which we construct using the

same approach as in Sec. III B 3 and which are also defined

throughout regions I–IV. We define modes ψ in
ωlm by taking

ϕout
ωlm (defined in region I by their radial function Xout

ωlðrÞ
(2.21b), and extended across the past horizon H− into

region III) and performing the substitution U → −U,

V → −V. The resulting modes ψ in
ωlm (which are non-

vanishing in regions II and IV) have negative norm for

ω > 0 and positive norm for ω < 0. We then define the

modes χout�ωlm, for all ω, as follows:

χoutþωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω

κ
Þj

p ðeπω
2κϕout

ωlm þ e−
πω
2κψ in

ωlmÞ; ð3:48aÞ

χout−ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω

κ
Þj

p ðe−πω
2κϕout

ωlm þ e
πω
2κψ in

ωlmÞ: ð3:48bÞ

It is straightforward to show that the χoutþωlm modes have

positive norm for allω, while the χout−ωlm modes have negative

norm for all ω.

To investigate whether the modes χout�ωlm have an inter-

pretation as being positive/negative frequency with respect

to a particular coordinate, we consider the form of the out

modes ϕout
ωlm and the modes ψ in

ωlm near the surface V ¼ 0.

We have
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ϕout
ωlm ¼ Bin�

ωlffiffiffiffiffiffiffiffiffiffiffi
4πjωj

p
r
e
iðωþω̃Þ

2κ
lnð−κUÞe−

iðω−ω̃Þ
2κ

lnðκVÞYlmðθ;φÞΘð−UÞ;

ð3:49Þ

and

ψ in
ωlm ¼ Bin�

ωlffiffiffiffiffiffiffiffiffiffiffi
4πjωj

p
r
e
iðωþω̃Þ

2κ
lnðκUÞe−

iðω−ω̃Þ
2κ

lnð−κVÞYlmðθ;φÞΘðUÞ:

ð3:50Þ

For positive frequency modes, we take lnð−1Þ ¼ −iπ as

previously, then, integrating over the surface V ¼ −ϵ < 0

we have

exp

�
−
iðω− ω̃Þ

2κ
lnðκVÞ

�

¼ exp

�
−
πðω− ω̃Þ

2κ

�
exp

�
−
iðω− ω̃Þ

2κ
lnð−κVÞ

�
: ð3:51Þ

Applying (3.20) with X ¼ U and q ¼ −ðωþ ω̃Þ=2κ gives

Z
∞

−∞

dUe−ipU½ψ in
ωlm þ e

πω
κ ϕout

ωlm� ¼ 0; p > 0; ð3:52Þ

from which we deduce that the modes (3.48a) have positive

frequency with respect to the Kruskal coordinate U along

the surface V ¼ −ϵ < 0, part of which lies close to the past

event horizon H− in region II of the space-time. By a

similar argument, the modes (3.48b) have negative fre-

quency with respect to U along the same surface.

As previously, we now consider the quantum field on

region I of the space-time, where the modes ψ in
ωlm vanish.

Therefore the expansion of the quantum scalar field is

Φ̂¼
X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω
κ
Þj

p

×ϕout
ωlm½e

πω
2κ f̂outωlmþe−

πω
2κ ĝout†ωlm�

þ
Z

∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕdown
ωlm ½eπω̃

2κ f̂downωlm þe−
πω̃
2κ ĝdown†ωlm �

	
:

ð3:53Þ

The operators f̂
in=up
ωlm and ĝ

in=up
ωlm satisfy the standard

nonzero commutation relations, since the χ
out=downþ
ωlm modes

all have positive norm, while the χ
out=down−
ωlm modes all have

negative norm,

½f̂outωlm; f̂
out†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½ĝoutωlm; ĝ
out†
ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½f̂downωlm ; f̂down†
ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½ĝdownωlm ; ĝdown†
ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃; ð3:54Þ

with all commutators not given explicitly above vanishing.

Finally we define the future CCH state jCCHþi as that state
annihilated by the following f̂ and ĝ operators:

f̂outωlmjCCHþi ¼ 0; allω;

ĝoutωlmjCCHþi ¼ 0; allω;

f̂downωlm jCCHþi ¼ 0; all ω̃;

ĝdownωlm jCCHþi ¼ 0; all ω̃: ð3:55Þ

We have now defined six states: three past and three future

states. The properties of these states will be studied in detail

in Sec. IV.

D. Boulware-like state

In Secs. III B 1, III C 1 we defined the past and future

Boulware states (dubbed the in and out vacua in [48]). The

past Boulware state jB−i is empty of incoming particles as

seen by a static observer at I− but, as we shall find in

Sec. IV, a static observer at Iþ sees an outgoing flux of

particles [48]. Similarly, the future Boulware state jBþi has
no outgoing flux as seen by a static observer at Iþ, but is
not empty at I−. The question then arises as to whether it is

possible to define a quantum state which is as empty as

possible as seen by static observers at both past null infinity

I− and future null infinity Iþ. To define a state which is as
empty as possible at I�, we seek to expand the classical

scalar field in terms of the positive and negative frequency

in (3.12) and out modes (3.35). Working in region I, the in

and up modes form a basis and therefore the classical scalar

field can be expanded in terms of these modes. Using

(2.28), each up mode can be written in terms of an in and an

out mode, leading to an expansion of the classical scalar

field in terms of in and out modes, as follows:

Φ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dω½h̃inωlmϕinþ
ωlm þ h̃outωlmϕ

outþ
ωlm�

þ
Z

0

−∞

dω½k̃in†ωlmϕ
in−
ωlm þ k̃out†ωlmϕ

out−
ωlm�

	
: ð3:56Þ

Both the in and out modes have positive norm for ω > 0, so

those modes in (3.56) which we have identified as having

positive frequency also have positive norm, while the

negative frequency modes have negative norm.

However, there is a complication. The in and out modes

are not orthogonal, and therefore we cannot directly
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quantize the field using the expansion (3.56). We therefore

write the out modes in terms of the in and up modes (which

are orthogonal) using (2.28), and hence obtain the classical

field expansion

Φ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

0

dωhinωlmϕ
inþ
ωlmþ

Z
0

−∞

dωkin†ωlmϕ
in−
ωlm

þ
Z

∞

maxfqQ
rþ;0g

dωh
up
ωlmϕ

upþ
ωlmþ

Z
maxfqQ

rþ;0g

0

dωh
up
ωlmϕ

up−
ωlm

þ
Z

0

minfqQ
rþ;0g

dωk
up†
ωlmϕ

upþ
ωlmþ

Z
minfqQ

rþ;0g

−∞

dωk
up†
ωlmϕ

up−
ωlm

	
;

ð3:57Þ

where the coefficients in the expansion are given by

hinωlm ¼ h̃inωlm þ Ain�
ωlh̃

out
ωlm; ω > 0;

kin†ωlm ¼ k̃in†ωlm þ Ain�
ωlk̃

out†
ωlm; ω < 0;

h
up
ωlm ¼

����
ω̃

ω

����
1
2

Bin�
ωlh̃

out
ωlm; ω > 0;

k
up†
ωlm ¼

����
ω̃

ω

����
1
2

Bin�
ωlk̃

out†
ωlm; ω < 0: ð3:58Þ

In (3.57) we have now expanded the classical scalar field in

terms of an orthonormal basis of field modes, and therefore

we can proceed to quantize the field by promoting the

expansion coefficients h and k to operators. At this point a

subtlety arises. As can be seen in (3.57), depending on the

sign of qQ=rþ, we either have some positive norm up

modes ϕ
upþ
ωlm which are multiplied by operators k̂† which we

would like to interpret as creation operators, or else there

are negative norm up modes ϕ
up−
ωlm which are multiplied by

operators ĥ which we would like to interpret as annihilation

operators.

As discussed in Sec. III A, we therefore find that the

operators ĥin and k̂in satisfy the usual commutation rela-

tions (with those commutators not given explicitly below

vanishing)

½ĥinωlm; ĥin†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω > 0;

½k̂inωlm; k̂in†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; ω < 0; ð3:59Þ

but that the operators ĥup and k̂up satisfy modified com-

mutation relations (the remaining commutators vanish as

usual):

½ĥupωlm; ĥ
up†

ω0l0m0 � ¼ ηωω̃δll0δmm0δðω−ω0Þ; ω> 0;

½k̂upωlm; k̂
up†

ω0l0m0 � ¼ ηωω̃δll0δmm0δðω−ω0Þ; ω< 0; ð3:60Þ

where we have defined

ηωω̃ ¼
�
1; if ωω̃ > 0;

−1; if ωω̃ < 0:
ð3:61Þ

Essentially what is happening is that the up modes with

ω > 0 but ω̃ < 0 have been mislabeled as positive fre-

quency modes in the expansion (3.57), despite the fact that

they have negative “norm.” Similarly, up modes with ω < 0

but ω̃ > 0 have been mislabeled as negative frequency

modes in the expansion, since they have positive norm.

Despite the unconventional commutation relations

(3.60), following the discussion in Sec. III A and

Ref. [28], we posit a “Boulware”-like state jBi as that

state which is annihilated by the ĥ and k̂ operators as

follows:

ĥinωlmjBi ¼ 0; ω > 0;

k̂inωlmjBi ¼ 0; ω < 0;

ĥ
up
ωlmjBi ¼ 0; ω > 0;

k̂
up
ωlmjBi ¼ 0; ω < 0: ð3:62Þ

This state corresponds to an absence of quanta in the in

modes, as is the case for the past Boulware state jB−i. As in
jB−i, there are also no particles in the nonsuperradiant up

modes. Our new state jBi differs from jB−i in its quanta

content in the superradiant up modes. This will be evident

when we study expectation values of observables in this

state in Sec. IV C.

E. Hartle-Hawking-like states

The Hartle-Hawking state jHi [6] on Schwarzschild

space-time is constructed by considering both the in and

up modes to be thermalized. This is equivalent to consid-

ering a set of up modes which are positive frequency with

respect to the Kruskal coordinate U on the past horizonH−

and a set of down modes which are positive frequency with

respect to the Kruskal coordinate V on the future horizon

Hþ. We now examine whether it is possible to define a

corresponding Hartle-Hawking-like state for the charged

scalar field on RN.

In Sec. III B 2 we have already constructed sets of up

modes χ
up�
ωlm (3.23) which have positive/negative frequency

with respect to U near H−, and in Sec. III C 2 we have a

similar set of down modes χdown�ωlm (3.44) having positive/

negative frequency with respect to V near Hþ. To expand

the classical scalar field in terms of these modes, first note

that the modes χ
up�
ωlm (3.23) and χin�ωlm (3.27) form a basis of

modes in regions I–IV. Using (2.28) and the corresponding

relationships between the modes ψ in
ωlm, ψ

up
ωlm, ψ

out
ωlm, ψ

down
ωlm ,

each χin�ωlm mode can be written as a linear combination of

the modes χ
up�
ωlm (3.23) and χdown�ωlm (3.44). Therefore we can

write the classical scalar field in terms of the χ
up�
ωlm and

χdown�ωlm modes as follows:
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Φ ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω̃fp̃up
ωlmχ

upþ
ωlm þ s̃

up†
ωlmχ

up−
ωlm þ p̃down

ωlm χdownþωlm þ s̃down†ωlm χdown−ωlm g; ð3:63Þ

which, in region I, equals

Φ ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j sinhðπω̃
κ
Þj

q fϕup
ωlm½e

πω̃
2κ p̃

up
ωlm þ e−

πω̃
2κ s̃

up†
ωlm� þ ϕdown

ωlm ½eπω̃
2κ p̃down

ωlm þ e−
πω̃
2κ s̃down†ωlm �g: ð3:64Þ

We now have a problem similar to that in Sec. III D, in

that the up modes χ
up�
ωlm and down modes χdown�ωlm are not

orthogonal. The up modes χ
up�
ωlm are orthogonal to the in

modes χin�ωlm (3.27), but the in modes χin�ωlm lead to thermal

factors depending on the frequency ω (as in the state

jCCH−i) rather than ω̃ as in the modes χ
up�
ωlm and χdown�ωlm .

The in modes χin�ωlm constructed in Sec. III B 3 have positive

frequency with respect to the Kruskal coordinate V on the

surface U ¼ −ϵ < 0, part of which lies close to the future

horizon Hþ in region I of the space-time. Here we take an

alternative approach and instead construct an alternative set

of in modes χ̃in�ωlm which are positive frequency on the

surface U ¼ ϵ > 0. Using the asymptotic forms (3.28),

(3.29), and the result (3.42), as in the construction of the

future Unruh state jU−i we can apply the Lemma (3.20)

with X ¼ V and q ¼ ðωþ ω̃Þ=2κ to give, for p > 0,

Z
∞

−∞

dVe−ipV
�
e−

πðω−ω̃Þ
2κ ϕin

ωlm þ e−
πðωþω̃Þ

2κ ψout
ωlm

�
¼ 0: ð3:65Þ

From this (and a similar argument) we deduce that the

modes

χ̃inþωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω̃

κ
Þj

q ðeπω̃
2κϕin

ωlm þ e−
πω̃
2κψout

ωlmÞ; ð3:66aÞ

χ̃in−ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinhðπω̃

κ
Þj

q ðe−πω̃
2κϕin

ωlm þ e
πω̃
2κψout

ωlmÞ; ð3:66bÞ

(defined throughout regions I–IV) are positive and negative

frequency with respect to the Kruskal coordinate V on

the surface U ¼ ϵ > 0. Furthermore, these new in modes

χ̃in�ωlm are orthogonal to the up modes χ
up�
ωlm, as desired.

However, the positive frequency modes χ̃inþωlm have positive

norm only if ωω̃ > 0 and have negative norm if ωω̃ < 0.

Similarly, the negative frequency modes χ̃in−ωlm have neg-

ative norm if ωω̃ > 0 but positive norm if ωω̃ < 0.

The situation is therefore similar to that encountered in

Sec. III D, in that modes χ̃in�ωlm for which ωω̃ < 0 will be

mislabeled according to their frequency, rather than

their norm.

We therefore write the down χdown�ωlm modes in terms of

the new in modes χ̃in�ωlm and up modes χ
up�
ωlm. To do this, we

first use the relationship (2.28) between the modes in region

I, to give, in region IV,

ψ
up
ωlm ¼ A

up�
ωlmψ

down
ωlm þ

����
ω

ω̃

����
1
2

B
up�
ωlmψ

out
ωlm; ð3:67Þ

for allω, ω̃, where the modes ψ
up
ωlm are defined in Sec. III C

2, the modes ψdown
ωlm in Sec. III B 2 and the modes ψout

ωlm are

defined in Sec. III B 3. Therefore, using the definitions

(3.23), (3.27), (3.44), we find

χdown�ωlm ¼ A
up�
ωlmχ

up�
ωlm þ

����
ω

ω̃

����
1
2

B
up�
ωlmχ̃

in�
ωlm: ð3:68Þ

We thus write the expansion of the classical field as

Φ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω̃½pup
ωlmχ

upþ
ωlm þ s

up†
ωlmχ

up−
ωlm�

þ
Z

∞

−∞

dω½pin
ωlmχ̃

inþ
ωlm þ sin†ωlmχ̃

in−
ωlm�

	
; ð3:69Þ

where we have rewritten the integral over the in modes in

terms of ω rather than ω̃ and the coefficients in the

expansion are

p
up
ωlm ¼ p̃

up
ωlm þ A

up�
ωl p̃

down
ωlm ;

s
up†
ωlm ¼ s̃

up†
ωlm þ A

up�
ωl s̃

down†
ωlm ;

pin
ωlm ¼

����
ω

ω̃

����
1
2

B
up�
ωl p̃

down
ωlm ;

sin†ωlm ¼
����
ω

ω̃

����
1
2

B
up�
ωl s̃

down†
ωlm : ð3:70Þ

In region I, the expansion (3.69) takes the form

Φ ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j sinhðπω̃
κ
Þj

q fϕup
ωlm½e

πω̃
2κp

up
ωlm

þ e−
πω̃
2κs

up†
ωlm� þ ϕin

ωlm½e
πω̃
2κpin

ωlm þ e−
πω̃
2κsin†ωlm�g; ð3:71Þ
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which will lead to thermal factors depending on the

frequency ω̃ for all modes.

As we now have an expansion (3.69) of the scalar field in

terms of an orthonormal basis of field modes, we can

promote the expansion coefficients p and s to operators. As
in Sec. III D, there is a subtlety due to the norm of the new

in modes χ̃in�ωlm. The operators p̂
up and ŝup satisfy the usual

commutation relations (commutators not given explicitly

vanish)

½p̂up
ωlm; p̂

up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½ŝupωlm; ŝ
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃; ð3:72Þ

but the operators p̂in and ŝin satisfy modified commutation

relations:

½p̂in
ωlm; p̂

in†
ω0
l
0m0 � ¼ ηωω̃δll0δmm0δðω−ω0Þ; allω̃;

½ŝinωlm; ŝin†ω0
l
0m0 � ¼ ηωω̃δll0δmm0δðω−ω0Þ; allω̃; ð3:73Þ

where ηωω̃ is given in (3.61) and all other commutators

vanish. When, in the next section, we calculate expectation

values of observables in this state, we will need to take into

account the modified commutation relations (3.73).

Nonetheless, we proceed by defining a tentative Hartle-

Hawking-like state jHi as that state annihilated by the p̂
and ŝ operators:

p̂in
ωlmjHi ¼ 0; all ω̃;

ŝinωlmjHi ¼ 0; all ω̃;

p̂
up
ωlmjHi ¼ 0; all ω̃;

ŝ
up
ωlmjHi ¼ 0; all ω̃: ð3:74Þ

This state has no quanta in the χ
up
ωlmmodes, as in both the past

Unruh jU−i and CCH jCCH−i states, and hence a thermal

distribution of particles/antiparticles in the up modes ϕ
up
ωlm.

However, the distribution of quanta in the in modes will be

different from both the states jU−i and jCCH−i.
In defining the state jHi, we encountered mislabeled

superradiant in modes. Suppose instead that we expand the

classical field in terms of the χ
up�
ωlm and χ̃in�ωlm modes, but

with the expansion coefficients denoted as annihilation/

creation operators according to the norm of the modes. The

resulting expansion is

Φ ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω̃½uupωlmχ
upþ
ωlm þ v

up†
ωlmχ

up−
ωlm� þ

Z
minfqQ

rþ;0g

−∞

dω½uinωlmχ̃inþωlm þ vin†ωlmχ̃
in−
ωlm�

þ
Z

maxfqQ
rþ;0g

minfqQ
rþ;0g

dω½uinωlmχ̃in−ωlm þ vin†ωlmχ̃
inþ
ωlm� þ

Z
∞

maxfqQ
rþ;0g

dω½uinωlmχ̃inþωlm þ vin†ωlmχ̃
in−
ωlm�

	
; ð3:75Þ

which reduces, in region I, to

Φ¼
X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω̃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕ
up
ωlm½e

πω̃
2κu

up
ωlmþe−

πω̃
2κv

up†
ωlm�þ

Z
minfqQ

rþ;0g

−∞

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕin
ωlm½e

πω̃
2κuinωlmþe−

πω̃
2κvin†ωlm�

þ
Z

maxfqQ
rþ;0g

minfqQ
rþ;0g

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕin
ωlm½e−

πω̃
2κuinωlmþe

πω̃
2κvin†ωlm�þ

Z
∞

maxfqQ
rþ;0g

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q ϕin
ωlm½e

πω̃
2κuinωlmþe−

πω̃
2κvin†ωlm�

	
:

ð3:76Þ

When minfqQ
rþ
; 0g < ω < maxfqQ

rþ
; 0g, we have ωω̃ < 0

and hence we have relabeled the χ̃inþωlm modes as negative

frequency (as they have negative norm) and the χ̃in−ωlm modes

as positive frequency (since they have positive norm).

Promoting the expansion coefficients to operators, they

now satisfy the standard commutation relations

½ûinωlm; ûin†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½v̂inωlm; v̂in†ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; allω;

½ûupωlm; û
up†

ω0
l
0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃;

½v̂upωlm; v̂
up†

ω0l0m0 � ¼ δll0δmm0δðω − ω0Þ; all ω̃: ð3:77Þ

The expansion (3.75) corresponds to the expansion used in

[28] to define a Hartle-Hawking-like state for a neutral

scalar field on a Kerr space-time. We therefore use the

notation jFTi (where FT stands for Frolov and Thorne) for

the state annihilated by the û and v̂ operators, as follows:

ûinωlmjFTi ¼ 0; allω;

v̂inωlmjFTi ¼ 0; allω;

û
up
ωlmjFTi ¼ 0; all ω̃;

v̂
up
ωlmjFTi ¼ 0; all ω̃: ð3:78Þ
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From the expansion (3.76), we anticipate that this state will

have both the in and up modes thermally populated, with

the frequency ω̃ in all thermal factors, although the

superradiant in modes will require careful treatment.

IV. EXPECTATION VALUES OF OBSERVABLES

In the previous section we were able to define a plethora

of quantum states for a charged scalar field on a charged

black hole background. In this section we consider the

expectation values of observables in these various quantum

states. The observables we study are the scalar field

condensate, the current and the stress-energy tensor.

A. Observables

The simplest nontrivial observable for a charged scalar

field is the scalar field condensate (or vacuum polarization)

cSC ¼ 1

2
½Φ̂Φ̂

† þ Φ̂
†
Φ̂�; ð4:1Þ

which classically is simply the square of the magnitude of

the scalar field:

SC ¼ jΦj2: ð4:2Þ

Since we are considering static states on a static and

spherically symmetric black hole, the expectation values

hcSCi will be functions of the radial coordinate r only.

The next simplest nontrivial observable is the charged

scalar field current Jμ, which is given classically by

Jμ ¼ −
q

4π
ℑ½Φ�Dμ

Φ�: ð4:3Þ

We therefore define the current operator to be

Ĵμ ¼ iq

16π
½Φ̂†ðDμ

Φ̂Þ þ ðDμ
Φ̂ÞΦ̂†

− Φ̂ðDμ
Φ̂Þ† − ðDμ

Φ̂Þ†Φ̂�: ð4:4Þ

The classical current Jμ is conserved, as are the expectation
values of the current operator [61]:

∇μhĴμi ¼ 0: ð4:5Þ

Since we are considering only static states which do not

evolve with time, the above equation governing the con-

servation of the current reduces to

∂rhĴri þ
2

r
hĴri ¼ 0: ð4:6Þ

This is readily integrated to give, for any quantum state,

hĴri ¼ −
K

r2
; ð4:7Þ

whereK is a constant whose value depends on the quantum

state under consideration. Physically, K is the flux of

charge emitted by the black hole in that particular quantum

state. The black hole is losing charge ifK has the same sign

as the black hole charge Q. In Appendix A we prove that

this component of the current does not require renormal-

ization. It is shown in [58] that while the component hĴti
requires renormalization, for a suitable choice of point-

splitting on an RN-de Sitter black hole background, the

renormalization counterterms are finite. While we expect

that result to hold also for an RN black hole, given the

remaining numerical difficulties in computing the renor-

malized expectation value of that component, we shall

restrict our attention in this paper to differences in expect-

ation values between two quantum states.

Later in this section we shall wish to study the regularity

of our quantum states at the event horizon, for which it is

helpful to have the nonzero components of the current in

terms of Kruskal coordinates (2.6):

JU ¼ κU½−Jt þ fðrÞ−1Jr�;
JV ¼ κV½Jt þ fðrÞ−1Jr�: ð4:8Þ

Our final observable is the stress-energy tensor Tμν,

which has the following classical expression for a massless,

minimally coupled, charged complex scalar field

Tμν ¼ ℜ

�
ðDμΦÞ�DνΦ −

1

2
gμνg

ρσðDρΦÞ�DσΦ

	
; ð4:9Þ

and for which the corresponding quantum operator is thus

T̂μν ¼
1

4

�
ðDμΦ̂Þ†DνΦ̂þDνΦ̂ðDμΦ̂Þ†

þ ðDνΦ̂Þ†DμΦ̂þDμΦ̂ðDνΦ̂Þ†

−
1

2
gμνg

ρσ½ðDρΦ̂Þ†DσΦ̂þDσΦ̂ðDρΦ̂Þ†

þ ðDσΦ̂Þ†DρΦ̂þDρΦ̂ðDσΦ̂Þ†�
	
: ð4:10Þ

The expectation value of the stress-energy tensor operator

T̂μν is not conserved [61], due to the coupling between the

scalar field and the electromagnetic field strength.

Expectation values of the stress-energy tensor operator

should instead satisfy [61]:

∇μhT̂μνi ¼ 4πFμνhĴμi; ð4:11Þ

where Fμν ¼ ∇μAν −∇νAμ is the background electromag-

netic field strength and we are using Gaussian units.
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For static states on a spherically symmetric black hole, the

stress-energy tensor expectation value will have the non-

zero components

hT̂μ
νi¼

0
BBB@

AðrÞ −PðrÞfðrÞ−1 0 0

PðrÞfðrÞ TðrÞ−AðrÞ−2QðrÞ 0 0

0 0 QðrÞ 0

0 0 0 QðrÞ

1
CCCA;

ð4:12Þ

where fðrÞ is the metric function (2.2), AðrÞ, PðrÞ and

QðrÞ are (presently unknown) functions of the radial

coordinate r only, and TðrÞ is the trace of the stress-energy
tensor. For a charged scalar field minimally coupled to the

space-time curvature, the trace when the space-time back-

ground has vanishing Ricci scalar is given by [61]

TðrÞ ¼ 1

2880π2
RαβγδR

αβγδ −
1

2880π2
RαβR

αβ

−
q2

192π2
FαβFαβ −

1

2
□hcSCi: ð4:13Þ

The final, state-dependent term arises because of the

minimal coupling of the scalar field to the space-time

geometry (it would be absent if the field were conformally

coupled). For the RNmetric (2.1) and gauge potential (2.8),

the trace has the expression

TðrÞ ¼ 13Q2 − 24MQ2rþ 12M2r2

720π2r8
−

q2Q2

96π2r4
−
1

2
□hcSCi:

ð4:14Þ

The t-component of the conservation equations (4.11) for a

stress-energy tensor expectation value having the form

(4.12) can be readily solved to give

hT̂r
t i ¼ −

L

r2
þ 4πQK

r3
; ð4:15Þ

where L is another constant depending on the particular

quantum state under consideration. Physically, L gives the

flux of energy emitted by the black hole, and if L > 0 then

the black hole is losing energy. In Appendix A we prove

that this component of the stress-energy tensor also does

not require renormalization.

The nonzero components of the stress-energy tensor in

Kruskal coordinates (2.6) are

TUU ¼ 1

4
κ−2U−2½Ttt − 2fðrÞTtr þ fðrÞ2Trr�;

TUV ¼ −
1

4
κ−2U−1V−1½Ttt − fðrÞ2Trr�;

TVV ¼ 1

4
κ−2V−2½Ttt þ 2fðrÞTtr þ fðrÞ2Trr�; ð4:16Þ

with Tθθ and Tφφ unchanged by the transformation to

Kruskal coordinates.

All three quantum operators (4.1), (4.4), (4.10) involve

products of field operators at the same space-time point and

are therefore divergent. One would ideally like to compute

renormalized expectation values for the states constructed

in Sec. III. However, while the general formalism for the

Hadamard renormalization of these expectation values has

been developed [61], implementing this into a practical

procedure for the computation of renormalized expectation

values on black hole spacetimes is in its infancy (see the

recent work [57,58]). Therefore in this paper we consider

the differences in expectation values in two quantum states.

Since, for a Hadamard state, the divergent parts of the

Feynman Green’s function for the charged scalar field are

independent of the quantum state of the field [61],

renormalization can be performed for one chosen quantum

state. Renormalized expectation values for any other

quantum state can then be constructed using the differences

we study here.

To write the expectation values for the various states we

consider in a comparatively compact form, let Ô denote one

of the quantum observables (4.1), (4.4), (4.10), correspond-

ing to a classical quantity O, and let o
in=up=out=down
ωlm be the

classical value of O calculated for the in, up, out or down

modes (2.20), (2.21). For the scalar field condensate SC,
we have simply

scωlm ¼ jϕωlmj2: ð4:17Þ

In Appendix B we derive the nonzero components of the

current and stress-energy tensor. These simplify if we sum

over the azimuthal quantum number m. The nonzero

components of the current are then:

jtωl¼
Xl

m¼−l

jtωlm¼−
qð2lþ1Þ
16π2r2fðrÞjN ωj2jXωlðrÞj2

�
ω−

qQ

r

�
;

ð4:18aÞ

jrωl¼
Xl

m¼−l

jrωlm

¼−
qfðrÞð2lþ1Þ

16π2
jN ωj2ℑ

�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
;

ð4:18bÞ
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and for the stress-energy tensor the nonzero components are

ttt;ωl ¼
2lþ 1

8π
jN ωj2

��
1

r2

�
ω −

qQ

r

�
2

þ lðlþ 1ÞfðrÞ
r4

�
jXωlðrÞj2 þ fðrÞ2

����
d

dr

�
XωlðrÞ

r

�����
2
	
; ð4:19aÞ

ttr;ωl ¼ −
2lþ 1

4π

�
ω −

qQ

r

�
jN ωj2ℑ

�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
; ð4:19bÞ

trr;ωl ¼
2lþ 1

8π
jN ωj2

��
1

fðrÞ2r2
�
ω −

qQ

r

�
2

−
lðlþ 1Þ
r4fðrÞ

�
jXωlðrÞj2 þ

����
d

dr

�
XωlðrÞ

r

�����
2
	
; ð4:19cÞ

tθθ;ωl ¼ 2lþ 1

8π
jN ωj2

�
1

fðrÞ

�
ω −

qQ

r

�
2

jXωlðrÞj2 − fðrÞr2
����
d

dr

�
XωlðrÞ

r

�����
2
	
; ð4:19dÞ

tφφ;ωl ¼ tθθ;ωl sin
2 θ; ð4:19eÞ

where we have defined

tμν;ωl ¼
Xl

m¼−l

tμν;ωlm; ð4:20Þ

and the symbol ℑ denotes the imaginary part of a complex quantity.

The (unrenormalized) expectation values of Ô in each of the past quantum states defined in Sec. III B can be written as

sums over the in and up modes:

hB−jÔjB−i ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωoinωlm þ
Z

∞

−∞

dω̃o
up
ωlm

�
; ð4:21aÞ

hU−jÔjU−i ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωoinωlm þ
Z

∞

−∞

dω̃o
up
ωlm coth

����
πω̃

κ

����
�
; ð4:21bÞ

hCCH−jÔjCCH−i ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωoinωlm coth

����
πω

κ

����þ
Z

∞

−∞

dω̃o
up
ωlm coth

����
πω̃

κ

����
�
; ð4:21cÞ

while those for the future quantum states defined in Sec. III C have corresponding expressions in terms of the out and down

modes:

hBþjÔjBþi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωooutωlm þ
Z

∞

−∞

dω̃odownωlm

�
; ð4:21dÞ

hUþjÔjUþi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωooutωlm þ
Z

∞

−∞

dω̃odownωlm coth

����
πω̃

κ

����
�
; ð4:21eÞ

hCCHþjÔjCCHþi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dωooutωlm coth

����
πω

κ

����þ
Z

∞

−∞

dω̃odownωlm coth

����
πω̃

κ

����
�
: ð4:21fÞ

For our proposed Boulware-like jBi and Hartle-Hawking-like (jHi and jFTi) states, we have

hBjÔjBi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω½oinωlm þ o
up
ωlm� − 2

Z
maxf0;qQ

rþg

minf0;qQ
rþg

dωo
up
ωlm

	
; ð4:21gÞ
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hHjÔjHi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω̃½oinωlm þ o
up
ωlm� coth

����
πω̃

κ

���� − 2

Z
maxf0;qQ

rþg

minf0;qQ
rþg

dωoinωlm coth

����
πω̃

κ

����
	
; ð4:21hÞ

hFTjÔjFTi ¼ 1

2

X∞

l¼0

Xl

m¼−l

�Z
∞

−∞

dω̃½oinωlm þ o
up
ωlm� coth

����
πω̃

κ

����
	
: ð4:21iÞ

The expectation values of the candidate Boulware-like

state jBi (4.21g) and Hartle-Hawking-like states jHi (4.21h)
take into account the fact that, in defining those states, we

have mislabeled some modes according to their frequency

rather than their norm. This leads to contributions to the

expectation values from the superradiant modes which have

the opposite sign to those for the nonsuperradiant modes.

In the following subsections, we examine differences in

expectation values between two of the above states listed in

(4.21). We consider reference states which simplify these

differences in an asymptotic region either close to the

horizon or at infinity. Useful expressions for the corre-

sponding differences in expectation values can then be

derived in the relevant asymptotic regions, and these will

aid the physical interpretation of the states. However, in

order to study the differences in expectation values every-

where outside the event horizon and not just in the

asymptotic regions, numerical computation is required.

We find the in and up modes by numerically integrating

the radial equation (2.13). For the in modes, we use the

boundary conditions (2.20a) for r close to the horizon and

integrate the radial equation (2.13) outwards to find

Xin
ωlðrÞ=Bin

ωl since the constantsB
in
ωl are not known a priori.

The constants Ain
ωl and Bin

ωl are then determined by

comparing the numerical solution with the boundary

conditions (2.20a) at infinity. A similar process is used

for the up modes, starting with the boundary conditions

(2.20b) for large r and integrating the radial equation (2.13)

inwards to find X
up
ωl=B

up
ωl, then matching with the boundary

conditions near the horizon.

For all the differences in expectation values that we

consider, either the integrals over frequency converge very

rapidly due to an exponential factor in the denominator or

else they are taken over a finite interval of values of the

frequency. The sum over m is also straightforward. It

remains then to find the sum over l. We find that this is

dominated by the low-l modes and that summing over

modes with values of l up to 40 gives results for the

differences in expectation values which are accurate to at

least three significant figures.

B. Past and future quantum states

1. Past Unruh state

We begin by examining the past quantum states defined

in Sec. III B. Considering the difference in expectation

values between the past Unruh jU−i and past Boulware

jB−i states, we find

hU−jÔjU−i − hB−jÔjB−i

¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω̃
1

exp j 2πω̃
κ
j − 1

o
up
ωlm: ð4:22Þ

As r → ∞, the up modes take a particularly simple form

(2.20b) and we find the following leading order behavior of

the expectation values:

hU−jcSCjU−i− hB−jcSCjB−i

∼
1

16π2r2

X∞

l¼0

Z
∞

−∞

dω̃
2lþ1

jω̃jðexp j2πω̃
κ
j−1Þ jB

up
ωlj2; ð4:23aÞ

hU−jĴμjU−i − hB−jĴμjB−i

∼ −
q

64π3r2

X∞

l¼0

Z
∞

−∞

dω̃
ωð2lþ 1Þ

jω̃jðexp j 2πω̃
κ
j − 1Þ

× jBup
ωlj2ð1; 1; 0; 0Þ⊺; ð4:23bÞ

hU−jT̂μ
ν jU−i − hB−jT̂μ

ν jB−i

∼
1

16π2r2

X∞

l¼0

Z
∞

−∞

dω̃
ω2ð2lþ 1Þ

jω̃jðexp j 2πω̃
κ
j − 1Þ

× jBup
ωlj2

0
BBB@

−1 1 0 0

−1 1 0 0

0 0 Oðr−2Þ 0

0 0 0 Oðr−2Þ

1
CCCA: ð4:23cÞ

By virtue of the Wronskian relations (2.24), the inte-

grands in (4.23) are regular when ω̃ ¼ 0. As seen by a static

observer far from the black hole, the past Unruh state jU−i
contains a flux of particles at infinity relative to the past

Boulware state jB−i. The past Boulware state is defined to be
as empty as possible at past null infinity I−, and contains an

outgoing flux of radiation in the superradiantmodes [47,48],

given by the following expectation values, as r → ∞:

hB−jĴrjB−i∼−
q

64π3r2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω

jω̃jð2lþ1ÞjBup
ωlj2;

ð4:24aÞ
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hB−jT̂r
t jB−i∼−

1

16π2r2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω2

jω̃jð2lþ1ÞjBup
ωlj2;

ð4:24bÞ

and the resulting fluxes of charge and energy are [48]:

KB− ¼ q

64π3

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω

jω̃j ð2lþ1ÞjBup
ωlj2; ð4:25aÞ

LB− ¼ 1

16π2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω2

jω̃jð2lþ1ÞjBup
ωlj2: ð4:25bÞ

As observed in [48], in the past Boulware state the flux

of charge KB− always has the same sign as the black hole

chargeQ, so that in this state the black hole is losing charge

by the emission of particles in the superradiant modes.

Similarly, the flux of energy LB− is always positive, so the

black hole is losing energy.

Since Ĵr and T̂r
t do not require renormalization (see

Appendix A), adding the relevant components in (4.23),

(4.24), we find

hU−jĴrjU−i∼−
q

64π3r2

X∞

l¼0

Z
∞

0

dωð2lþ1Þω

×

� jBup
ωlj2

ω̃ðexp½2πω̃
κ
�−1Þ−

jBup
−ωlj2

ω̄ðexp½2πω̄
κ
�−1Þ

�
;

ð4:26aÞ

hU−jT̂r
t jU−i ∼ −

1

16π2r2

X∞

l¼0

Z
∞

0

dωð2lþ 1Þω2

×

� jBup
ωlj2

ω̃ðexp½2πω̃
κ
� − 1Þ þ

jBup
−ωlj2

ω̄ðexp½2πω̄
κ
� − 1Þ

�
;

ð4:26bÞ

where ω̃ is given by (2.16) and ω̄ is

ω̄ ¼ ωþ qQ

rþ
: ð4:27Þ

The flux of charge resulting from (4.26a) agrees with that in

Ref. [47]:

KU− ¼ q

64π3

X∞

l¼0

Z
∞

0

dωð2lþ 1Þω

×

� jBup
ωlj2

ω̃ðexp½2πω̃
κ
� − 1Þ −

jBup
−ωlj2

ω̄ðexp½2πω̄
κ
� − 1Þ

�
; ð4:28aÞ

while the flux of energy in the past Unruh state is

LU− ¼ 1

16π2

X∞

l¼0

Z
∞

0

dωð2lþ 1Þω2

×

� jBup
ωlj2

ω̃ðexp½2πω̃
κ
� − 1Þ þ

jBup
−ωlj2

ω̄ðexp½2πω̄
κ
� − 1Þ

�
: ð4:28bÞ

The integrals in (4.28) are taken over positive frequencies

ω > 0. The first term in each case is the contribution of

modes which have positive frequency ω as seen by a static

observer far from the black hole, while the modes in the

second term have negative frequency as seen by the same

observer. We see that there is thermal emission of particles

with an effective chemical potential qQ=rþ [2,47]. The

chemical potential has the opposite sign for negative

frequency particles as compared to positive frequency

particles.

Consider first the flux of charge (4.28a). Here the

emission of positive frequency modes gives a contribution

to KU− which has the same sign as the scalar field charge q,
while the emission of negative frequency modes gives a

contribution to KU− having the opposite sign to q. On the

other hand, both the positive and negative frequency modes

give a positive contribution to the energy flux LU− (4.28b),

so that the black hole is losing energy due to the emission of

Hawking radiation. As κ → 0, the temperature vanishes and

the fluxes (4.28) reduce to the superradiant flux obtained in

the past Boulware state (4.25).

We find that the expectation values (4.23) diverge as r →
rþ and the event horizon is approached. We anticipate that

this is due to the divergence of the past Boulware state jB−i
on the horizon, although a computation of renormalized

expectation values would be required to confirm this

conjecture (see [57,58] for recent work for the Unruh state

on an RN-de Sitter black hole). It is expected that the past

Unruh state jU−i, in analogy with the Unruh state on a

Schwarzschild black hole, is regular at the future horizon

Hþ but not the past horizon H−.

In Fig. 4 we plot the differences in expectation values for

the scalar condensate and the components of the current

and stress-energy tensor between the past Unruh jU−i and
Boulware jB−i states. The charge of the black hole, Q, is

fixed, and a selection of values of the scalar field charge q
are considered. All expectation values have been multiplied

by an appropriate power of the metric function fðrÞ (2.2) to
give quantities which are finite and nonzero on the horizon.

We see that the difference in expectation values of the

scalar field condensate does not vary much with the scalar

field charge q. Furthermore, it is positive, indicating that

the expectation value of the scalar field condensate in the

past Unruh state jU−i is greater than in the past Boulware

state jB−i, at least for a scalar field whose charge has the

same sign as the black hole charge. Near the horizon, the

scalar field condensate diverges like fðrÞ−1, which we

suspect is due to the past Boulware state jB−i rather than
the past Unruh state jU−i.
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FIG. 4. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators, between the past Unruh, jU−i, and past Boulware state, jB−i, in the spacetime of a RN black hole with Q ¼ 0.8M. All

expectation values are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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As expected from (4.7), the difference in expectation

values of the radial component of the current is proportional

to −r−2, with the constant of proportionality K equal to

zero when q ¼ 0 and increasing as the scalar field charge

increases. Since K is positive, the black hole is losing

charge as expected. Therefore, while the charge flux in the

past Boulware state jB−i increases as the scalar field charge
increases [48], the charge flux in the past Unruh state jU−i
increases more rapidly with increasing scalar field charge.

The past Boulware state contains an outgoing flux of

particles in the superradiant modes only [48], while the past

Unruh state contains a thermal distribution of particles

emitted due to Hawking radiation. We deduce that the loss

of charge due to Hawking radiation increases more rapidly

with scalar field charge than the loss of charge due to

quantum superradiance.

The magnitude of the difference in expectation values of

the time component of the current also vanishes when q ¼ 0

and increases significantly as the scalar field charge increases

(similar behavior is found for a massless, conformally

coupled scalar field on an RN-de Sitter black hole in [58]).

This also diverges like fðrÞ−1 as the horizon is approached.
Aswith the scalar condensate,we find that the components of

the difference in expectation values of the current in Kruskal

coordinates (4.8) diverge on the event horizon.

The differences in expectation values of the diagonal

SET components generally do not change much as the

scalar field charge increases and exhibit similar behavior to

the scalar field condensate. All diverge like fðrÞ−2 as the

horizon is approached. The difference in energy density

between the two states considered here is positive, with the

energy density in the past Unruh state being greater than

that in the past Boulware state. In contrast, the difference in

the energy flux increases rapidly as the scalar field charge

increases. The component hT̂r
t i is negative, indicating that

it is dominated by the flux of energy L rather than the flux

of charge K. All differences in expectation values between

the past Unruh and past Boulware states tend to zero like

r−2 far from the black hole. We anticipate that the expect-

ation values in the past Boulware state jB−i will vanish at

infinity, since this state is empty at infinity apart from the

outgoing flux of particles in the superradiant modes.

Therefore we conjecture that renormalized expectation

values in the past Unruh state jU−i will also tend to zero

far from the black hole.

2. Past CCH state

To examine the properties of the past CCH state, it is

convenient to consider the differences

hCCH−jÔjCCH−i − hU−jÔjU−i ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω
1

exp j 2πω
κ
j − 1

oinωlm: ð4:29Þ

As r� → −∞, and r → rþ, the in modes take a particularly simple form (2.20a) and we find the following leading order

behavior of the expectation values:

hCCH−jcSCjCCH−i − hU−jcSCjU−i ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
2lþ 1

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2; ð4:30aÞ

hCCH−jĴμjCCH−i − hU−jĴμjU−i ∼ q

64π3r2

X∞

l¼0

Z
∞

−∞

dω
ω̃ð2lþ 1Þ

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2ð−fðrÞ−1; 1; 0; 0Þ⊺; ð4:30bÞ

hCCH−jT̂μ
ν jCCH−i − hU−jT̂μ

ν jU−i ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
ω̃2ð2lþ 1Þ

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2

0
BBB@

−fðrÞ−1 −fðrÞ−2 0 0

1 fðrÞ−1 0 0

0 0 Oð1Þ 0

0 0 0 Oð1Þ

1
CCCA:

ð4:30cÞ

From the Wronskian relations (2.24), the integrands in

(4.30) are regular when ω ¼ 0. Transforming to Kruskal

coordinates U, V (2.6) and using (4.8), (4.16), we find that

the leading order divergences in the expectation values

(4.30) cancel on the future horizonHþ. We anticipate that

the past Unruh state is regular on Hþ, so this implies that

the expectation value of the current in the past CCH state

is also regular on the future horizon Hþ. However, we are
not able at this stage to make a similar deduction about the

expectation value of the SET in the past CCH state. The

asymptotic results (4.30) only indicate that any diver-

gence in the SET at the future horizon Hþ is no more
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severe than fðrÞ−1. We will explore this question in more

detail below.

Using (4.28) and the relevant components of (4.30), we

can find the fluxes of charge and energy in the past CCH

state as integrals over positive frequency modes with ω > 0

[where we have used the Wronskian relations (2.24)]:

KCCH− ¼KU− −
q

64π3

X∞

l¼0

Z
∞

0

dωð2lþ1Þ

×
ω

ðexp½2πω
κ
�−1Þ

�
1

ω̃
jBup

ωlj2−
1

ω̄
jBup

−ωlj2
�
; ð4:31aÞ

LCCH− ¼LU− −
1

16π2

X∞

l¼0

Z
∞

0

dωð2lþ1Þ

×
ω2

ðexp½2πω
κ
�−1Þ

�
1

ω̃
jBup

ωlj2þ
1

ω̄
jBup

−ωlj2
�
: ð4:31bÞ

It can be seen that the difference in fluxes between the

past CCH and past Unruh states consists of a thermal

spectrum of particles, but without a chemical potential. The

nonsuperradiant modes reduce the flux of energy in the

past CCH state compared to the past Unruh state, while

the flux of energy in the superradiant modes (with either

ω̃ < 0 or ω̄ < 0) is enhanced. The flux of charge in the past

CCH state compared with that in the past Unruh state

has a complex form. Nonsuperradiant positive frequency

modes give a charge flux having the opposite sign to the

scalar field charge q, and superradiant positive frequency

modes give contribution to the charge flux which has the

same sign as q. The opposite is true for modes with

negative frequency ω.

We deduce that, while the past CCH state has attractive

regularity properties, it does not represent an equilibrium

state, since it has nonzero fluxes of charge and energy. This

is to be expected since the in and up modes are thermalized

with different thermal factors.

Differences in expectation values between the past CCH

state jCCH−i and past Unruh state jU−i are shown in Fig. 5.
The black hole charge and scalar field charge have the same

values as in Fig. 4. We immediately see a much greater

variation in these differences as the scalar field charge

varies, compared with the differences in expectation values

shown in Fig. 4. We also note that the differences in

expectation values no longer tend to zero far from the black

hole. This indicates that the past CCH state jCCH−i is not
empty at infinity.

Examining our numerical results for the difference in

expectation values of the scalar field condensate, we find

that this quantity is regular at the event horizon. Therefore

either both the past CCH and past Unruh states are regular

on the horizon, or both diverge there. Since we expect that

the past Unruh state is regular on the future event horizon

but divergent on the past horizon, we conjecture that the

same holds for the past CCH state.

From the difference in expectation values of the radial

component of the current, the black hole is losing charge in

the past CCH state jCCH−i. The magnitude of the differ-

ence in charge flux between the past CCH and Unruh states

is about two and a half times that between the past Unruh

and Boulware states. This indicates that the past CCH state

has considerably more outgoing charge flux in the in modes

than the past Unruh state has in the up modes, due to the

different thermal factor for the in modes in the past

CCH state.

The sign ofKCCH− −KU− is not immediately constrained

by (4.31a), but our numerical results show that this quantity

is positive (at least for qQ > 0). We deduce that the

contribution to the charge flux of the superradiant positive

frequency modes and nonsuperradiant negative frequency

modes dominates that of the nonsuperradiant positive

frequency modes and superradiant negative frequency

modes.

In contrast to the case for the difference in expectation

values between the past Unruh and past Boulware states,

for the difference between the past CCH and past Unruh

states the time component of the current is positive, and

increases as the scalar field charge increases.

The components of the current in Kruskal coordinates

(4.8) are of particular interest for the properties of the past

CCH state. We expect the past Unruh state to be regular on

the future horizon where the Kruskal coordinate U
vanishes, but divergent on the past horizon (where the

Kruskal coordinate V is zero). Examining the components

hĴUi and hĴVi shown in Fig. 6, we see that V−1hĴVi is

regular as r → rþ, but that U
−1hĴUi diverges like fðrÞ−1.

This means that hĴVi is regular on both the future and past
horizons, but hĴUi is regular only on the future horizon. If

our assumptions about the regularity of the past Unruh

state are correct, we would deduce that the past CCH state

is also regular on the future horizon but not the past

horizon.

Turning now to the components of the stress-energy

tensor, the diagonal components reveal greater variation as

the scalar charge increases than was observed for the

differences between the past Unruh and past Boulware

states. Furthermore, these components do not decay at

infinity, but instead appear to approach constant values, as

might be expected for a thermal state.

The flux hT̂r
t i for the difference between the past CCH

and past Unruh states is positive for all values of r
examined, in contrast to the negative values seen for the

difference between the past Unruh and past Boulware

states. Since KCCH− −KU− > 0, this implies that LCCH− −

LU− is negative. From (4.31b), we deduce that for the

difference between the past CCH and past Unruh states, the

nonsuperradiant modes dominate the energy flux compared

to the superradiant modes.
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FIG. 5. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators, between the past CCH, jCCH−i, and past Unruh state, jU−i, in the spacetime of a RN black hole with Q ¼ 0.8M. All

expectation values are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.

BALAKUMAR, BERNAR, and WINSTANLEY PHYS. REV. D 106, 125013 (2022)

125013-26



Examining the components of the SET in Kruskal

coordinates (4.16), our numerical results in Fig. 6 reveal

that U2fðrÞ−1hT̂UUi, UVfðrÞ−1hT̂UVi, and V2hT̂VVi are all
finite and nonzero on the horizon. Therefore hT̂VVi will

diverge on the past horizon where V ¼ 0, but is regular on

the future horizon where V is finite and nonzero. As the

future horizon is approached, U ∼OðfðrÞÞ, and hence

hT̂UVi is regular there. Similarly, hT̂UVi is also regular on

the past horizon. However, hT̂UUi will vanish on the past

horizon (where U is finite and nonzero) but will diverge as

fðrÞ−1 as the future horizon is approached. Assuming that

the past Unruh state is regular on the future horizon, we

therefore find a mild divergence in the SET for the past

CCH state onHþ. Since we expect that the past Unruh state
will be divergent on the past horizon, we are unable to make

any deductions about the regularity of the past CCH state

on the past horizon.

3. Future states

The future quantum states constructed in Sec. III C are

the time-reverse of the past quantum states discussed

above. To see this, we consider the differences

FIG. 6. Difference in expectation values for the components of the current and stress-energy tensor operators in Kruskal coordinates

(2.6), between the past CCH, jCCH−i, and past Unruh state, jU−i, in the spacetime of a RN black hole with Q ¼ 0.8M. All expectation

values are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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hUþjÔjUþi − hBþjÔjBþi ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω̃
1

exp j 2πω̃
κ
j − 1

odownωlm ; ð4:32aÞ

hCCHþjÔjCCHþi − hUþjÔjUþi ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω
1

exp j 2πω
κ
j − 1

ooutωlm: ð4:32bÞ

As r → ∞, we find

hUþjcSCjUþi − hBþjcSCjBþi ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω̃
2lþ 1

jω̃jðexp j 2πω̃
κ
j − 1Þ jB

up
ωlj2; ð4:33aÞ

hUþjĴμjUþi − hBþjĴμjBþi ∼ q

64π3r2

X∞

l¼0

Z
∞

−∞

dω̃
ωð2lþ 1Þ

jω̃jðexp j 2πω̃
κ
j − 1Þ jB

up
ωlj2ð−1; 1; 0; 0Þ⊺; ð4:33bÞ

hUþjT̂μ
ν jUþi − hBþjT̂μ

ν jBþi ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω̃
ω2ð2lþ 1Þ

jω̃jðexp j 2πω̃
κ
j − 1Þ jB

up
ωlj2

0
BBB@

−1 −1 0 0

1 1 0 0

0 0 Oðr−2Þ 0

0 0 0 Oðr−2Þ

1
CCCA; ð4:33cÞ

while as r → rþ, we have

hCCHþjcSCjCCHþi − hUþjcSCjUþi ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
2lþ 1

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2; ð4:34aÞ

hCCHþjĴμjCCHþi − hUþjĴμjUþi ∼ −
q

64π3r2

X∞

l¼0

Z
∞

−∞

dω
ω̃ð2lþ 1Þ

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2ðfðrÞ−1; 1; 0; 0Þ⊺; ð4:34bÞ

hCCHþjT̂μ
ν jCCHþi − hUþjT̂μ

ν jUþi ∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
ω̃2ð2lþ 1Þ

jωjðexp j 2πω
κ
j − 1Þ jB

in
ωlj2

0
BBB@

−fðrÞ−1 fðrÞ−2 0 0

−1 fðrÞ−1 0 0

0 0 Oð1Þ 0

0 0 0 Oð1Þ

1
CCCA:

ð4:34cÞ

As expected, the scalar condensate does not distinguish

between past and future states. The expectation values

of the current and stress-energy tensor in (4.33), (4.34)

are obtained from those in (4.23), (4.30) by making the

coordinate transformation t → −t. By virtue of the

Wronskian relations (2.24), the integrands in (4.33) are

regular at ω̃ ¼ 0 and those in (4.34) are regular at ω ¼ 0.

Given that we have already explored the properties of the

past Unruh and CCH states in some detail, we will not

consider the future states further.

C. Boulware-like state

Now we turn to the first of the new states defined in this

paper, namely the tentative Boulware-like state constructed

in Sec. III D. To examine the properties of the state jBi,

since the properties of the past and future Boulware states

are well understood, we consider the differences

hBjÔjBi − hB−jÔjB−i ¼ −
X∞

l¼0

Xl

m¼−l

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dωo
up
ωlm;

ð4:35aÞ

hBjÔjBi − hBþjÔjBþi ¼ −
X∞

l¼0

Xl

m¼−l

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dωodownωlm :

ð4:35bÞ
These involve only the superradiant up and down modes.

Since the downmodes are the time-reverse of the up modes,

the differences (4.35) are the time-reverse of each other,

which suggests that the state jBi is time-reversal invariant.

BALAKUMAR, BERNAR, and WINSTANLEY PHYS. REV. D 106, 125013 (2022)

125013-28



Since the scalar field condensate does not distinguish between past and future states, consider first the expectation values

of the current and stress-energy tensor. As r → ∞, we find

hBjĴμjBi − hB−jĴμjB−i ∼ q

64π3r2

X∞

l¼0

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dω
ω

jω̃j ð2lþ 1ÞjBup
ωlj2ð1; 1; 0; 0Þ⊺; ð4:36aÞ

hBjT̂μ
ν jBi − hB−jT̂μ

ν jB−i ∼ −
1

16π2r2

X∞

l¼0

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dω
ω2

jω̃j ð2lþ 1ÞjBup
ωlj2

0
BBB@

−1 1 0 0

−1 1 0 0

0 0 Oðr−2Þ 0

0 0 0 Oðr−2Þ

1
CCCA; ð4:36bÞ

hBjĴμjBi − hBþjĴμjBþi ∼ q

64π3r2

X∞

l¼0

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dω
ω

jω̃j ð2lþ 1ÞjBup
ωlj2ð1;−1; 0; 0Þ⊺; ð4:36cÞ

hBjT̂μ
ν jBi − hBþjT̂μ

ν jBþi ∼ −
1

16π2r2

X∞

l¼0

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dω
ω2

jω̃j ð2lþ 1ÞjBup
ωlj2

0
BBB@

−1 −1 0 0

1 1 0 0

0 0 Oðr−2Þ 0

0 0 0 Oðr−2Þ

1
CCCA: ð4:36dÞ

The integrands in these expectation values are all regular

at ω̃ ¼ 0 due to the Wronskian relations (2.24). Using

(4.25) and the relevant components in (4.36), we find that

the fluxes of charge and energy in the state jBi vanish:

KB ¼ 0; LB ¼ 0: ð4:37Þ

Therefore jBi is an equilibrium state and is, indeed, time-

reversal invariant.

The fluxes of charge and energy across past null infinity

are given, as r → ∞, by the components JU, TUU and across

future null infinity by JV, TVV . These fluxes are found from

the components (4.36) with respect to Schwarzschild

coordinates using the formulas (4.8), (4.16). At past null

infinity, the differences in expectation values hBjĴUjBi −
hB−jĴUjB−i and hBjT̂UUjBi − hB−jT̂UUjB−i vanish. By

construction, the past Boulware state has no incoming

flux of particles at I−, and hence we deduce that the same

is true for the Boulware state jBi. Similarly, at future null

infinity, the differences in expectation values hBjĴV jBi −
hBþjĴV jBþi and hBjT̂VV jBi − hBþjT̂VV jBþi also vanish,

andwe deduce that jBi also has no outgoing flux of particles
at Iþ. It thus appears that we have succeeded in defining a

state which is as empty as possible at both future and past

null infinity.

We can also examine the expectation value of the scalar

field condensate. As r → ∞, this takes the form

hBjcSCjBi − hB−jcSCjB−i ∼ −
1

16π2r2

X∞

l¼0

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dω
1

jω̃j ð2lþ 1ÞjBup
ωlj2: ð4:38Þ

From the Wronskian relations (2.24), the integrand is finite

when ω̃ ¼ 0.

Figure 7 shows the differences in expectation values

between the Boulware-like state jBi and the past Boulware

state jB−i. When the scalar field charge q ¼ 0, these

differences in expectation values vanish, as the two states

are identical in this case. Unlike the two differences of past

states considered in Sec. IV B, the scalar field condensate for

this difference of states is negative, decreasingwith increasing

scalar field charge. The scalar condensate tends to zero far

from the blackhole, but diverges as the horizon is approached.

The difference in expectation values of the radial

component of the current between the Boulware-like

state jBi and the past Boulware state jB−i is positive

everywhere (compare with the previous two differences

in states in Sec. IV B, for which this quantity was

negative). Since KB ¼ 0 (4.37), only the past Boulware

state contributes to this component of the current.

From [48], the past Boulware state has a positive flux

of charge (we are considering only the case where both

the black hole and the scalar field have positive charge),

yielding a negative flux of charge for this difference
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FIG. 7. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators, between the tentative “Boulware”-like state, jBi, and the past Boulware state, jB−i, in the spacetime of a RN black hole with

Q ¼ 0.8M. All quantities are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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between the Boulware-like state jBi and the past

Boulware state jB−i.
The charge density hĴti is negative near the horizon, but

becomes small and positive further away, tending rapidly to

zero far from the black hole. The results for hĴri presented
in Fig. 7 are the negative of those presented in Ref. [48] for

the state jB−i, as anticipated since KB ¼ 0. While the

Boulware-like state jBi is time-reversal invariant, the past

Boulware state jB−i is not, and this is reflected in the

components hĴUi and hĴVi of the current, which can be

seen in Fig. 8. The component U−1hĴUi rapidly decreases

to zero as r → ∞, as expected (since hĴUi vanishes at past

infinity where U → ∞). The component V−1hĴVi also

tends to zero at infinity, but not as rapidly. Both

U−1hĴUi and V−1hĴVi diverge at the horizon.

The difference in expectation values of the component

hT̂r
t i of the stress-energy tensor between the Boulware-like

and past Boulware states is simply minus that found in [48]

for the past Boulware state, as expected since LB ¼ 0

(4.37). The differences in expectation values of the diago-

nal components of the SET between the states jBi and jB−i
all rapidly tend to zero far from the black hole. From Fig. 8,

the components of the difference in the current and SET

expectation values in Kruskal coordinates all diverge on the

FIG. 8. Difference in expectation values for the components of the current and stress-energy tensor operators in Kruskal coordinates

(2.6), between the tentative “Boulware”-like state jBi and the past Boulware state, jB−i, in the spacetime of a RN black hole with

Q ¼ 0.8M. All expectation values are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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event horizon. Our intuitive expectation is that both the

states jBi and jB−i will diverge at the horizon. This means

that either the past Boulware state jB−i diverges more

rapidly than our tentative Boulware-like state jBi as the

horizon is approached or that these two states diverge at the

same rate, but with different coefficients. We suspect that

the latter is more likely, although a computation of

renormalized expectation values would be required to settle

this question definitively.

Our results indicate that our proposed Boulware-like

state jBi is regular everywhere outside the event horizon, is
an equilibrium state, and has no fluxes of charge or energy.

However, from the construction in Sec. III D, it is not a

conventional vacuum state, since its derivation involved
operators satisfying nonstandard commutation relations
(3.60). This result is analogous to that on Kerr space-time

[29], where it is shown that there is no vacuum state which
is as empty as possible at both future and past null infinity.
While our results for the state jBi are intriguing, it remains
to be seen whether this state can be constructed rigorously
or whether the state is pathological in a manner not revealed
by our computations.

D. Hartle-Hawking-like states

We now turn to the Hartle-Hawking-like states con-

structed in Sec. III E.

1. jFTi state
We first consider the state jFTi, and in particular the

differences in expectation values

hFTjÔjFTi − hU−jÔjU−i ¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω
1

exp j 2πω̃
κ
j − 1

oinωlm: ð4:39Þ

As r → rþ, we find the expectation values of the current and stress-energy tensor take the asymptotic forms:

hFTjĴμjFTi − hU−jĴμjU−i ∼ q

64π3r2

X∞

l¼0

Z
∞

−∞

dω
ω̃ð2lþ 1Þ

jωjðexp j 2πω̃
κ
j − 1Þ jB

in
ωlj2ð−fðrÞ−1; 1; 0; 0Þ⊺; ð4:40aÞ

hFTjT̂μ
ν jFTi− hU−jT̂μ

ν jU−i∼ 1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
ω̃2ð2lþ1Þ

jωjðexp j2πω̃
κ
j−1ÞjB

in
ωlj2

0
BBB@

−fðrÞ−1 −fðrÞ−2 0 0

1 fðrÞ−1 0 0

0 0 Oð1Þ 0

0 0 0 Oð1Þ

1
CCCA: ð4:40bÞ

The integrands in (4.40) are regular at both ω ¼ 0 and

ω̃ ¼ 0 from the Wronskian relations (2.24). Furthermore,

by considering the components of the current and stress-

energy tensor in Kruskal coordinates, we find that the

leading order divergences in the expectation values (4.40)

cancel on the future horizon but not on the past horizon.

Given that the past Unruh state is anticipated to be regular

on the future horizon but not the past horizon, this implies

that the expectation values of the current in the state jFTi
will be regular at the future horizon, but that there may be a

mild divergence in the SET.

Combining the relevant components of (4.40) with

(4.28), and using the Wronskian relations (2.24), we find

the fluxes of charge and energy in the state jFTi to be

KFT ¼
q

64π3

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ωð2lþ1Þ

jω̃j coth

����
πω̃

κ

����jB
up
ωlj2;

ð4:41aÞ

LFT¼
1

16π2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω2ð2lþ1Þ

jω̃j coth

����
πω̃

κ

����jB
up
ωlj2:

ð4:41bÞ

Note that neither of these is zero when q ≠ 0, so the state

jFTi is not an equilibrium state and is not time-reversal

invariant. This is in contrast to the situation on a rotating

Kerr black hole, where it is argued in [28,29] that the

Frolov-Thorne state is an equilibrium state. Both the fluxes

(4.41) involve contributions from the superradiant modes

only (and vanish when the scalar field charge q ¼ 0). The

flux of charge has the same sign as the black hole chargeQ,

and hence the black hole is losing charge. The flux of

energy LFT is always positive, and therefore the black hole

is also losing energy in this state.

In Fig. 9 we show the differences in expectation values of

the current and SET between the jFTi state and the past

Unruh state jU−i. We will return to the expectation value of

the scalar field condensate below.
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From the radial component of the current, we see that
the difference in charge flux KFT −KU− is negative, in
contrast to the quantity KCCH− −KU−, (see Fig. 5) which
is positive. Since the charge flux KFT (4.41) contains
contributions only from the superradiant modes, this
suggests that KFT is small compared to the charge flux
in the past Unruh state KU− (which contains an outgoing
flux of Hawking radiation).

The difference in expectation values of the charge

density hĴti between the states jFTi and jU−i also has

the opposite sign compared the difference in expectation

values between the past CCH and Unruh states, shown in

Fig. 5. Turning to the components of the current in Kruskal

coordinates, shown in Fig. 10, we see that U−1fðrÞhĴUi
and V−1hĴVi are regular and nonzero at the horizon. As for
the difference between the past CCH and Unruh states, we

deduce that the current is regular across the future horizon

where U ¼ 0 but not the past horizon where V ¼ 0.

Assuming that the current in the past Unruh state is regular

across the future horizon, we deduce that the same is true

for the current in the jFTi state.
The difference in expectation values of the component

hT̂r
t i between the state jFTi and the past Unruh state is

positive, as was found to be the case for the difference in

expectation values of this component of the SET between

FIG. 9. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators, between the state jFTi and the past Unruh state, jU−i, in the spacetime of a RN black hole with Q ¼ 0.8M. All quantities are

multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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the past CCH and Unruh states. Therefore the quantity

LFT − LU− is negative. As with the flux of charge discussed

above, this result for the energy flux makes physical sense,

given that LFT arises from a sum over superradiant modes

only, while LU− contains the flux of energy from the

Hawking radiation in all field modes.

The differences in expectation values of the diagonal

components of the SET between the jFTi and jU−i states
appear to tend to a constant as r → ∞, at least for small

values of the scalar field charge (for larger values of q we

would need to consider rather larger values of the radial

coordinate r to see this behavior clearly). The difference in

expectation values of the component hT̂t
ti between these

two states is negative everywhere outside the horizon, as
was the case for the difference between the states jCCH−i
and jU−i. In contrast, far from the black hole, we see that
the differences in expectation values of the components

hT̂r
ri and hT̂θ

θi between the states jFTi and jU−i have the
opposite signs to those observed for the differences
between the states jCCH−i and jU−i.
We now examine the differences in expectation values of

the components of the SET between the states jFTi and

jU−i in Kruskal coordinates, shown in Fig. 10. First, we see
that the difference in expectation values of the quantity

FIG. 10. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators in Kruskal coordinates (2.6), between the state jFTi and the past Unruh state, jU−i, in the spacetime of a RN black hole with

Q ¼ 0.8M. All quantities are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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V2hT̂VVi is finite and nonzero on the horizon, so we

deduce that the difference in expectation values of the

component hT̂VVi diverges on the past horizon where

V ¼ 0. In addition, the difference in expectation values

of U2fðrÞ−1hT̂UUi and UVfðrÞ−1hT̂UVi are finite and

nonzero when r ¼ rþ. As for the differences in expectation
values between the past CCH and the past Unruh states, this

means that hT̂UVi is finite on both the future horizon and

the past horizon, but that hT̂UUi, while regular on the past

horizon, has a mild divergence on the future horizon. Since

the past Unruh state jU−i is expected to be regular on the

future (but not the past) horizon, we deduce that the state

jFTi has a mild divergence on the future horizon. We are

unable to make any deductions about its regularity on the

past horizon.

From our study of the differences in expectation values

between the states jFTi and jU−i of the current and SET,

we conclude that the Hartle-Hawking-like state jFTi is very
different physically from the past CCH state jCCH−i. The
difference in how these states are defined lies in the thermal

factor associated with the in modes. This clearly has a large

impact on the expectation values of observables. However,

these two states do share some physical features. For

example, at infinity, neither the jFTi state nor the past

CCH state are empty.

There is however one more observable that we must

consider in our discussion of differences in expectation

values between the jFTi and jU−i states, namely the scalar

condensate, which is not shown in Fig. 9. Near the horizon

r → rþ, we have the asymptotic form:

hFTjcSCjFTi− hU−jcSCjU−i

∼
1

16π2r2

X∞

l¼0

Z
∞

−∞

dω
2lþ1

jωjðexp j2πω̃
κ
j−1Þ jB

in
ωlj2: ð4:42Þ

Using the Wronskian relations (2.24), the integrand is

finite at ω ¼ 0 but diverges at ω̃ ¼ 0. We therefore

conclude that the expectation value of the scalar field

condensate in the state jFTi diverges at the horizon

(assuming that the expectation value of the scalar con-

densate in the past Unruh state jU−i is regular there). Away
from the horizon, the expectation value of the scalar field

condensate is given by

hFTjcSCjFTi − hU−jcSCjU−i

¼
X∞

l¼0

Xl

m¼−l

Z
∞

−∞

dω
1

exp j 2πω̃
κ
j − 1

jϕin
ωlmj2: ð4:43Þ

The integrand has a pole when ω̃ ¼ 0 unless the magnitude

of the in modes vanishes at this frequency. Numerical

investigations reveal that there is at least one in mode

whose magnitude is nonzero when ω̃ ¼ 0, and therefore the

difference in expectation values of the scalar field con-

densate between the jFTi and jU−i states is in fact

divergent everywhere outside the event horizon as well.

We therefore deduce that the state jFTi is ill defined, even
though the expectation values of the current and SET

appear to be well behaved in this state. Similar conclusions

were reached on Kerr space-time [29], namely that the

(original) Frolov-Thorne state was ill defined almost every-

where in the space-time. In particular, the expectation value

of the scalar condensate in the Frolov-Thorne state on Kerr

is divergent, but there is evidence that the expectation value

of the SET (the work [29] considers only a neutral scalar

field) is well-behaved, at least close to the horizon. In Kerr

space-time, on the axis of symmetry the superradiant

modes do not contribute [29] and the Frolov-Thorne state

reduces to the past CCH state on this axis. In the situation

we consider here, namely a charged scalar field on an RN

black hole, the superradiant modes contribute everywhere

in the space-time exterior to the event horizon and our state

jFTi is badly behaved everywhere outside and on the

horizon.

2. jHi state
Finally, we examine the state jHi. As with the other

states studied in this paper, we begin with asymptotic

expressions. Comparing (4.21h), (4.21i), we see that it is

convenient to consider the differences

hHjÔjHi − hFTjÔjFTi

¼ −
X∞

l¼0

Xl

m¼−l

Z
max fqQ

rþ;0g

min fqQ
rþ;0g

dωoinωlm coth

����
πω̃

κ

����; ð4:44Þ

which have contributions only from the superradiant in

modes, as may be expected from the construction of these

states in Sec. III E. In particular, since our analysis above

provides evidence that the expectation values of the current

and SETare well defined in the jFTi state, we may consider

differences in expectation values of these two quantities

between the jHi and jFTi states.
Near the horizon, we find

hHjĴμjHi− hFTjĴμjFTi∼−
q

64π3r2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω̃

jωjcoth
����
πω̃

κ

����ð2lþ1ÞjBin
ωlj2ð−fðrÞ−1;1;0;0Þ⊺; ð4:45aÞ
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hHjT̂μ
ν jHi− hFTjT̂μ

ν jFTi∼−
1

16π2r2

X∞

l¼0

Z
maxfqQ

rþ;0g

minfqQ
rþ;0g

dω
ω̃2

jωjcoth
����
πω̃

κ

����ð2lþ1ÞjBin
ωlj2

0
BBB@

−fðrÞ−1 −fðrÞ−2 0 0

1 fðrÞ−1 0 0

0 0 Oð1Þ 0

0 0 0 Oð1Þ

1
CCCA:

ð4:45bÞ

The leading order divergences in the expectation values

(4.45) cancel on the future horizon but not the past horizon.

Combining this result with the fact that the leading order

divergences in the expectation values (4.40) also cancel,

and the assumed regularity of the past Unruh state jU−i on
the future horizon, we may deduce that the expectation

value of the current in the state jHi is regular on the future

horizon, and that the expectation value of the SET is at

worst divergent as OðfðrÞ−1Þ as r → rþ.
Combining the relevant components in (4.45) and the

fluxes (4.41), we find that the fluxes of charge and energy

in the state jHi vanish:

KH ¼ 0; LH ¼ 0: ð4:46Þ

Therefore the state jHi is a time-reversal invariant, equi-

librium state. Hence, if the state jHi is regular on either the
past or the future horizon, it is regular on both horizons.

Since the expectation value of the scalar condensate in

the state jFTi is divergent, to study the properties of the

state jHi in more detail, we now consider the differences in

expectation values between the states jHi and jU−i, which
take the form

hHjÔjHi − hU−jÔjU−i ¼
X∞

l¼0

Xl

m¼−l

Z
∞

0

dω

�
1

exp½2πω̃
κ
� − 1

oinωlm þ 1

exp½2πω̄
κ
� − 1

oin−ωlm

	
; ð4:47Þ

where ω̄ is given by (4.27). In particular, the difference in expectation values of the scalar condensate is

hHjcSCjHi − hU−jcSCjU−i ¼
X∞

l¼0

Xl

m¼−l

Z
∞

0

dω

� jϕin
ωlmj2

exp½2πω̃
κ
� − 1

þ jϕin
−ωlmj2

exp½2πω̄
κ
� − 1

	
: ð4:48Þ

While the two integrands are singular at ω̃ ¼ 0 and ω̄ ¼ 0 respectively, the Cauchy principal value of each integral exists.

Near the horizon, we have

hHjcSCjHi − hU−jcSCjU−i ∼ 1

16π2r2

X∞

l¼0

Z
∞

0

dωð2lþ 1Þ
� jBin

ωlj2
ωðexp½2πω̃

κ
� − 1Þ þ

jBin
−ωlj2

ωðexp½2πω̄
κ
� − 1Þ

	
: ð4:49Þ

The quantity (4.48) is shown in the first plot in Fig. 11. It

can be seen that the difference in expectation values of the

scalar condensate in the states jHi and jU−i is regular

everywhere on and outside the event horizon. Since the past

Unruh state jU−i is anticipated to be regular on the future

horizon, we conclude that the expectation value of the

scalar condensate in the state jHi, unlike that for the state

jFTi, is also regular on the event horizon of the black hole.

The scalar condensate (4.48) also does not vanish as

r → ∞, providing evidence that the state jHi is not empty

at infinity. We also see that the scalar condensate varies

considerably as the scalar field charge q varies.

In Fig. 11 we also depict the differences in expectation

values of the current and SET between the states jHi and
jU−i. First, looking at the plot of the radial component of

the current, we see that the difference in the flux of charge

is negative between these two states. Since KH is zero

(4.46), we deduce that KU− (4.28a) is positive for a black

hole and scalar field both having positive charge. This is as

expected: the black hole emits Hawking radiation in such a

way as to reduce its charge.

The difference in expectation values of the charge

density between the jHi and jU−i states is negative and

nonzero far from the black hole. The magnitude of the

charge density increases significantly as the scalar field

charge increases, although we find for large values of the

scalar field charge (q ¼ 0.8M) an interesting effect

whereby the magnitude of the charge density near the

horizon is large but that at infinity is smaller than for lower

values of the scalar field charge. To examine whether the
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FIG. 11. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators, between the tentative “Hartle-Hawking”-like state, jHi, and the past Unruh state, jU−i, in the spacetime of a RN black hole

with Q ¼ 0.8M. All quantities are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.
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difference in expectation values of the current between

these two states is regular across the horizon, we turn to

Fig. 12. This shows that, in Kruskal coordinates, the

component V−1hĴVi is finite as r → rþ, so this component

of the difference in expectation values of the current is

regular on both the past and future horizons. In contrast, the

component U−1hĴUi of the difference in expectation values
diverges as r → rþ. We deduce that the difference in

expectation values of the current between the jHi and

jU−i states is regular across the future horizon but not the

past horizon. Since we assume that the past Unruh state is

regular across the future horizon, we conclude that the

expectation value of the current in the state jHi is also

regular across both the future and past horizons.

We now study the differences in expectation values of the

SET between the jHi and jU−i states. The difference in

expectation values of the component hT̂r
t i is positive far

from the black hole. This is to be expected from the fact that

LH (4.46) vanishes, while LU− (4.28b) is positive. The

differences in expectation values of the diagonal compo-

nents of the SET between these two states appear to

approach constant values far from the black hole. The

difference in the expectation values of the component hT̂t
ti

is negative everywhere outside the horizon, and has a

FIG. 12. Difference in expectation values for the components of the current and stress-energy tensor operators in Kruskal coordinates

(2.6), between the tentative Hartle-Hawking-like state jHi and the past Unruh state, jU−i, in the spacetime of a RN black hole with

Q ¼ 0.8M. All expectation values are multiplied by powers of fðrÞ so that the resulting quantities are regular at r ¼ rþ.

BALAKUMAR, BERNAR, and WINSTANLEY PHYS. REV. D 106, 125013 (2022)

125013-38



magnitude roughly twice that of the difference in the

corresponding expectation values between the states jFTi
and jU−i. For all the values of the scalar field charge q
studied, the difference in expectation values of the compo-

nent hT̂r
ri is positive close to the horizon, but its sign far

from the black hole depends on the magnitude of the scalar

field charge. For smaller values of the scalar field charge, it

is positive at infinity, but becomes negative at infinity if the

scalar field charge is sufficiently large. Similar behavior is

seen in Fig. 9 for the difference in expectation values of the

component hT̂r
ri between the states jFTi and jU−i. The

difference in the expectation values of the component hT̂θ
θi

between the states jHi and jU−i also has similar behavior to

that between the states jFTi and jU−i states. For smaller

values of the scalar field charge, it is positive everywhere

on and outside the horizon, while for intermediate values of

the scalar field charge it is positive on the horizon but

becomes negative far from the black hole.

The differences in the expectation values of the SET in

Kruskal coordinates are shown in Fig. 12. A similar picture

emerges as for the differences in the expectation values

between the states jCCH−i and jU−i (Fig. 6) as well as for
those between the states jFTi and jU−i (Fig. 10). The

component hT̂VVi is divergent on the past horizon where

V → 0, but regular on the future horizon. The component

hT̂UVi is regular on both the future and past horizons. In

addition, the component hT̂UUi vanishes on the past horizon
where U is finite, but diverges like fðrÞ−1 on the future

horizonwhereU → 0. Sincewe assume that the state jU−i is
regular across the future horizon, we deduce that the state

jHi has a mild divergence on the future horizon. There must

also be a mild divergence on the past horizon as the state jHi
is time-reversal invariant. A full computation of the SET for

the state jHi in the vicinity of the horizons would determine

whether our deduction is valid.
The final question we consider in this section is whether

the state jHi can be considered as an analog of the Hartle-
Hawking state on Schwarzschild. First, the Hartle-Hawking
state on Schwarzschild is regular on both the past and future
event horizons, and in particular the SET is regular on both
horizons. Our numerical results suggest that this is not the
case for the state jHi. Second, as discussed in Sec. III E,
while the state jHi contains a thermal distribution of
particles in the up modes and nonsuperradiant in modes,
it was constructed using operators satisfying nonstandard
commutation relations (3.73). We therefore expect that jHi
may not have all the properties required of a Hartle-
Hawking state, although, of all the states constructed in
this paper, it is the one which most closely resembles a
Hartle-Hawking-like state.

V. DISCUSSION AND CONCLUSIONS

In this paper we have explored the canonical quantization

of a charged scalar field on a nonextremal RN black hole

background. Our work was motivated by the aim of

disentangling the effects of superradiance and rotation on

the construction and properties of quantum states on Kerr

black holes, since in our setup we have superradiance but no

rotation. As on Kerr space-time, the presence of superradiant

modes complicates the construction of states analogous to

the standard Boulware, Unruh and Hartle-Hawking states.

Nonetheless, in this paper we have constructed a

menagerie of states for a charged scalar field on an RN

black hole. First, we have examined the past and future

Boulware, Unruh and CCH states, defined here in an

analogous manner to the corresponding states on Kerr

spacetime [29]. These states are not invariant under time-

reversal. The past Boulware state is empty far from the

black hole except for an outgoing flux of particles in the

superradiant modes [48]. The past Unruh state contains an

outgoing thermal distribution of particles with a nonzero

chemical potential [47]. The past CCH state is more

complicated, as the in and up basis modes are thermalized

with different thermal factors.

In addition to these past and future states, we have also

attempted to construct states analogous to the Boulware

and Hartle-Hawking states on Schwarzschild space-

time. We have defined a state jBi which is time-reversal

invariant and contains no particles at either future or past

null infinity. However, this is not a vacuum state in the

conventional sense, since its construction relies on employ-

ing creation and annihilation operators which satisfy

modified commutation relations.

We have also sought to define a thermal equilibrium

state. Our first attempt, the state jFTi, contains a thermal

distribution of particles but is not an equilibrium state. It is

also ill-defined everywhere on and outside the event

horizon. We have been able to define an equilibrium state

jHi, which is time-reversal invariant. However, we have

presented some evidence that this state may not be regular

at the horizon. As with the jBi state, the construction of the
jHi state relies on having creation and annihilation oper-

ators which do not satisfy the usual commutation relations.

While the Kay-Wald theorem [35,36] applies only to a

neutral scalar field, one would expect a more general

version of the theorem to apply to a charged scalar field.

We would anticipate that such a theorem would preclude

the existence of a thermal equilibrium state for a charged

scalar field on an RN black hole. While the state jHi
constructed in this paper seems to be a thermal equilibrium

state, it is likely to evade a generalized Kay-Wald theorem

by failing to satisfy the assumptions of such a theorem.

Specifically, since we have had to introduce nonstandard

commutation relations in the construction of jHi, we think
it likely that this state does not satisfy the usual positivity

condition (see the related discussion of the Hartle-Hawking

state on Kerr in Appendix B of [28]).

We are therefore unable to define a conventional vacuum

state which is as empty as possible at both future and past
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null infinity, and our attempts to define a conventional

thermal equilibrium state invariant under time-reversal have

also been unsuccessful. Both these results mimic the

situation on Kerr space-time, leading us to deduce that it

is superradiance which is the dominant effect rather than

the rotation, although for Kerr black holes it is the rotation

which leads to the superradiance.

One of our key results is that we have been unable to

define an analog of the Hartle-Hawking state for a charged

scalar field. Of course, this does not prove that no such state

exists; but the usual method of canonical quantization,

which yields the Hartle-Hawking state on Schwarzschild

space-time, fails here, as it does on Kerr black holes. For a

Kerr black hole background, it is possible to define a thermal

equilibrium state invariant under time-reversal invariance, if

one considers a fermionic rather than a bosonic field [30]. It

would therefore be interesting to explore the fermionic

analogs of our tentative states jBi and jHi. Since fermionic

operators satisfy anticommutation relations rather than

commutation relations, one may not need to resort to the

unconventional commutation relations we employed in

defining these states for charged scalar fields.

The thermal equilibrium state defined for fermions on a

Kerr black hole diverges on the speed-of-light surface [30],

the surface on which an observer rigidly rotating with the

same angular speed as the black hole event horizon must

travel at the speed of light. This is similar to the situation in

flat space-time, where rigidly rotating thermal states are

divergent everywhere for bosonic fields [41], but are regular

within the speed-of-light surface for fermionic fields [43].

As in flat space-time [41], for a bosonic field on Kerr space-

time a thermal equilibrium state can be defined if the black

hole is surrounded by a perfectly reflecting mirror located

entirely within the speed-of-light surface [32].

A natural question is then whether a Hartle-Hawking-

like state can be constructed if the RN black hole is

contained within a cavity. While there is a generalized

concept of an ergosphere for an RN black hole [62,63],

there is no surface analogous to the speed-of-light surface

in rotating space-times. While the unbounded RN space-

time is stable under charged scalar field perturbations

[64,65], if the black hole is enclosed by a perfectly

reflecting mirror sufficiently far from the event horizon,

there is an instability [66–71], leading to a charged analog

of the “black hole bomb” [72], the endpoint of which is a

stable black hole with charged scalar field hair [70,73,74].

This suggests that, in analogy with the situation on Kerr

space-time, it may be possible to define a Hartle-Hawking

state for an RN black hole in a cavity if the mirror is

sufficiently close to the event horizon. We plan to return to

this question in future work.

In this paper, we have studied the physical properties of

the states we have defined by examining differences in

expectation values of observables between two quantum

states. The advantage of studying such differences is that

they do not require renormalization. However, to explore

the quantum states in more detail, renormalized expectation

values are required. Renormalized expectation values

would also be useful for studying the evolution of an

evaporating charged black hole beyond the adiabatic

approximation employed in [53–56]. Recently there has

been much interest in expectation values of quantum field

operators inside the event horizon of a black hole [75–78],

particularly for studying the stability of the inner (Cauchy)

horizon of a RN(-de Sitter) or Kerr black hole [57,79–84].

Work to date on this question has largely focused on a

neutral quantum scalar field (apart from the recent work

considering a charged scalar field in [57,58]). A general

formalism for the Hadamard renormalization of expectation

values for a charged quantum scalar field was developed in

[61,85] (see also [86,87] for earlier work based on DeWitt-

Schwinger renormalization). Using this approach, renor-

malized expectation values of the current have been

computed on an RN-de Sitter black hole [57,58] for a

charged scalar field in the Unruh state. As demonstrated in

Appendix A, the r-component of the current does not

require renormalization, and it is shown in [58] that, with a

suitable choice of point-splitting, the t-component is

renormalized by finite terms, which aids its computation.

It would be of great interest to extend the work of [57,58] to

the RN black hole, other quantum states and, ultimately, the

expectation value of the stress-energy tensor. We leave

these questions for future studies.
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APPENDIX A: NONRENORMALIZATION
OF hĴri AND hT̂tri

Our focus in this appendix is to show that the compo-

nents hĴri and hT̂tri of the current and stress-energy tensor

respectively do not require renormalization. Our method

follows that employed in [28] to prove the corresponding

results for a neutral scalar field on Kerr space-time.

Let GFðx; x0Þ be the Feynman Green’s function for the

charged scalar field in a particular, unspecified quantum

state. The renormalized components of the current and

stress-energy tensor in this state are given by [61]

hĴμi ¼ −
q

4π
lim
x0→x

ℑfDμ½−iGRðx; x0Þ�g; ðA1aÞ

hT̂μνi ¼ lim
x0→x

ℜfT μν½−iGRðx; x0Þ�g; ðA1bÞ

where T μν is the second-order differential operator

T μν ¼ gν
ν0DμD

�
ν0 −

1

2
gμνg

ρτ0DρD
�
τ0 ; ðA1cÞ

with gν
ν0 the bivector of parallel transport. The operator Dμ

acts at the space-time point x, andDν0 acts at the space-time

point x0. The biscalarGRðx; x0Þ is regular in the coincidence
limit x0 → x and is given by [61]

GRðx; x0Þ ¼ GFðx; x0Þ −GSðx; x0Þ; ðA2Þ

where GSðx; x0Þ is the singular part of the Hadamard

parametrix

GSðx; x0Þ ¼
i

8π2

�
Uðx; x0Þ
σðx; x0Þ þ Vðx; x0Þ ln σðx; x0Þ

�
; ðA3Þ

with σðx; x0Þ equal to one half of the square of the geodesic
distance between the points x and x0, assuming that they are

connected by a unique geodesic. The complex biscalars

Uðx; x0Þ and Vðx; x0Þ are regular in the coincidence limit

and can be written as covariant Taylor series expansions. To

the order required to perform renormalization in four space-

time dimensions, these take the form [61]

Uðx; x0Þ ¼ U00ðxÞ þ U01μðxÞσ;μ þ U02μνðxÞσ;μσ;ν

þU03μνλðxÞσ;μσ;νσ;λ þ U04μνλτðxÞσ;μσ;νσ;λσ;τ

þ…; ðA4aÞ

Vðx; x0Þ ¼ V00ðxÞ þ V01μðxÞσ;μ þ V02μνðxÞσ;μσ;ν

þ V10ðxÞσ þ…: ðA4bÞ

The coefficients in the expansions depend only on the

space-time point x, and all dependence on x0 is contained
within σðx; x0Þ and its derivatives. Since we are considering

a massless charged scalar field minimally coupled to the

space-time curvature, and the Reissner-Nordström metric

has vanishing Ricci scalar, the coefficients given in [61]

simplify to

U00 ¼ 1; ðA4cÞ

U01μ ¼ iqAμ; ðA4dÞ

U02μν ¼
1

12
Rμν −

iq

2
∇ðμAνÞ −

q2

2
AμAν; ðA4eÞ

U03μνλ ¼ −
1

24
Rðμν;λÞ þ

iq

6
∇ðμ∇νAλÞ þ

q2

2
Aðμ∇νAλÞ

−
iq3

6
AμAνAλ þ

iq

12
RðμνAλÞ; ðA4fÞ

U04μνλτ ¼
1

80
Rðμν;λτÞ þ

1

288
RðμνRλτÞ þ

1

360
Rρ

ðμjψ jνR
ψ
λjρjτÞ

−
iq

24
∇ðμ∇ν∇λAτÞ −

q2

6
Aðμ∇ν∇λAτÞ

−
q2

8
½∇ðμAν�½∇λAτÞ� þ

iq3

4
AðμAν∇λAτÞ

þ q4

24
AμAνAλAτ −

iq

24
Aðμ∇νRλτÞ −

iq

24
Rðμν∇λAτÞ

−
q2

24
RðμνAλAτÞ; ðA4gÞ

V00 ¼ 0; ðA4hÞ

V01μ ¼ −
iq

12
∇αFαμ; ðA4iÞ

V02μν ¼ −
1

240
□Rμν þ

1

180
Rα

μRαν −
1

360
RαβRαμβν

−
1

360
Rαβγ

μRαβγν −
q2

24
Fα

μFνα −
q2

12
Aðμ∇

αFνÞα

−
iq

24
∇ðμ∇

αFνÞα; ðA4jÞ

V10 ¼
1

720
RαβγδRαβγδ −

1

720
RαβRαβ −

q2

48
FαβFαβ; ðA4kÞ

where brackets round indices denote symmetrization, with

vertical lines surrounding those indices not included in the

symmetrization.

To show that hĴri and hT̂tri do not require renormaliza-

tion, we seek to prove that

F1 ≡ ℑfDr½−iGSðx; x0Þ�g ¼ 0; ðA5aÞ

F2≡ℜfT tr½−iGSðx; x0Þ�g ¼ 0: ðA5bÞ
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Since the Reissner-Nordström metric (2.1) is static and

spherically symmetric, without loss of generality we may

consider two space-time points x and x0 as follows:

x ¼ ð0; r; θ; 0Þ; x0 ¼ ð0; r0; θ0; 0Þ: ðA6Þ

Then the unique geodesic connecting the points x
and x0 lies in the surface Σ ¼ ft ¼ 0;φ ¼ 0g. Using the

letter X to denote the indices t, φ, and A to denote r, θ, we
have [28]

σ;μ ¼ δ
μ

A
σ;A; ðA7aÞ

gν
ν0 ¼ δν

0
A0δAν gA

A0 þ δν
0
X 0δXν gX

X 0
: ðA7bÞ

We are considering a purely electric field with gauge

potential (2.8), and hence we can write

Aμ ¼ δXμ AX ; ðA7cÞ

where AX depends only on A coordinates. Therefore the

quantities (A5) take the form

F1 ¼ ℑf∇r½−iGSðx; x0Þ�g; ðA8aÞ

F2 ¼ℜf−i½grA
0
Dt∇A0 �GSðx; x0Þg: ðA8bÞ

The biscalar σðx; x0Þ and its derivatives are real, as

are the gauge field potential Aμ and field strength Fμν,

as well as all curvature tensors and their derivatives. From

(A7), we have Aμσ
;μ ¼ 0, which immediately simplifies the

form of GSðx; x0Þ.
The symmetries of the metric mean that Christoffel

symbols Γ
μ
νλ having an odd number of X indices vanish,

while those with an even number of X indices are nonzero.

Therefore the nonzero components of all covariant deriv-

atives of the gauge potential Aμ contain at least oneX index

and hence all terms in (A4) containing covariant derivatives

of Aμ do not contribute to Uðx; x0Þ or Vðx; x0Þ when

contracted with σ;μ. As a result, Uðx; x0Þ (A4a), (A4c)–

(A4g) is real and depends only on curvature tensors; the

gauge potential does not contribute.

The gauge field strength has the form

Fμν ¼ ½δAμ δXν − δXμ δ
A
ν �FAX ; ðA9Þ

where FAX depends only on the A coordinates. Hence we

have

∇αFαμ ¼ δXμ ∇
AFAX : ðA10Þ

Therefore Vðx; x0Þ (A4b) is also real. We deduce that

−iGSðx; x0Þ is real and hence F1 (A8a) is trivially zero,

while F2 (A8b) simplifies to

F2 ¼ gr
A0
∇t∇A0 ½−iGSðx; x0Þ�: ðA11Þ

The derivatives in the above expression commute since

they are evaluated at different space-time points and

GSðx; x0Þ is a biscalar. Furthermore, GSðx; x0Þ depends

only on the space-time geometry and the background

electromagnetic field. Therefore GSðx; x0Þ does not depend
on t and thus ∇tð−iGSÞ must be zero. We then have

F2 ¼ 0, as required.

In conclusion, the components hĴri and hT̂tri do not

require renormalization.

APPENDIX B: COMPONENTS OF THE
CURRENT AND STRESS-ENERGY TENSOR

In this appendix we give the explicit formulas for the

mode contributions to the current and stress-energy tensor.

The sums over the azimuthal quantum number m are then

performed using properties of the spherical harmonics

derived in Appendix C.

The classical mode contributions to the current Jμ are

jtωlm ¼ −
q

4πfðrÞ

�
ω −

qQ

r

�
jϕωlmj2; ðB1aÞ

jrωlm ¼−
qfðrÞ
4π

jN ωj2ℑ
�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
jYlmðθ;φÞj2;

ðB1bÞ

jθωlm ¼ −
q

4πr4
jN ωj2jXωlðrÞj2ℑ

�
Y�
lmðθ;φÞ

∂

∂θ
Ylmðθ;φÞ

�
;

ðB1cÞ

j
φ
ωlm ¼ −

mq

4πr2 sin2 θ
jϕωlmj2; ðB1dÞ

where ℑ denotes the imaginary part of a complex quantity.

The component jθωlm vanishes identically for all l and m

using the properties of the spherical harmonics (2.11).

Although the mode contribution to the current component

j
φ
ωlm does not vanish, in all our expectation values we will

be summing over m ¼ −l;…l. From the properties of the

spherical harmonics (2.11), we have jϕω;l;−mj2 ¼ jϕωlmj2
and hence all sums overm in the expectation values of the φ

component of the current will vanish. The only nonzero

components of the current will therefore be the t and r
components. The sum over m in these components can be

performed explicitly using (C3), giving

jtωl ¼
Xl

m¼−l

jtωlm

¼ −
qð2lþ 1Þ
16π2r2fðrÞ jN ωj2jXωlðrÞj2

�
ω −

qQ

r

�
; ðB2aÞ
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jrωl ¼
Xl

m¼−l

jrωlm ¼ −
qfðrÞð2lþ 1Þ

16π2
jN ωj2ℑ

�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
: ðB2bÞ

The components of the mode contributions to the stress-energy tensor are

ttt;ωlm ¼ 1

2

��
ω −

qQ

r

�
2

þm2fðrÞ
r2sin2θ

�
jϕωlmj2 þ

fðrÞ2
2

jN ωj2
����
d

dr

�
XωlðrÞ

r

�����
2

jYlmðθ;φÞj2

þ fðrÞ
2r4

jN ωj2jXωlðrÞj2
����
∂

∂θ
Ylmðθ;φÞ

����
2

; ðB3aÞ

ttr;ωlm ¼ −

�
ω −

qQ

r

�
jN ωj2ℑ

�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
jYlmðθ;φÞj2; ðB3bÞ

ttθ;ωlm ¼ −
1

r2

�
ω −

qQ

r

�
jN ωj2jXωlðrÞj2ℑ

�
Ylmðθ;φÞ

∂

∂θ
Y�
lmðθ;φÞ

�
; ðB3cÞ

ttφ;ωlm ¼ −m

�
ω −

qQ

r

�
jϕωlmj2; ðB3dÞ

trr;ωlm ¼ 1

2
jN ωj2

����
d

dr

�
XωlðrÞ

r

�����
2

jYlmðθ;φÞj2 þ
1

2fðrÞ2
��

ω −
qQ

r

�
2

−
m2fðrÞ
r2sin2θ

�
jϕωlmj2

−
1

2r4fðrÞ jN ωj2jXωlðrÞj2
����
∂

∂θ
Ylmðθ;φÞ

����
2

; ðB3eÞ

trθ;ωlm ¼ jN ωj2ℜ
�
XωlðrÞ

r

d

dr

�
X�
ωlðrÞ
r

�
Y�
lmðθ;φÞ

∂

∂θ
Ylmðθ;φÞ

�
; ðB3fÞ

trφ;ωlm ¼ −mjN ωj2ℑ
�
XωlðrÞ

r

d

dr

�
X�
ωlðrÞ
r

��
jYlmðθ;φÞj2; ðB3gÞ

tθθ;ωlm ¼ 1

2r2
jN ωj2jXωlðrÞj2

����
∂

∂θ
Ylmðθ;φÞ

����
2

þ 1

2

�
r2

fðrÞ

�
ω −

qQ

r

�
2

−
m2

sin2θ

�
jϕωlmj2

−
fðrÞr2

2
jN ωj2

����
d

dr

�
XωlðrÞ

r

�����
2

jYlmðθ;φÞj2; ðB3hÞ

tθφ;ωlm ¼ −
m

r2
jN ωj2jXωlðrÞj2ℑ

�
Ylmðθ;φÞ

∂

∂θ
Y�
lmðθ;φÞ

�
; ðB3iÞ

tφφ;ωlm ¼ 1

2

�
m2 þ r2sin2θ

fðrÞ

�
ω −

qQ

r

�
2
�
jϕωlmj2 −

1

2
fðrÞr2sin2θjN ωj2

����
d

dr

�
XωlðrÞ

r

�����
2

jYlmðθ;φÞj2

−
sin2θ

2r2
jN ωj2jXωlðrÞj2

����
∂

∂θ
Ylmðθ;φÞ

����
2

; ðB3jÞ

where ℜ denotes the real part of a complex quantity. Using (2.11), we immediately have that ttθ;ωlm and tθφ;ωlm vanish

identically for all l and m. As for the φ component of the current, although the mode contributions to the stress-energy

tensor components ttφ;ωlm and trφ;ωlm are nonzero, when summed overm they vanish. Using the identity (C6), it is also the

case that trθ;ωlm vanishes when summed over m. The remaining components can be summed over m and simplified using

the results (C3), (C9), (C13). Defining
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tμν;ωl ¼
Xl

m¼−l

tμν;ωlm; ðB4Þ

we find

ttt;ωl ¼
2lþ 1

8π
jN ωj2

��
1

r2

�
ω −

qQ

r

�
2

þ lðlþ 1ÞfðrÞ
r4

�
jXωlðrÞj2 þ fðrÞ2

����
d

dr

�
XωlðrÞ

r

�����
2
	
; ðB5aÞ

ttr;ωl ¼ −
2lþ 1

4π

�
ω −

qQ

r

�
jN ωj2ℑ

�
X�
ωlðrÞ
r

d

dr

�
XωlðrÞ

r

��
; ðB5bÞ

trr;ωl ¼
2lþ 1

8π
jN ωj2

��
1

fðrÞ2r2
�
ω −

qQ

r

�
2

−
lðlþ 1Þ
r4fðrÞ

�
jXωlðrÞj2 þ

����
d

dr

�
XωlðrÞ

r

�����
2
	
; ðB5cÞ

tθθ;ωl ¼ 2lþ 1

8π
jN ωj2

�
1

fðrÞ

�
ω −

qQ

r

�
2

jXωlðrÞj2 − fðrÞr2
����
d

dr

�
XωlðrÞ

r

�����
2
	
; ðB5dÞ

tφφ;ωl ¼ tθθ;ωl sin
2 θ: ðB5eÞ

From these results the mode contribution to the trace of the stress-energy tensor is

t
μ
μ;ωl ¼

2lþ 1

4π
jN ωj2

��
1

fðrÞr2
�
ω −

qQ

r

�
2

−
lðlþ 1Þ

r4

�
jXωlðrÞj2 − fðrÞ

����
d

dr

�
XωlðrÞ

r

�����
2
	
: ðB6Þ

Using the radial equation (2.13), this simplifies to

t
μ
μ;ωl ¼ −

2lþ 1

8π
jN ωj2□

�jXωlj2
r2

�
: ðB7Þ

From (4.17), the mode contribution to the scalar

condensate is

scωlm ¼ 1

r2
jN ωlj2jXωlðrÞj2jYlmðθ;φÞj2; ðB8Þ

and hence, using (C3),

scωl ¼
Xl

m¼−l

scωlm ¼ 2lþ 1

4πr2
jN ωlj2jXωlðrÞj2: ðB9Þ

Comparing (B7), (B9), we see that

t
μ
μ;ωl ¼ −

1

2
□scωl: ðB10Þ

This is to be expected from (4.13), since the curvature terms

in that equation result from the renormalization proc-

ess [61].

APPENDIX C: SOME PROPERTIES OF
SPHERICAL HARMONICS

In this final appendix we collect some results for the

spherical harmonics Ylmðθ;φÞ which are employed in

Appendix B for simplifying the components of the current

and stress-energy tensor.

We begin with the standard addition theorem for spheri-

cal harmonics

Plðcos γÞ ¼
4π

2lþ 1

Xl

m¼−l

Ylmðθ;φÞY�
lmðθ0;φ0Þ; ðC1Þ

where

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cos ðφ − φ0Þ: ðC2Þ

Taking the coincidence limit θ0 ¼ θ, φ0 ¼ φ in (C1) yields

the well-known addition formula

Xl

m¼−l

jYlmðθ;φÞj2 ¼
2lþ 1

4π
; ðC3Þ

since Plð1Þ ¼ 1.

Differentiating both sides of (C1) with respect to θ gives

4π

2lþ 1

Xl

m¼−l

∂Ylmðθ;φÞ
∂θ

Y�
lmðθ0;φ0Þ ¼ ∂ðcos γÞ

∂θ
P0
l
ðcos γÞ;

ðC4Þ

with
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∂ðcos γÞ
∂θ

¼ − sin θ cos θ0 þ cos θ sin θ0 cos ðφ − φ0Þ: ðC5Þ

Taking the coincidence limit, we have

Xl

m¼−l

∂Ylm

∂θ
Y�
lm ¼ 0: ðC6Þ

We now differentiate (C4) with respect to θ0 to obtain

4π

2lþ1

Xl

m¼−l

∂Ylmðθ;φÞ
∂θ

∂Y�
lmðθ0;φ0Þ
∂θ0

¼ ∂
2ðcosγÞ
∂θ0∂θ

P0
l
ðcosγÞþ∂ðcosγÞ

∂θ

∂ðcosγÞ
∂θ0

P00
l
ðcosγÞ; ðC7Þ

where

∂ðcos γÞ
∂θ0

¼ − sin θ0 cos θ þ cos θ0 sin θ cosðφ − φ0Þ;

∂
2ðcos γÞ
∂θ0∂θ

¼ sin θ sin θ0 þ cos θ cos θ0 cosðφ − φ0Þ: ðC8Þ

Taking the coincidence limit yields

Xl

m¼−l

����
∂Ylm

∂θ

����
2

¼ 2lþ 1

4π
P0
l
ð1Þ ¼ 1

8π
lðlþ 1Þð2lþ 1Þ;

ðC9Þ

since

P0
l
ð1Þ ¼ lðlþ 1Þ

2
: ðC10Þ

Our final identity is derived by differentiating the addition

theorem (C1) with respect to φ and then φ0, which gives

4π

2lþ 1

Xl

m¼−l

∂Ylmðθ;φÞ
∂φ

∂Y�
lmðθ0;φ0Þ
∂φ0

¼ ∂
2ðcos γÞ
∂φ0

∂φ
P0
l
ðcos γÞ þ ∂ðcos γÞ

∂φ

∂ðcos γÞ
∂φ0 P00

l
ðcos γÞ;

ðC11Þ

with

∂ðcos γÞ
∂φ

¼ −
∂ðcos γÞ
∂φ0 ¼ − sin θ sin θ0 sinðφ − φ0Þ;

∂
2ðcos γÞ
∂φ0

∂φ
¼ sin θ sin θ0 cosðφ − φ0Þ: ðC12Þ

Taking the coincidence limit, and using (2.11), (C10), we

find

Xl

m¼−l

����
∂Ylm

∂φ

����
2

¼
Xl

m¼−l

m2jYlmj2

¼ 1

8π
lðlþ 1Þð2lþ 1Þ sin2 θ: ðC13Þ
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