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We study the canonical quantization of a massless charged scalar field on a Reissner-Nordstrom
black hole background. Our aim is to construct analogs of the standard Boulware, Unruh and Hartle-
Hawking quantum states which can be defined for a neutral scalar field, and to explore their physical
properties by computing differences in expectation values of the scalar field condensate, current and stress-
energy tensor operators between two quantum states. Each of these three states has a non-time-reversal-
invariant past and future charged field generalization, whose properties are similar to those of the
corresponding past and future states for a neutral scalar field on a Kerr black hole. In addition, we present
some tentative, time-reversal-invariant, equilibrium states. The first is a “Boulware”-like state which is as
empty as possible at both future and past null infinity. Second, we posit a “Hartle-Hawking”-like state
which may correspond to a thermal distribution of particles. The construction of both these latter states
relies on the use of nonstandard commutation relations for the creation and annihilation operators

pertaining to superradiant modes.

DOI: 10.1103/PhysRevD.106.125013

I. INTRODUCTION

In the absence of a definitive theory of quantum gravity,
quantum field theory in curved space-time has proven to be a
fruitful avenue for research. In this approach, the space-time
background is regarded as purely classical, and quantum
fields propagating on a fixed background are studied. Some
of the earliest and deepest results arising from this setup are
pertinent to black hole physics, including the thermal
Hawking radiation emitted by black holes formed by the
gravitational collapse of a compact body [1,2].

The simplest black hole space-time is the Schwarzschild
black hole, and quantum fields propagating on this back-
ground have been studied extensively. The primary physi-
cal quantities of interest are expectation values of quantum
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operators in a particular quantum state. For example, the
expectation value of the quantum stress-energy tensor
(SET) operator f’,w governs the backreaction of the
quantum field on the space-time geometry via the semi-
classical Einstein equations

G,, =8xn(T,,), (1.1)
where G, is the Einstein tensor, () denotes an expectation
value, and we are using units in which c =G =h =
kg =1, as we shall throughout this paper. In order to
compute the right-hand side of (1.1), one needs to first
specify a quantum field, and then consider a particular
quantum state. Defining quantum states on a general curved
space-time background is nontrivial because the notion of
particle is observer-dependent and, as a result, there may
not be a unique or natural vacuum state.

On a Schwarzschild black hole, three standard quantum

states have been studied in the literature [3]:

Boulware state [4]: This is defined as the quantum state
which is as empty as possible far from the black hole.
However, this state diverges on the event horizon of the
black hole and physically represents the vacuum state
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outside a star which does not have a horizon. This state
respects the symmetries of the underlying Schwarzschild
space-time and, in particular, is time-reversal invariant.

Unruh state [5]: Unlike the Boulware state, the Unruh

state is not time-reversal invariant. It is the state
pertinent to modeling a black hole formed by gravi-
tational collapse. While the state is empty at past null
infinity, it contains an outwards flux of particles (the
Hawking radiation) at future null infinity. The Unruh
state is regular across the future event horizon, but not
the past event horizon of an eternal black hole.

Hartle-Hawking state [6,7]: This state represents a

black hole surrounded by thermal radiation at the
Hawking temperature. As well as being time-reversal
invariant, this state has attractive regularity proper-
ties, being regular across both the future and past
event horizons.
The properties of these three states for various quantum
fields on Schwarzschild space-time have been extensively
studied via computations of renormalized expectation
values (for a sample of the literature, see [8-23]).

Prior to the discovery of Hawking radiation, it was
already known that rotating Kerr black holes emit quantum
Unruh-Starobinskii radiation [24,25]. Classical bosonic
fields propagating on a Kerr black hole space-time exhibit
superradiance [26,27], whereby low frequency modes
incident from infinity are amplified upon reflection from
the black hole. Unruh-Starobinskii radiation is the quantum
analog of classical superradiance, and occurs for fermionic
as well as bosonic fields [25].

The presence of superradiant modes complicates the
definition of quantum states on a Kerr black hole back-
ground, particularly for bosonic fields [28-32]. For a
quantum scalar field, it is no longer possible to define
a Boulware-like state which is as empty as possible at
both future and past null infinity [29,31] (there is such a state
for a quantum fermion field [30], but it diverges on the
stationary limit surface). Instead, the analog of the Boulware
state for a quantum scalar field is no longer time-reversal
invariant. Although itis empty at past null infinity, it contains
an outgoing flux of particles in the superradiant modes at
future null infinity, corresponding to the Unruh-Starobinskii
radiation [25,29,30,33]. While the Unruh state is
well-defined and has similar properties to that on
Schwarzschild space-time [34], this is not the case for the
Hartle-Hawking state. In particular, for a quantum scalar
field on a Kerr black hole there does not exist a quantum state
respecting all the symmetries of the space-time and which is
regular across both the future and past event horizons
[35,36]. Attempts to define analogs of the Hartle-
Hawking state for either bosonic or fermionic fields on a
Kerr black hole lead to states which are either divergent in at
least part of the space-time exterior to the event horizon [28—
32] or which do not describe an equilibrium state [30,37].

The study of quantum field theory on a Kerr black hole is
further complicated due to the fact that the space-time has

fewer symmetries than a Schwarzschild black hole, being
only axisymmetric rather than spherically symmetric.
Indeed, renormalized expectation values for the Unruh
state have only been computed comparatively recently for
the whole region exterior to the event horizon [34].

One of the reasons why quantum field theory on Kerr
black holes is so challenging is because there are two
interlinked effects at play: superradiance and rotation. Even
in flat Minkowski space-time, defining rotating quantum
states is nontrivial [38—40], and rigidly rotating thermal
states do not exist for bosonic fields on the unbounded
space-time [41] (for fermionic fields, such states can be
constructed [42,43] but they are not regular everywhere
[43]). The question then arises as to whether it is possible to
disentangle these two effects. As outlined above, it is
possible to study the effects of rotation separately in flat
space-time, but what about the consequences of super-
radiance? There is a simpler black hole system which
exhibits superradiance without rotation, and that is the
focus of our work in this paper.

A classical charged scalar field propagating on a charged
Reissner-Nordstrom (RN) black hole space-time exhibits
the phenomenon of charge superradiance [44] (see, for
example, [45,46] for more recent work). This is analogous
to superradiance for bosonic fields on Kerr black holes,
namely low-frequency modes can be amplified on scatter-
ing by the charged RN black hole, thereby extracting some
of the charge of the black hole. There is a quantum analog
of charge superradiance [47,48], and particles are sponta-
neously emitted by the black hole in those modes which are
subject to charge superradiance. The interaction between
the charge of the scalar field and the charge of the black
hole also affects the Hawking radiation [47,49-52] and
hence also the evolution of an evaporating black hole
(studied using an adiabatic approximation in [53-56]).
Recently, the Unruh state for a charged scalar on an RN-de
Sitter black hole has been constructed and its properties
explored both inside and outside the event horizon [57,58].
However, the physical properties of the analogs of the other
standard quantum states discussed above for charged fields
on the RN space-time have been little studied to date.

Here we consider in detail the canonical quantization of a
massless charged scalar field, minimally coupled to the
space-time geometry, and propagating on an RN black hole.
As well as fixing the classical space-time geometry, we
regard the background electromagnetic field as fixed and
classical. We discuss in detail the construction of analogs of
the Boulware, Unruh and Hartle-Hawking states on this
background, paying particular attention to the consequences
of charge superradiance. The physical properties of these
states are then explored by considering differences in
expectation values between two quantum states, which do
not require renormalization. In addition to the quantum
stress-energy tensor operator, we also examine the expect-
ation value of the scalar field current operator J* (considered
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in [57,58] on an RN-de Sitter black hole), which acts as a
source for the semiclassical Maxwell equations

V, " = 4x(J") (1.2)
(in Gaussian units), where F,, is the electromagnetic gauge
field strength. The semiclassical Maxwell equations (1.2)
govern the backreaction of the quantum field on the
electromagnetic field. We also consider the simplest non-
trivial expectation value, the scalar field condensate.

The outline of this paper is as follows. In Sec. II we
briefly review the RN geometry and describe the classical
charged scalar field modes which will be used extensively
throughout the paper. The canonical quantization of the
charged scalar field is the focus of Sec. III. We construct in
detail a wide range of quantum states, inspired by the
standard Boulware, Unruh and Hartle-Hawking states on
the Schwarzschild black hole. Differences in expectation
values of observables between two quantum states are
studied in Sec. IV, first by considering the asymptotic
behavior of the states near the horizon and infinity, which
can be derived analytically for at least some states, and
second by full numerical computations valid everywhere
outside the event horizon. From these computations we
examine some key properties of the states we have defined,
including symmetry with respect to time-reversal, regular-
ity (including on the event horizons) and the presence of
fluxes. Our conclusions are presented in Sec. V.

II. CLASSICAL CHARGED SCALAR FIELD ON A
REISSNER-NORDSTROM BLACK HOLE

In this section we review the key properties of the RN
black hole geometry, and define the classical charged scalar
field modes on this background.

A. Reissner-Nordstrom black hole geometry

The background space-time is a four-dimensional,
spherically symmetric RN black hole with metric

ds*=—f(r)dt* + f(r)~'dr* + r?d0> + r*sin*0dg?*, (2.1)
where the metric function f(r) is given by
2M Q?

with M the mass and Q the electric charge of the black hole.
If M?> > Q?, the metric function f(r) has two zeros, at
r = ry, where

ry =M=+ M- Q% (2.3)
In this case, r_is the location of the black hole event horizon
and r_ is the location of the inner horizon. When M? = Q?2,

FIG. 1. Penrose diagram of nonextremal RN space-time. The
future and past event horizons are denoted H*, while Z* are
future and past null infinity. Future and past timelike infinity are
labeled i*, and i is spacelike infinity. There is a space-time
singularity at » = 0. The diagram also shows regions I, II, IIT and
IV, which will be required in our constructions.

the two horizons coincide and the black hole is extremal. For
M? < Q7. thereis anaked singularity. In this paper we restrict
our attention to the case M? > Q2. Part of the Penrose
diagram for the nonextremal black hole is depicted in Fig. 1.

Our primary interest in this paper is in defining states in
the region exterior to the event horizon, region I in Fig. 1.
However, in order to do so we will need to employ scalar
field modes which are defined in the other regions shown in
Fig. 1. It is therefore useful to define Kruskal coordinates
U, V which are regular in all four of regions I-IV. In region
I, ingoing and outgoing null coordinates u, v are given
respectively by

u=t-—r,, v=t+r,, (2.4)

in terms of the usual “tortoise” coordinate r,, defined by

dr, 1

dr (r)’

(2.5)

where the metric function f(r) is given by (2.2). In region I,
the tortoise coordinate has the range —oco <r, < 0.
Kruskal coordinates can then be written in terms of u
and v in region I as follows:

where

(2.7)
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is the surface gravity of the event horizon. In region I, the
Kruskal coordinate U = 0 on the future event horizon H™,
and tends to —oo at past null infinity Z~. Similarly, in region I,
the Kruskal coordinate V = 0 on the past event horizon H~
and tends to oo at future null infinity Z*. Values of U and V on
some other key surfaces in the space-time are shown in Fig. 1.
The RN black hole is a solution of Einstein’s equations
with an electromagnetic field. The background electromag-
netic potential has components A, = (A, 0,0,0) where

AO :—g,
r

(2.8)

and we have chosen a constant of integration so that the
gauge field potential vanishes far from the black hole. As
observed in [57,58], by means of a gauge transformation it
is possible to set the gauge field potential to zero at any
fixed chosen value of r. In this paper we fix the gauge so
that (2.8) holds throughout. The electromagnetic potential
A, (2.8) satisfies the Lorenz gauge condition V¥A, = 0.

B. Classical charged scalar field

The focus of this paper is a massless, charged, complex
scalar field @ with charge g, minimally coupled to the
space-time geometry, and satisfying the equation

D,D'® = 0, (2.9)
where D, = V, — iqA, is the covariant derivative, with A,

the electromagnetic potential (2.8). We consider mode
solutions of the scalar field equation (2.9) of the form

—iwt

¢wfm(t’ r, 9’ (ﬂ) = TNwaf(r>Yfm(9’ (,0), (210)

where we emphasize that the frequency @ may take any
positive or negative value. In (2.10), the integer ¢ =
0,1,2, ... is the total angular momentum quantum number,
m=-,—¢+1,....,0—1,¢ is the azimuthal angular
momentum quantum number, @ the frequency of the mode,
N, is a normalization constant and Y ,,, (6, ¢) is a spherical
harmonic. The spherical harmonics are given by

Y 16, 0) = ¢ ey E;;Z P (cosoe,

(2.11)

where P is a real Legendre function and we have fixed the
normalization such that

/ Y (0. 0) Y% (0. 0)5in 0d0dp = 8,08,y (2.12)

where * denotes complex conjugation. In terms of the
“tortoise” coordinate r,, defined by (2.5), the radial
equation for X, ,(r) takes the form

L val e =0 @y

where the effective potential Vg (7) is

Vat)=LRiee ) rr0)- (0-22) " 2y

Near the black hole event horizon, as r — r, and
r, —» —oo, and at infinity, as r,r, — oo, the effective
potential V¢ (2.14) has the asymptotic values

—@? = —(w -1 r, - —c0,
Vege(r) ~ ’ (2.15)
_a)z’ r* - w?
where we have defined the quantity
PR (2.16)
Ty

The charges of both the black hole and of the scalar field do
not appear in the effective potential far from the black hole
since we have chosen a gauge in which the electromagnetic
potential vanishes there. Under a gauge transformation of
the form

-

A, —>A,+09,7,
ro

® - TP, (2.17)

for a constant ry, the gauge potential A, transforms to
(Ap,0,0,0) with

A():—g+g-
r ro

(2.18)
We have chosen a gauge with ry = oo, but we could equally
well have chosen ry = r . In this case the gauge potential
A, would vanish at the event horizon rather than at infinity,
and the effective potential V4 (2.14) at the horizon would
be independent of the charge.

Under a gauge transformation (2.17), the frequency @ of
a scalar field mode (2.10) is transformed to

_aQ.

” (2.19)

© =0

Therefore the frequency of a scalar field mode is not a
gauge-invariant quantity. A constant shift in the frequency
corresponds to a gauge transformation (2.17), which will
affect the final term in the effective potential Vg (2.14),
and hence the form of the scalar field modes near the
horizon and at infinity. Our choice of gauge means that the
quantity o in (2.10) has a natural physical interpretation; it
is the frequency of a mode as measured by a static observer
far from the black hole.

125013-4
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With our choice of gauge, we see from (2.15) that the
charge does affect the form of the effective potential close
to the horizon. This turns out to have important conse-
quences for both the form of the scalar field modes, and, in
Sec. III, for the canonical quantization of the scalar field. A
further important feature of the radial equation (2.13) is that
it is not invariant under the transformation @ — —®. This
means that, while X} ,(r) satisfies the same radial equation,
namely (2.13) as X,,,(r), the function X} ,(r) is not the
same as X_,,(r). This subtlety will be important in Sec. III
when we quantize the field.

In region I, a basis of solutions to the radial equa-
tion (2.13) consists of the usual in and up scalar field
modes, which have the asymptotic forms

in ,—iar, _
0 B e , r, = —00,
X“’f<r) = —iwr in iowr (2208')
e Al e' T, r, = 00,
and
eior. +AUP e~ior. r.o— —
74 ’ * ’
X (r) = " (2.20b)
@ B eior. r, = o
A ’ * ’

respectively, where A™/" and B™/" are complex constants.
The in modes represent scalar waves incoming from Z~,
which are partly reflected back to Z* and partly transmitted
down the future horizon H*. The up modes represent scalar
waves which are outgoing near the past horizon H~, partly
reflected back down the future horizon H™ and partly
transmitted to Z*. Our in and up modes are the same as
those constructed in [57,58], although our different choice
of gauge means that the asymptotic forms (2.20a), (2.20b)
are not identical.

We will also make use of an alternative basis in region I,
given by the following out and down modes, whose radial
functions are defined by:

— i d _ yupk
XS’ufE(r) - X:B;(}"), X(uofwn(r) - Xa;f (l"), (2213)
and whose asymptotic forms are therefore
Bin*ei(br*’ r, = —c0,
Xop(r) = { oo (2.21b)
elor. +Aill)l;e—twr*’ r, = oo,
and
eI AWl p 5 —00
ds _ (014 ’ * s
X" (r) = { i (2.21¢)
B, e *, r, = 00,

respectively. The out and down radial mode functions can
be written as linear combinations of the in and up radial
mode functions as follows:

it

down

HT

i i

FIG. 2. In, up, out and down modes depicted in region I of the
RN space-time.

Xop(r) = AQXa,(r) + Bz X (r).
X (r) = AKX () + BEXn (7). (222)
The out modes correspond to a combination of in and up
modes such that there is no flux going down the event
horizon, while the down modes have no outwards flux at
infinity. The in, up, out and down modes are depicted
in Fig. 2.

Since the effective potential (2.14) in the radial equa-
tion (2.13) is real, for any two solutions X, X, of the radial
equation the Wronskians

dX, dx, X dx:

X - X s * - X
! dr, 2 dr, ! dr, 2 dr,

(2.23)

are independent of r,. Using the asymptotic forms (2.20),
we obtain the following Wronskian relations, valid for any
value of the frequency w:

w[l - |Ai£f 2] = 5’|Bi£f|2,
@[l = A, = o[BI,
@B, = wB.},,

@ASF; BB?K = _WAL?KBEP; , (2.24)

where it should be stressed that both w and @& can take
any real value. For scalar field modes with w® < 0, the

reflection coefficient |A,,|*> > 1. This is the classical
phenomenon of charge superradiance [44]. An in mode

125013-5



BALAKUMAR, BERNAR, and WINSTANLEY

PHYS. REV. D 106, 125013 (2022)

14 T

‘
|AS > ——

1.2

1

0.8

0.6

04

0.2 +

wM

FIG. 3. Reflection |A",|> and transmission @|B™,|?/w coef-
ficients for in modes with # = 0 as a function of frequency w, for
a particular choice of scalar field charge ¢ = M /2 and black hole
charge Q = M/2. Superradiance occurs when the reflection
coefficient is greater than unity.

with w@ < 0 will be reflected back to Z* with an amplitude
greater than it had coming in from Z~, and, similarly, an up
mode with w@ < 0 will be reflected back down H™ with an
amplitude greater than it had coming out from H~.

In Fig. 3 we show the reflection |A™",|? and transmission
@|B™,|?/w coefficients for in modes with £ = 0, and fixed
scalar field and black hole charges. We find similar
qualitative behavior for other values of these parameters.
It can be seen that for small positive frequency w, we have
|A" |2 > 1 and hence superradiance. In this frequency
range, we have @ < 0 and hence the transmission coef-
ficient is negative. One notable feature of charge super-
radiance is that the amplification of low-frequency waves is
much greater than the corresponding effect on Kerr black
hole backgrounds [27] (cf. Fig. 16 in [59]).

The inner product (@, ®,) between any two solutions
@, ®, of the scalar field equation (2.9) is defined by

(D, ;) = iL[(DﬂQI)*QZ - ®{D,®,]\/—gd¥V

—i [(9,0)2, - 09,0,

+ 2igA, @D, ]\ /—gdZ, (2.25)
where X is a Cauchy surface. The inner product (2.25)
depends on the electromagnetic potential A,, and this will
have an effect on the normalization of the scalar field
modes. We compute the inner product of two in or up scalar
field modes (2.20) on a Cauchy surface close to H~ U Z~.
The in modes vanish close to ™, and hence we find

(@ ", ) =4aoN NS0 —a')Spp 8. (2.26a)

wlm>

Similarly, the up modes vanish close to Z~ and we obtain

(Do o) = ATON G N D80 — @' )38, -
(2.26b)

For the out and down modes (2.21), it is most convenient to
perform the integration over a Cauchy surface close to
‘Ht U Z". The out modes vanish close to H*, giving

< out out
ofm’ Vo' 'm

/> = 47[0)‘/\/"&))1“*‘/\/'2}}{5(0) - a)/)éfﬂémm/!
(2.26¢)

while the down modes vanish close to ZT and we have

<¢down down > — 47[&)N2,0W“*NS)(,)WH5(Q) _ w/)fsff’(smm“

ofm > Pat'm'
(2.26d)

In all cases, modes with different values of the frequency @
and quantum numbers ¢ and m are orthogonal. It is also
straightforward to see that any in mode is orthogonal to any
up mode and any out mode is orthogonal to any down
mode. From (2.26), the modes are normalized by taking

1 1
NPl — - (2.27)

Nzl “ /An|®)|

The in and out modes then have positive norm when @ > 0,
while the up and down modes have positive norm when
@ > 0. This will turn out to be crucial when we perform the
canonical quantization of the scalar field in the next section.
Using the normalization constants (2.27) and the relation-
ships (2.22) between the radial mode functions for the in,
up, out and down modes, we find the following equations
connecting the in, up, out and down modes:

i t
Ng)l/ou _

~ 1
. . wl2 .
out __ Ainx 4in et inx g UP
wlm ~ A(uf wlm + ‘(1)‘ Bwf¢wfm’
1
down __ AUP* up + a) 2BUP* in (2 28)
wfm — ol Yolm ~ ot Ywlm* :

We will make use of these results in the quantization of the
scalar field in the next section.

III. CANONICAL QUANTIZATION OF THE
CHARGED SCALAR FIELD

In this section we schematically review the method of
canonical quantization for defining states of a charged
quantum scalar field on a general static curved space-time,
before applying this method to the charged scalar field on
the RN space-time. We will see that the presence of
superradiant modes complicates the canonical quantization
of a charged scalar field compared with the neutral case.

125013-6
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Similar challenges occur due to superradiance on a Kerr
black hole [28-32].

A. General approach

We begin with an orthonormal basis of classical mode
solutions ¢; of the charged scalar field equation (2.9),
labeled by an index j. The modes are normalized using the
inner product (2.25), so that

<¢ja¢j’> = ’7j5jj’7 (3'1)
where 6;; is either the Kronecker delta or the Dirac delta
function, depending on whether the label j is discrete or
continuous. The product (2.25) is not, strictly speaking, an
inner product because the norm of any mode ¢; is not
necessarily positive. We have therefore defined a quantity
n; given by

la
nj = 1

The basis modes are then split into two sets, corresponding
to positive and negative frequency modes. Consider a scalar
field mode ¢; having harmonic dependence on a particular
timelike coordinate 7, so that

if ¢ has positive norm,
¢jhasp (3.2)

if ¢; has negative norm.

where w € R is the frequency of the mode. Such a mode is
positive frequency if @w > 0. From (2.19), this definition
depends on the choice of gauge. More generally, a mode is
positive frequency with respect to the coordinate 7 if, when
Fourier decomposed with respect to the time coordinate 7 it
only contains positive frequency components, which means
that the mode, considered as a function of 7, is analytic in
the lower-half of the complex plane. The way in which the
basis of field modes is split into positive and negative
frequency components therefore depends on a choice of
time coordinate 7. Denoting the positive frequency modes
by ¢;’ and the negative frequency modes by ¢7, any
classical solution @ of the scalar field equation (2.9) can
therefore be written schematically as

D= (a;] +big7). (3.4)
J

where a;, b; are complex constants and the sum is taken

over the basis of modes.
The scalar field @ is quantized by promoting the

expansion coefficients a;, bj. to operators:

=3 (6] +bjg;). (3.5)
J

Since we are considering a charged, complex scalar field,
we have distinct operators a; for particles and Bj for
antiparticles.

With a choice of time coordinate 7, the canonical

momentum conjugate to the field operator ® is, since
we are assuming that the space-time is static,

A 1 " * 1 . A*
IN=_-¢"(D,®)" = igTﬂ(aﬂ + igA, ) D",

: (3.6)

The quantum scalar field ® and its conjugate momentum IT
then satisfy the equal-time canonical commutation relations

[D(T,x),TI(T,x")] = i8 (x,x),
(T.%)] = 0 = [(T, x), ((T, ).

=
NN
oy
o

(3.7)

Using the orthonormality relations (3.1), the operators a;,
b ; are found to satisfy the commutation relations

A A £ oot
a.a;)=m; 8. [b;.b}

| =56
7

i

by]=0=[b.b}), (38)

a;]=0=[aj.a,], [by,
where 17}’ and #; are the quantities in (3.1) for the positive
and negative frequency modes respectively.

In the standard approach to canonical quantization, the
positive frequency modes fﬁf are such that 11j+ =1 forall j,
while the negative frequency modes ¢ are such that ; =
—1 for all j. In this case the nonzero commutation relations
(3.8) take the usual form

aj.a)] = 8y

leading to the interpretation of the operators a;, b; as

annihilation operators and &;, b; as creation operators.

On the other hand, suppose there exist positive frequency
modes ¢ with negative norm for which 77 = —1 and/or
negative frequency modes ¢; with positive norm so that
n; = 1. In this situation one could consider that the modes
have effectively been “mislabeled.” In this section, we will
be defining positive and negative frequency modes using
various physical choices of the time coordinate 7', and we
will see that in some cases this leads to effectively
mislabeled modes. A similar situation arises in the quan-
tization of a neutral scalar field on a Kerr black hole space-
time (see [28], where details of the “y-formalism” devel-
oped to deal with such mislabeled modes can be found).

Nonetheless, in this situation, as in standard quantum
field theory, once we have an expansion of the scalar field
of the form (3.5), a natural “vacuum” state |0) can be
defined as that state which is annihilated by the operators a;

and bj:
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;{0 =0,  b;j0) =0. (3.10)

A

When the operators a; and b satisfy the conventional
commutation relations (3.9), the state |0) contains zero

quanta in both the ¢f and ¢; modes, as measured by the
standard number operators &;&j and IQ;I;]-. When there are
mislabeled modes, the definition of the number operators
f,j, fyp; for particles and antiparticles respectively are
modified to be [28]:

ta; fip; = n7blb;. (3.11)
Therefore the “vacuum” state |0) still contains zero quanta,
since 71,;|0) = 0 and 1,,;|0) = 0. Furthermore, applying an
operator &; or I;; to the state |0) results in a state which
contains one quantum, as measured by the relevant number
operator (3.11), so that the operators &; and IA)T- have their

usual interpretation as creation operators (and aj, b are
annihilation operators).

B. Past quantum states

We first consider the construction of past quantum states,
defined with respect to a Cauchy surface close to H~ U Z~.
The past Boulware state [B~) considered in Sec. III B 1 was
constructed in [48] (where it was referred to as the in
vacuum), while the past Unruh state [U™) (Sec. III B 2) was
first studied by Gibbons [47], and more recently in [57,58].

1. Past Boulware state

Near past null infinity Z—, it is natural to use the
Schwarzschild-like coordinate 7 as the time coordinate.
This corresponds to the proper time of a static observer far
from the black hole. Restricting attention to region I, a
suitable set of in modes having positive frequency with
respect to ¢ near Z~ is then

—iwt
Bh = ==XV n(0.0). >0,
Var|w|r
where X"(r) is given by (2.20a). From (2.26a), these
modes have positive norm. Similarly, in region I, a suitable
set of in modes having negative frequency with respect to ¢
near 7~ is

(3.12a)

) e—ia)t .
:xr)‘;m - 7X$f(r)yfm(9’ (P),
4r|w|r

w<0. (3.12b)

A key subtlety here is that ¢ # 452)‘;; because the radial
equation (2.13) is not invariant under the transformation
® — —w and hence X_,(r) # X} ,(r).

Near the past event horizon H~, the natural time

coordinate for a static (and hence accelerating) observer

is still the Schwarzschild-like coordinate t. However, from
(2.26b), the up modes ¢.°, have positive norm only if
@ > 0, where @ is given by (2.16). Working in region I
only, we therefore consider the set of positive norm up
modes given by

e—imt

up+ u
¢wfm - Xw

(1Y (0, 0),
\an|@|r

If ¢gQ > 0, these modes all have @ > 0 and hence have
positive frequency with respect to ¢, but if gQ < 0, then
some of the positive norm up modes (3.13a) will have
@ < 0 and hence be considered to have negative frequency
as measured by a static observer. Similarly, in region I, the
set of negative norm up modes is given by

@>0. (3.13)

e—imt

Dl == X

wlm \/m

If gO < 0, then all the negative norm up modes have w < 0
and are negative frequency with respect to ¢, but if gQ > 0,
some negative norm up modes will have @ > 0 and hence
a static observer will regard them as having positive
frequency.

The quantum scalar field is then expanded in terms of
these in and up modes as follows:

D (P)Y pm(0.9).  @<0. (3.13b)

5=y { [ aviiy, i, /_ o i,

=0 m=-¢

Note that the in operators 4", are defined for @ > 0 and

b, are defined for @ < 0, while the up operators ay,

have @ > 0, and the 5", have @ < 0. Since the $"/*»+

modes all have positive norm, and the ¢™"P~ modes all

have negative norm, the operators a, b satisfy standard
commutation relations:

[ Aoptm> Alal)hf’ /] = 5L”f’5inm’5(w - a)/)s w > 0,
[ wtfm>s bm/'f/ /] = 5ff’5;nm’5(w - a)/), w <0,
[Ai}}m’ Az;p}’ ’] = 5ff’6mm’6(a) - 6()/), o > 0,
[ wtfm’ UP;[ ’] = 5ff’5mm’5(w - a)/), @ < 0. (315)

All commutators not given explicitly above vanish. The
past Boulware state [B™) is then defined as the vacuum state

which is annihilated by the following a and b operators:
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ar, B7) =0, » > 0,
b, By =0, @<,
ar B7)=0, @>0,
¥ BTY=0, @<0. (3.16)

In [48] we referred to this state as the in vacuum. The past
Boulware state has no particles or antiparticles incoming
from past null infinity Z~ nor emanating from the past
horizon H~. It is therefore that state which is as empty as
possible as seen by a static observer at past null infinity.
However, this state is not empty as seen by a static observer
at future null infinity Z T, where it contains an outgoing flux
of particles in the superradiant regime [48].

2. Past Unruh state

To define the past Unruh state |U™), we consider in modes
having positive frequency with respect to Schwarzschild
time ¢ near past null infinity Z~. Therefore, in region I, the
positive frequency in modes are given by (3.12a) and the
negative frequency in modes are given by (3.12b).

Near the past horizon 7, the natural choice of time
coordinate is Kruskal retarded time U, which is an affine
parameter along the null generators of the past horizon. We
now describe in some detail how to construct a set of up
modes which have positive frequency with respect to U
near the past horizon H~, since this differs in some respects
from the corresponding derivation for a neutral scalar field
(see, for example, [5,60]). Our construction is analogous to
that presented in [57,58], although we use a different gauge
for the electromagnetic potential, which affects the detailed
form of the scalar field modes.

The up modes are defined in region I by their radial
function X.,(r) (2.20b), and this definition can be
extended across the past horizon H~ into region III. In
terms of the Kruskal coordinates U, V, near the past

horizon H~ an up mode @', takes the form

1 i(w+@) i(w—d)
up eTln(—KU)e—TlH(KV)Y 0,0)0(-U),
¢wfm /—47r|5)|r fm( (,0) ( )

(3.17)

where the surface gravity x is given by (2.7), and ® the
Heaviside step function

1, x>0,

) (3.18)
0, otherwise.

mm:{

By definition, the up modes vanish in region IV of the
space-time. Next we define a set of modes denoted by
ng"f“,’; in regions II and IV by making the transformation
U— —U, V- -V in the up modes ¢'*, . It should be

wlm*

emphasized that the modes wi9'", as defined, are nonzero

in region IV of the space-time diagram in Fig. 1 and
therefore are not the same as the down modes whose radial
functions are given by (2.21c), and which vanish in
region IV.

Near the surface V =0, the modes z//j)%f take the
form

L 2w o, (0. 9)0(U).

down __

ylown _ L
o = Jalalr

(3.19)

Like the up modes ¢, . the norm of the modes wiom
depends on the sign of @. However, unlike the up modes
4525%’ we find that the modes 1//2%;‘ have negative norm
when @ > 0 and positive norm when @ < 0. This differ-
ence is crucial in the construction below.

To define a set of modes having positive frequency with
respect to the Kruskal coordinate U, we make use of the
Lemma in Appendix H of [60], which states that, for

positive real p and arbitrary real q

/ ™ dXe P [ ANXQ(X) + e e (K@ (=X)] = 0.

o

(3.20)

We wish to apply (3.20) to a linear combination of the up
modes (3.17) and the modes w35 (3.19), integrating over
a surface close to V =0 for which V > 0. Comparing
(3.17) and (3.20), we take X = U and q = —(w + @) /2«.
Before we can apply (3.20), we need to simplify the terms
involving In(—«V) in (3.19). Positive frequency modes are
analytic in the lower half plane and therefore we need to use
a branch of the logarithm which is also analytic in the lower
half plane. Making an appropriate branch cut (for example
along the positive imaginary axis), we have In(—1) = —iz
and hence, bearing in mind that kV > 0 for the surface over
which we want to integrate,

o [-2= )

= exp [— W} exp [—WIH(KV) . (3.21)
Applying (3.20) then gives
/ AU E G, + eyl =0, p>0. (3.22)

From this we deduce that the modes e%@"F, + e 3y down
have positive frequency with respect to Kruskal time U for
any value of @. Therefore a set of normalized modes having
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positive frequency with respect to U near the past horizon
‘H~ is, for all values of @,

1 1
A (g e Bylom) alla,

2|sinh(%2)]
(3.23a)

Similarly, a set of normalized modes having negative
frequency with respect to U near the past horizon is, for all
values of @,

1
2] sinh(z2)|

up— _

Xotm = (8 ’"’

70 down ~
mfm + ejkl/j()fm ) all .

(3.23b)

The modes )(wfm are defined throughout regions I-IV. It is
straightforward to check that the positive frequency modes
2> have positive norm for all @, while the negative
frequency modes )(Zf;;l have negative norm for all @.

We now expand the quantum scalar field in terms of the
modes ¢!, and ¥, . Working only in region I, the modes

l//ff’f%“ vanish and we are left with

o) 14
=2 > { P
<. 1 up _Aup _z0 ~upt
+ di> ~ d)mfm[ Cotm te 2Kd(ufm] .
— 2| sinh(%2)|
(3.24)
The commutation relations satisfied by the ¢ and d

operators take the standard form (commutators not given
explicitly below vanish)

[eg;,fm, e = SppSpmd(@— ), @ >0,

[d2, d™ ] = 8ppSpmd(@— @), @ <0,

(2 e ] =SSm0 —a),  alld,

[@®, A% =608 —a),  alld,  (3.25)

since the modes @™} . ¥ that we have designated to be

positive frequency have positive norm, and the negative
frequency modes have negative norm. The past Unruh state
|U™) is then defined as that state which is annihilated by the

following ¢ and d operators:

e Uy =0, >0,

an,. U7y =0, <0,

e [UT) =0,  all@.

d® [U-) =0, alla. (3.26)

Like the past Boulware state |B™), the past Unruh state
|[U~) contains no particles or antiparticles as seen by a static
observer at past null infinity Z~. There is however an
outgoing thermal flux of particles/antiparticles as seen by a
static observer at future null infinity Z*, corresponding to
the Hawking radiation at all frequencies, in agreement
with Ref. [47].

3. Past CCH state

We next define a further past quantum state, denoted by
|CCH™) (where “CCH?” stands for Candelas, Chrzanowski
and Howard) [37]. As we shall see in Sec. IV B 1, the past
Unruh state [U™) contains a thermal distribution of particles
in the up modes and no particles in the in modes. The past
CCH state |CCH™) will also contain a thermal distribution
of particles in the in modes, although, as we shall find in
Sec. IV B 2, the thermal factors in the in and up modes are
not the same.

We construct this state by employing a suitable ortho-
normal basis of field modes. Our basis is formed of the

2> modes (3.23), together with a set of modes y"* |
which are constructed from the 1n modes ¢, ~using a

method similar to that for the ;(Mm modes.

In region I, the in modes are defined by their radial
function X", (r) (2.20a), and this definition can be
extended across the future horizon H™" into region II. By
definition, the in modes vanish in regions III and IV. We
define a set of modes yw°% in regions III and IV (and
vanishing in regions I and II) by taking the in modes ¢™",,
and performing the mapping U — —U, V — —V. From this
definition, the modes w2, have negative norm for @ > 0
and positive norm for @ < 0.

Using the in modes ¢, and the y°% modes, we then

define, for all @, and throughout regions I-1V,

1
in+ — P
Awlm = T Sinh(22)| (%

out )’

4 e Xy (3.27a)

and (again for all @ and throughout regions I-1V)

1
2| sinh(%) |

in— __

(e_wgbwfm + e'K l//g)uf}m)

The modes ;(if)‘;rm have positive norm for all @, and the
modes y"> have negative norm for all w. Therefore we
may use (3.27), together with the modes (3.23) constructed
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in the previous subsection, to form an orthonormal basis of
field modes.

The question is then whether the modes (3.27) have a
natural interpretation in terms of being positive or negative
frequency with respect to a particular coordinate. Near the
surface U = 0 (K" in region I), the in modes ¢, ~take the
form

in o
in  _ Ba}f ewln(—KU) e

wlm — \/‘WV

0D )

Y (6.0)0(V).

(3.28)

Similarly, near the surface U =0 the modes w9}, are
given by

in
out B ol

4 =
wlm \/m

e,(u @) ln(KU)

(3.29)

We now seek to combine (3.28), (3.29) using Lemma
(3.20). Considering modes having positive frequency with
respect to the Kruskal coordinate V (an affine parameter
along the null generators of the future event horizon H™)
we set, as before, In(—1) = —ix. Integrating over a surface
for which U = —e < 0, we have

K

oo [£= )

— exp [”(“;; d’)] exp [““’;{ 2 1n(—;<U)} . (3.30)

Applying (3.20) with X =V and q = (w + ®)/2« then
gives

/ T AVe Vg, ey 120, p>0, (3.31)

with the result that the modes (3.27a) have positive
frequency with respect to the Kruskal coordinate V, along
the surface U = —e < 0, part of which lies close to the
future horizon H™ in region I of the space-time. Similarly,
the modes (3.27b) have negative frequency with respect
to V.

Restricting attention to region I of the space-time, the
modes w°% vanish, and we therefore expand the quantum

! wfm
scalar field as

Y, (0,)0(=V).

q’:if{/w ﬁ

=0 m—~¢

—10 Ainy
S ¢1n |:ez’<fmfm +e Kg:;lfm:|

+/ d&)—~¢wfm |: _fwfm + _Mgz?m] }’
-0 2|sinh(%2)|

(3.32)

and define the past CCH state |[CCH™) as that state
annihilated by the following f and ¢ operators:

foem|CCHT) =0, allw,
o, /CCH™) =0, all ,
fopw|CCHT) =0, alla,
g, |CCH™) =0,  all@. (3.33)

in/up+
wfm

Since the y

v /modes all have negative norm, the operators f, /"
~in/up

and g, satisfy the standard commutation relations (all

other commutators vanish)

modes all have positive norm, while the
Zin/up

[Aier)lfm’ j‘:)];’ ’} = 5ff’5mm’5(w - a),)’ allw,
00 05 ] = S0 Bpmd(@ — @), allw,
[f;l)pfm’ fZ)p;’ 1’} = 5ff’5mm’5(w - (U/), all 6)’
(60 8250 = BepBpmd(@ = af),  alld.  (3.34)

The properties of the state |CCH™) will be investigated
further in Sec. IV, along with the other past quantum states
defined in this section. From the expansion (3.32), we
anticipate a thermal distribution of particles/antiparticles in
both the in and up modes, but with the frequency w in the
thermal factor for the in modes, while the thermal factor for
the up modes contains the quantity @ (2.16).

C. Future quantum states

Following [29,30], we next define future Boulware,
Unruh and CCH states which are the time-reverse of the
past Boulware, Unruh and CCH states constructed in the
previous subsection. The future states are defined by using
the out and down basis modes rather than the in and up
modes as considered for the past quantum states. The future
Boulware state |B*) which we construct in Sec. III C 1 was
previously considered in Ref. [48], where it was called the
out vacuum state.

1. Future Boulware state

Near future null infinity ZT, we consider a set of out
modes which have positive frequency with respect to
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Schwarzschild time ¢, which is the natural frequency for a
static observer in this region:

e—l(ﬂt

wim = ==X} (r)Y r (6. 0),

w >0,
4r|w|r

(3.35a)

where X°%(r) is given by (2.21b). These modes have
positive norm. The corresponding out modes with negative
frequency and negative norm are

e—la)t

om =———=X00 ()Y (0. 9),
dr|w|r

w<0. (3.35b)

Near the future horizon H™, we consider positive norm
down modes

—iwt
¢down+ € Xdown (}’) Yfm (9’ (p) ,

wlm \/mr wl

where X991 (r) is given by (2.21c). The restriction @ > 0is
required for these modes to have positive norm. Similarly, a
suitable set of down modes having negative frequency (and
negative norm) is

@>0, (3.36a)

0 ~ e—ia}t i
= X2 ()Y e (0.90),

wlm _W wt

The modes (3.35), (3.36) form an orthonormal basis in
region I, hence, expanding the scalar field in terms of these
modes, we find

o 4

Aout Ollt+

(D § : E :{/ A tm u)fm
=0 m=—¢

& di ds + 7. downt ,d
~ ~down gdown own—

+ 0 doa (ufm¢wfm d ba)fm wlm ’

-

(3.37)

@<0. (3.36b)

0 7outf t

out—

dw bmfm wlm
—00

where the operators & and b satisfy the standard nonzero
commutation relations

[ay, &2}”?, ] =800 — @), o >0,
(b0 D255 ] = 80080 — @), @ <0,
[adonn 80 ) = 8418 S0 — ), @ >0,
[BIn bIN) = 8p8 (0 — @), @ <0, (3.38)

and all commutators not given above vanish. The future
Boulware state [B™) is then defined as the state which is

annihilated by the following a and b operators:

% IBY)Y =0, >0,
P BT) =0, <0,
adomBHy =0, @ >0,
hI%¥mB+) =0, @ <0. (3.39)

The future Boulware state |B*) was referred to as the out
vacuum in our previous work [48]. It corresponds to an
absence of outgoing particles/antiparticles as seen by a
static observer at future null infinity [48].

2. Future Unruh state

In a similar fashion, we next define the future Unruh state
|UT). The out modes take the form (3.35) in region I (which
can be extended into region III) and have positive/negative
frequency with respect to Schwarzschild time ¢ near future
null infinity Z*. We consider down modes having positive/
negative frequency with respect to Kruskal time V near the
future horizon H™. The derivation of these modes follows
that for the up modes in Sec. III B 2.

The down modes are defined in region I by their radial
function X9%""(r) (2.21c), and this definition can be
extended across the future horizon H*' into region IL
Near H™ we have:

down L et () -5 0e) (9 OV,

Aol

(3.40)

We then define a set of modes denoted by .., . which are
obtained by taking the down modes ¢ and making the
coordinate transformation U — —U, V — —V. These new
modes are nonvanishing in regions III and IV and have
negative norm when @ > 0 and positive norm when @ < 0.

Near the surface U = 0 they take the form

1

Var|o|r

Wortm = ¢ In(kU) o= 5 In (V) Y (60.9)0(=V).

(3.41)

In a similar fashion to the approach of Sec. III B 2, we seek
to apply the Lemma (3.20) to a suitable combination of the
modes (3.40), (3.41) with X =V and q = (0 + @)/2x,
integrating over a surface near U = 0 with U = ¢ > 0 (part
of this surface lies close to the future event horizon H* in
region II of the space-time). Again we use a branch of the
logarithm which is analytic in the lower half plane to give,
for kU > 0,
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oo [0~ )

z(w—a

- exp{ )} exp [i(“) - ?) ln(KU)] . (3.42)

We can now apply (3.20) to obtain

p>0,

mfm wfm

© —ivV R) down (1+u) up
dVe ¥ [e” v, 1=0,
—0o0

(3.43)

from which we deduce that the modes in square brackets in
(3.43) have positive frequency with respect to the Kruskal
coordinate V for any value of @. Therefore a suitable
orthonormal basis of field modes defined throughout
regions I-IV and having positive frequency with respect
to V near H' is

pap = (el e FYD, ). alla
2] sinh(22)]

(3.44a)

while an orthonormal set of modes having negative
frequency with respect to V near H™ is

-
2|sinh(%2)|

down— __

—Z0 4 down o up ~
)(a)t’m - (e 2K¢wt’m +ezxwwfm) allo.

(3.44b)

All our positive frequency modes ){down+ (3.44a) have
positive norm, and all negative frequency modes )(d"‘”“‘
(3.44b) have negative norm. In region I (where the lpwfm
modes vanish), the expansion of the field in terms of the

out down
modes ¢?;, and > takes the form

o 4
o= S { [T avigs, o+ [ avictian;
+/wdd);¢2j}Wﬂ[€§féden+e ’"“ddownT]}
% 2|sinh(£2)|
(3.45)
The commutation relations satisfied by the ¢ and d

operators take the standard form (with all commutators not
given below vanishing)

~out  aoutf

[Cobms Co o] = 02010 8(@0 — @), w >0,

(Ao, A0S ] = 8pBpmd(@— @), @ <0,

[edown 290N = 8 1Sy (00 — @), all @,

3o 2] = SpSpd(@ — @), alld.  (3.46)

The future Unruh state [U™) is then defined as that state
which is annihilated by the following ¢ and d operators:

e Uty =0, >0,
A% UNY =0, <0,
elownighy =0, alla,
AN Ut =0, all@. (3.47)

In this state there are no outgoing particles/antiparticles as
seen by a static observer at ZT, but the down modes are
thermally populated.

3. Future CCH state

Our final future state is the future CCH state [CCH™), in
which the down modes are thermalized with respect to the
quantity @ near the future event horizon H™, as in the future
Unruh state [UT). In addition, the out modes are also
thermalized, but with respect to @, which is the natural
frequency for a static observer far from the black hole.

Our orthonormal basis of modes consists of yIomE,
(3.44) and new modes y°“=, which we construct using the
same approach as in Sec. III B 3 and which are also defined
throughout regions I-IV. We define modes l//wfm by taking

oo, (defined in region I by their radial function X0%(r)
(2.21b), and extended across the past horizon H~ into
region III) and performing the substitution U — —U,
V — —V. The resulting modes y", ~(which are non-
vanishing in regions II and IV) have negative norm for

@ > 0 and positive norm for @ < 0. We then define the

modes )(2)‘;%, for all w, as follows:
out+ __ 1 out in 4
wfm 2| smh(@)| ( wem T € 2Kl//a)fm)’ (3 88’)
K
g =L emgen gy (3.48D)
wi'm 2’ Slnh(%>| wim wi'm
It is straightforward to show that the y%%* modes have

positive norm for all @, while the %~ modes have negative
norm for all w.

To investigate whether the modes y°% have an inter-
pretation as being positive/negative frequency with respect
to a particular coordinate, we consider the form of the out
modes ¢°% and the modes y/ia‘)‘fm near the surface V = 0.

We have
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inx o
out __ Bmf e%ln(—KU)e—

_ @IH(KV)
oo = Tzl

YL”m(e7 (/))@(—U),

(3.49)

and

in* o
B, A2 n(xU) _ilo=d)

l[/in —
wfm \/mr

"Y1 (6. 9)O(U).

(3.50)

For positive frequency modes, we take In(—1) = —iz as

previously, then, integrating over the surface V = —e < 0

we have
exp [_1((02; w)ln(KV)]
n(w—d) i(w—d)
= - ————In(—«V)|. 3.51
exp[ o ]exp{ o n(—«V) (3.51)

Applying (3.20) with X = U and q = —(w + @) /2« gives

/oo dUe_ipU[WiaIJlfm + e g‘;}m} =0, P> 0, (352)

from which we deduce that the modes (3.48a) have positive
frequency with respect to the Kruskal coordinate U along
the surface V = —e < 0, part of which lies close to the past
event horizon H~ in region Il of the space-time. By a
similar argument, the modes (3.48b) have negative fre-
quency with respect to U along the same surface.

As previously, we now consider the quantum field on
region I of the space-time, where the modes v, ~vanish.
Therefore the expansion of the quantum scalar field is

f = {/ ,/2|s1nh%

out o Zout —10 Aoutf
X¢wfm[ x mfm"'e Zngfm]

d P —"_UAd i
+ [ o ttemiesyi Sl
\/2|sinh (%2
(3.53)

The operators /™" and §™/" satisfy the standard

out/down-+
wf'm

modes all have

nonzero commutation relations, since the y modes
.- . out/down—
all have positive norm, while the y ..

negative norm,

[ASPKEm’ :)U?; ’} 6 f/(smm/5(w - Cl)/), allw,
[gz;uf}mv ?]Z)u?’ /} =0 f’émm’a(w - wl)’ allw,
[ 2)0;:;’ S)O\;jn"} = 5ff’5 m/(S(O)—Cl)/), all®,
[gg)of“r,;;l’ .@dozzn‘/} = 51,’/’5mm’5(0) - a)l)’ all@, (354)

with all commutators not given explicitly above vanishing.
Finally we define the future CCH state |[CCH™) as that state

annihilated by the following ]A‘ and ¢ operators:

FoU ICCHY) =0,  allw,
% |CCHT) =0,  allw,
flowmicCHY) =0,  alla,
glowm|CCH) =0,  all@. (3.55)

We have now defined six states: three past and three future
states. The properties of these states will be studied in detail
in Sec. IV.

D. Boulware-like state

In Secs. IIB 1, I C 1 we defined the past and future
Boulware states (dubbed the in and out vacua in [48]). The
past Boulware state |B~™) is empty of incoming particles as
seen by a static observer at Z~ but, as we shall find in
Sec. IV, a static observer at Z* sees an outgoing flux of
particles [48]. Similarly, the future Boulware state |B™) has
no outgoing flux as seen by a static observer at Z, but is
not empty at Z~. The question then arises as to whether it is
possible to define a quantum state which is as empty as
possible as seen by static observers at both past null infinity
7~ and future null infinity Z*. To define a state which is as
empty as possible at Z*, we seek to expand the classical
scalar field in terms of the positive and negative frequency
in (3.12) and out modes (3.35). Working in region I, the in
and up modes form a basis and therefore the classical scalar
field can be expanded in terms of these modes. Using
(2.28), each up mode can be written in terms of an in and an
out mode, leading to an expansion of the classical scalar
field in terms of in and out modes, as follows:

oo 4
D = in+ out 0ut+]
wfm mfm (ufm wlm
=0

m=—¢

0
o [ ol b, B 650
—00

Both the in and out modes have positive norm for @ > 0, so
those modes in (3.56) which we have identified as having
positive frequency also have positive norm, while the
negative frequency modes have negative norm.

However, there is a complication. The in and out modes
are not orthogonal, and therefore we cannot directly
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quantize the field using the expansion (3.56). We therefore
write the out modes in terms of the in and up modes (which
are orthogonal) using (2.28), and hence obtain the classical
field expansion

) 4
S DD R

=0m

* up up+ max{%,o} up up—
+ {qQ 0} dwhwfm¢wfm + 0 dw hwfm¢wfm
max{¥
o

0 upf up+ min{%,o} upt yup—
+ dwkwfm¢wfm+ ~ dw kwfm¢wfm ’

min{%,O}

(3.57)

where the coefficients in the expansion are given by

in ink 7 out
hwfm - hmfm + Awfha)fm’ w > O’

int  __ 7inf inx 7.outf
kmfm kwfm A ka)fm’ o < O’

@ 5 A

up inx 7,0ut

hmfm - | sz,’hmfm’ w >0,
1

upf 2 pins Foutt

kwfm - ‘ B k(ufm’ w < 0. (358)

In (3.57) we have now expanded the classical scalar field in
terms of an orthonormal basis of field modes, and therefore
we can proceed to quantize the field by promoting the
expansion coefficients & and k to operators. At this point a
subtlety arises. As can be seen in (3.57), depending on the
sign of ¢gQ/r,, we either have some positive norm up
modes qﬁwm which are multiplied by operators k" which we
would like to interpret as creation operators, or else there
are negative norm up modes ¢, which are multiplied by
operators h which we would like to interpret as annihilation
operators.

As discussed in Sec. III A, we therefore find that the
operators 4" and k™" satisfy the usual commutation rela-
tions (with those commutators not given explicitly below
vanishing)

[ wlfm> hlur,lf/m’] = (Sff’émm'é(w - C()/), w >0,

SO0 — @), <0, (3.59)

[ wlm> klur}lf’m ]
but that the operators 4" and k" satisfy modified com-
mutation relations (the remaining commutators vanish as
usual):

[il;l)[}m’ ],:l;l’);’m’] = nwd)éfﬂémn{&(m - a)/) 5 > O’
R R )= NaabroSumd(@—a), @<0,  (3.60)

where we have defined

if oo > 0,

(3.61)

&
’/I(U(U_ _1’

Essentially what is happening is that the up modes with
® >0 but @ < 0 have been mislabeled as positive fre-
quency modes in the expansion (3.57), despite the fact that
they have negative “norm.” Similarly, up modes withw < 0
but @ > 0 have been mislabeled as negative frequency
modes in the expansion, since they have positive norm.

Despite the unconventional commutation relations
(3.60), following the discussion in Sec. IIITA and
Ref. [28], we posit a “Boulware™-like state |B) as that
state which is annihilated by the & and k operators as
follows:

if oo < 0.

ﬁi“fm|B> =0, w >0,
kin, |B) =0, w <0,
R, |B) =0, w >0,
B2 B) =0, w<0. (3.62)

This state corresponds to an absence of quanta in the in
modes, as is the case for the past Boulware state [B™). As in
|B™), there are also no particles in the nonsuperradiant up
modes. Our new state [B) differs from |B~) in its quanta
content in the superradiant up modes. This will be evident
when we study expectation values of observables in this
state in Sec. IV C.

E. Hartle-Hawking-like states

The Hartle-Hawking state |H) [6] on Schwarzschild
space-time is constructed by considering both the in and
up modes to be thermalized. This is equivalent to consid-
ering a set of up modes which are positive frequency with
respect to the Kruskal coordinate U on the past horizon H~
and a set of down modes which are positive frequency with
respect to the Kruskal coordinate V on the future horizon
H*. We now examine whether it is possible to define a
corresponding Hartle-Hawking-like state for the charged
scalar field on RN.

In Sec IIIB 2 we have already constructed sets of up
modes )(wfm (3.23) which have positive/negative frequency
with respect to U near H~, and in Sec. III C2 we have a
similar set of down modes y9%"* (3.44) having positive/
negative frequency with respect to V near H". To expand
the classical scalar field in terms of these modes, first note
that the modes y" fm (3.23) and ;(Z‘)‘}m (3.27) form a basis of
modes in regions [-IV. Using (2. 28) and the corresponding
relationships between the modes w,  wir, you  ydown,
each y"* ‘mode can be written as a linear combination of

the modes ;(“pi (3.23) and x5+ (3.44). Therefore we can
up+

wf'm and

write the classical scalar field in terms of the y

230nE modes as follows:
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0 14
§ : § : up+ ~upT down+ ~downt . down—
D= / dw{pwfm)((wfm sa)fm)(wfm + p(ufm)(wfm + Swtm Xotm ’

=0 m=—
which, in region I, equals

0 4

0 ~up

= Z Z / 46 ——— wb’m e “Puwtm t+e Ksa)fm] + olm [ez pdov:r? +ex *S wtm ]}
£=0 m=—¢ /= /2| sinh(%®

We now have a problem similar to that in Sec. III D, in

that the up modes 4%~ and down modes 79"+ are not

orthogonal. The up modes )(w;fn are orthogonal to the in
modes y"% (3.27), but the in modes y'"% lead to thermal
factors depending on the frequency w (as in the state
|CCH™)) rather than @ as in the modes 4% and ydo¥=,
The in modes )(‘“i constructed in Sec. III B 3 have positive
frequency with respect to the Kruskal coordinate V on the
surface U = —e < 0, part of which lies close to the future
horizon H™ in region I of the space-time. Here we take an
alternative approach and instead construct an alternative set
of in modes 7" which are positive frequency on the
surface U = ¢ > 0. Using the asymptotic forms (3.28),
(3.29), and the result (3.42), as in the construction of the
future Unruh state [U™) we can apply the Lemma (3.20)

with X =V and q = (0 + @)/2xk to give, for p > 0,

/ dVe"pV[ ”K”) ia[)lfm te ((j{‘)nguf}m:| =0. (365)
—00

From this (and a similar argument) we deduce that the
modes

1

P = e (e, + e Ry, (3.662)
2| sinh(%2)]|
~in— 1 —I0 4in out
Xwtm = (e 5gin, + eByot ), (3.66b)

2| sinh(%) |

(defined throughout regions I-1V) are positive and negative
frequency with respect to the Kruskal coordinate V on

the surface U = ¢ > 0. Furthermore, these new in modes

7" are orthogonal to the up modes )(Mm, as desired.

However, the positive frequency modes )(lwfm have positive
norm only if w@® > 0 and have negative norm if w® < 0.
Similarly, the negative frequency modes )(2};,” have neg-
ative norm if w® > 0 but positive norm if wd < 0.
The situation is therefore similar to that encountered in
Sec. III D, in that modes 7% for which w@ < 0 will be
mislabeled according to their frequency, rather than

their norm.

(3.63)

—z2 ~upf down[ 22 ~ —Z0 ~downf

(3.64)

downi

We therefore write the down y¢> modes in terms of

the new in modes ;(:)‘}m and up modes )(wfm To do this, we

first use the relationship (2.28) between the modes in region
I, to give, in region IV,

L
uP"‘ out

up*
y o + wz,’ml//(ufm ’

Yeotm = Awfml//wfm (367)

for all , @, where the modes ", are defined in Sec. III C
2, the modes 99" in Sec. III B 2 and the modes y°% are

wfm wfm

defined in Sec. III B 3. Therefore, using the definitions
(3.23), (3.27), (3.44), we find

1
UP* ~int

|2
downt __ UP* up
+ wf wX wofm*

Xwtm wfm)(wfm (368)

We thus write the expansion of the classical field as

00 4
o = Z Z: {/_ pwz,’m)(ip;r_n ;I:/’Jm)((vfm]

=0 m=—

[Se]
+  osine
+ / dw[pwfm)(lar)lfm g)lfm)(:}fm]} (369)
—00

where we have rewritten the integral over the in modes in
terms of @ rather than @ and the coefficients in the

expansion are

up ~up up* ~down
Poem = pwfm+A ¢ Poem
upt ~UPT up*~down’r
Swtm = Swtm +Aa)f wfm
1
in  _ | @) pupx = down
Porm = | = ot Foltm
|
o w|2 T
inf  __ | up* ~down
Swtm = ' ~ Ba)f wlm * (370)

In region I, the expansion (3.69) takes the form

b = ii/mdw

=0 m

{¢wfm [em]pz)pfm
2| sinh(%2)|

+ e_%siﬂn} + ¢wz,’m[eZprf te ZKSmT ]}’ (371)
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which will lead to thermal factors depending on the
frequency @ for all modes.

As we now have an expansion (3.69) of the scalar field in
terms of an orthonormal basis of field modes, we can
promote the expansion coefficients p and s to operators. As
in Sec. Il D, there is a subtlety due to the norm of the new
in modes 7"% . The operators p'P and §'P satisfy the usual
commutation relations (commutators not given explicitly
vanish)

(Dot Do) = Seepmd(@ =), alld,
5% 5 ] = Sppbpmd(w—a'),  alld,  (3.72)

but the operators p™™ and §™ satisfy modified commutation
relations:

mn

pn, P = all@,

nwfbéff’(smm’(s(w - w/) ’

NowiOreOmmd(@—a'),  all®, (3.73)

sint
[ g)lfm’s @'C'm ’]
where 7, is given in (3.61) and all other commutators
vanish. When, in the next section, we calculate expectation
values of observables in this state, we will need to take into
account the modified commutation relations (3.73).

. + 1
O = Z Z {/ [ wfmxzsfm + v;pfm)(wfm

=0 m=—¢

max{f20} .
in  ~in— T
+ da)[”wfn%wfm + Vot mX wtm

min{%,O}

which reduces, in region I, to

(I):Z {/ (ufm ”5’ mfm
=0m ,/2|s1nh 2)|

max{qQO} +
+/ da)— in [e ZKuwf —|—ez;<1)m

wfm
min{%,O}

2| sinh (%) \

+e =,

When min{% 0} <w< max{ﬂ 0}, we have w@ < 0

and hence we have relabeled the )?g)‘;m modes as negative

frequency (as they have negative norm) and the )(lur};m modes
as positive frequency (since they have positive norm).
Promoting the expansion coefficients to operators, they

now satisfy the standard commutation relations

(26, Amf’ ] =800 8md(0 — ), all ,
[0 o ) = 000 d(@0 — @), all ,
(B Ty AUPT ] = 00 0md(@0 — @), all @,
(2, A;‘f’}, ] =68,08mmd@—a), alld.  (3.77)

_zo upt

wlm

Nonetheless, we proceed by defining a tentative Hartle-
Hawking-like state |H) as that state annihilated by the p
and § operators:

pwm|H> 0, alla.
§n, HY =0,  alla,
PP H) =0, all@,
§° HYy=0, all@. (3.74)

This state has no quanta in the J(Zf;m modes, as in both the past
Unruh |U™) and CCH |CCH™) states, and hence a thermal
distribution of particles/antiparticles in the up modes gbwfm

However, the distribution of quanta in the in modes will be
different from both the states [U™) and |[CCH™).

In defining the state [H), we encountered mislabeled
superradiant in modes. Suppose instead that we expand the
classical field in terms of the y'* and 7" modes, but
with the expansion coefficients denoted as annihilation/
creation operators according to the norm of the modes. The
resulting expansion is

mm{(r]f,()} in ~int inf ~in—
} + -~ dw [ UemX wem + vwfm)(wfm]

0

I+ / a2y e im T vz‘,‘}m;?z‘};m]} (3.75)
maxq;
min{’Z—Q,O} 1 "
p ]+/ + dw7¢(ufm[ezxuwfm+e 2 13;;;1]

o 2|sinh(%2)|

) 1 i
] +/ dw;q&anfm [eZK uwfm te v LIIIZ/LVH] }
max{£2,0} 2| sinh(22)|

(3.76)

I
The expansion (3.75) corresponds to the expansion used in
[28] to define a Hartle-Hawking-like state for a neutral
scalar field on a Kerr space-time. We therefore use the
notation |[FT) (where FT stands for Frolov and Thorne) for
the state annihilated by the # and » operators, as follows:

an, [FT) =0,  allw,
pin FT) =0,  allo,
0 [FT) =0,  all@,
P IFT) =0,  all@. (3.78)
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From the expansion (3.76), we anticipate that this state will
have both the in and up modes thermally populated, with
the frequency @ in all thermal factors, although the
superradiant in modes will require careful treatment.

IV. EXPECTATION VALUES OF OBSERVABLES

In the previous section we were able to define a plethora
of quantum states for a charged scalar field on a charged
black hole background. In this section we consider the
expectation values of observables in these various quantum
states. The observables we study are the scalar field
condensate, the current and the stress-energy tensor.

A. Observables

The simplest nontrivial observable for a charged scalar
field is the scalar field condensate (or vacuum polarization)

—

5C =—-[0d" + o), (4.1)

1
2
which classically is simply the square of the magnitude of
the scalar field:

SC = |®. (4.2)

Since we are considering static states on a static and
spherically symmetric black hole, the expectation values

(SC) will be functions of the radial coordinate r only.
The next simplest nontrivial observable is the charged
scalar field current J#, which is given classically by

I = —Ly[0pro). (4.3)
4z
We therefore define the current operator to be
7 =196 (prd) 1 (Drd)d
167z
- &(DrD)" — (DHD) ). (4.4)

The classical current J# is conserved, as are the expectation
values of the current operator [61]:
v, (J*) =0. (4.5)

Since we are considering only static states which do not
evolve with time, the above equation governing the con-
servation of the current reduces to

(4.6)

This is readily integrated to give, for any quantum state,

. K
(JN=-=,

r (4.7)

where /C is a constant whose value depends on the quantum
state under consideration. Physically, K is the flux of
charge emitted by the black hole in that particular quantum
state. The black hole is losing charge if X has the same sign
as the black hole charge Q. In Appendix A we prove that
this component of the current does not require renormal-

A

ization. It is shown in [58] that while the component (J')
requires renormalization, for a suitable choice of point-
splitting on an RN-de Sitter black hole background, the
renormalization counterterms are finite. While we expect
that result to hold also for an RN black hole, given the
remaining numerical difficulties in computing the renor-
malized expectation value of that component, we shall
restrict our attention in this paper to differences in expect-
ation values between two quantum states.

Later in this section we shall wish to study the regularity
of our quantum states at the event horizon, for which it is
helpful to have the nonzero components of the current in
terms of Kruskal coordinates (2.6):

JU =kU[-J" + f(r)~'J7],

IV =V + f(r) ). (4.8)

Our final observable is the stress-energy tensor 7,
which has the following classical expression for a massless,

minimally coupled, charged complex scalar field
N * 1 c *
T, = 81{(Dﬂ(l)) D,® - Egﬂyg” (D,®) D,,(I)}, (4.9)

and for which the corresponding quantum operator is thus

A ] A A A A
Ty =7 {(Dﬂq>)Tqu> + D, ®(D,®)’
+(D,®)'D,® + D,®(D,d)!

O
- Eg/u/gp [(qu)) Daq) + Daq)(qu))

+(D,®)'D,® + D,&(D, )] } (4.10)

The expectation value of the stress-energy tensor operator
f’w is not conserved [61], due to the coupling between the
scalar field and the electromagnetic field strength.
Expectation values of the stress-energy tensor operator
should instead satisfy [61]:

VH(T,,) = 4xF,,(J"), (4.11)
where F,, =V,A, -V, A, is the background electromag-
netic field strength and we are using Gaussian units.
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For static states on a spherically symmetric black hole, the
stress-energy tensor expectation value will have the non-
Zero components

A(r) —P(r)f(r)! 0 0

oy | POSO) T 2000 00 |
0 0 Q(r) 0
0 0 0 Q)

(4.12)

where f(r) is the metric function (2.2), A(r), P(r) and
Q(r) are (presently unknown) functions of the radial
coordinate r only, and T(r) is the trace of the stress-energy
tensor. For a charged scalar field minimally coupled to the
space-time curvature, the trace when the space-time back-
ground has vanishing Ricci scalar is given by [61]

— 1 R aflyd _ 1 R R(l[)’
288072 1 288072 %

q2

19222

T(r)

1
FPF 5 — 5 C(SC). (4.13)

The final, state-dependent term arises because of the
minimal coupling of the scalar field to the space-time
geometry (it would be absent if the field were conformally
coupled). For the RN metric (2.1) and gauge potential (2.8),
the trace has the expression

_ 13Q% = 24MQ%r + 12M*r?
B 7207°r8

2?2
T(r) o627~ 5 NSC).

(4.14)

The -component of the conservation equations (4.11) for a
stress-energy tensor expectation value having the form
(4.12) can be readily solved to give

_L | Anok

2 3

() = -5+ (415)

where L is another constant depending on the particular
quantum state under consideration. Physically, £ gives the
flux of energy emitted by the black hole, and if £ > 0 then
the black hole is losing energy. In Appendix A we prove
that this component of the stress-energy tensor also does
not require renormalization.

The nonzero components of the stress-energy tensor in
Kruskal coordinates (2.6) are

1
TUU = ZK_ZU_Z[TII - Zf(r)Ttr +f(r)2Trr]’
1
Tyy = —ZK_ZU_IV_I[Tn = f(r)’T,,,

Tyy = %K‘2V—2 [T, +2f(r)T,. + f(r)T,,], (4.16)

with Tg9 and T,
Kruskal coordinates.

All three quantum operators (4.1), (4.4), (4.10) involve
products of field operators at the same space-time point and
are therefore divergent. One would ideally like to compute
renormalized expectation values for the states constructed
in Sec. III. However, while the general formalism for the
Hadamard renormalization of these expectation values has
been developed [61], implementing this into a practical
procedure for the computation of renormalized expectation
values on black hole spacetimes is in its infancy (see the
recent work [57,58]). Therefore in this paper we consider
the differences in expectation values in two quantum states.
Since, for a Hadamard state, the divergent parts of the
Feynman Green’s function for the charged scalar field are
independent of the quantum state of the field [61],
renormalization can be performed for one chosen quantum
state. Renormalized expectation values for any other
quantum state can then be constructed using the differences
we study here.

To write the expectation values for the various states we
consider in a comparatively compact form, let O denote one
of the quantum observables (4.1), (4.4), (4.10), correspond-

ing to a classical quantity O, and let oi;é;f fout/down e (he

classical value of O calculated for the in, up, out or down
modes (2.20), (2.21). For the scalar field condensate SC,
we have simply

unchanged by the transformation to

— 2
SCotm = |¢a)fm| . (417)
In Appendix B we derive the nonzero components of the
current and stress-energy tensor. These simplify if we sum
over the azimuthal quantum number m. The nonzero
components of the current are then:

) £, 20+1
o= Y foon = o S WP X ()P (0-22),

s wlm ]67[2 rzf(r)

(4.18a)

2
g .
Jwt = E : Jotm

m=—

BIUCZSIIVNS {X(?i(” 4 (X“ﬁ (”ﬂ ,

(4.18b)
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and for the stress-energy tensor the nonzero components are

ﬂw\/wz{ [l <w_g)2+f(f+1)f(r)

I =
tt,wt ’r r2

t =
tr.of 47 rodr r

241 <w_g> me{x;‘,f(r)i <wa<r)

tae =2 W] |2 (0= 22) =2 D iurtop + | £

87 (r)*r? rf(r)

r

20 + 1 1 2
o =Lt WP (0= 22) WarP - 1012 5

8x f(r)

_ ")
Lop.awt = Log.or SIN” 0,

where we have defined

4
t/,w,mf = E t/w,u)fmv

m=—

and the symbol J denotes the imaginary part of a complex quantity.

O s 450

=)

2}, (4.19a)

(4.19b)

2}, (4.19¢)

(4.19d)

(4.1%)

(4.20)

The (unrenormalized) expectation values of O in each of the past quantum states defined in Sec. Il B can be written as

sums over the in and up modes:

) 4 M oo
<B‘|O|B‘>:%ZZ /_ da)oiﬁfm—i—/_

o

®© T reo
WIo) =53 3 | [ ooz, + [

(5]

. 1 co ‘T o )
(CCH™|O|CCH™) = EZ > /_ dwo™, coth

(5]

i U
d®o"™, coth

co u
d@o™™, coth

(4.21a)
(4.21b)
? } , (421¢)

while those for the future quantum states defined in Sec. III C have corresponding expressions in terms of the out and down

modes:

R 1 oo 4 T oo
<B+\0|B+>:§ZZ /_ da)og;,{;m+/_

[Se]

R 1 oo 4 M oo
<U+|0|U+>:§ZZ /_ dwog";m+/_

oo

o0

“ 1 o 4 r 00
(CCH*|O|CCHY) = EZ > / dwo®™  coth

. 1 [*S) 4 o ] "
@101} =35~ Y- { [ aolon, +o,1-2 |
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=0 m=—

(FT|O|FT) %i f: {/

=0 m=—

The expectation values of the candidate Boulware-like
state |B) (4.21g) and Hartle-Hawking-like states |H) (4.21h)
take into account the fact that, in defining those states, we
have mislabeled some modes according to their frequency
rather than their norm. This leads to contributions to the
expectation values from the superradiant modes which have
the opposite sign to those for the nonsuperradiant modes.

In the following subsections, we examine differences in
expectation values between two of the above states listed in
(4.21). We consider reference states which simplify these
differences in an asymptotic region either close to the
horizon or at infinity. Useful expressions for the corre-
sponding differences in expectation values can then be
derived in the relevant asymptotic regions, and these will
aid the physical interpretation of the states. However, in
order to study the differences in expectation values every-
where outside the event horizon and not just in the
asymptotic regions, numerical computation is required.

We find the in and up modes by numerically integrating
the radial equation (2.13). For the in modes, we use the
boundary conditions (2.20a) for r close to the horizon and
integrate the radial equation (2.13) outwards to find
Xi;,(r)/Bi, since the constants B}, are not known a priori.
The constants A, and BJ, are then determined by
comparing the numerical solution with the boundary
conditions (2.20a) at infinity. A similar process is used
for the up modes, starting with the boundary conditions
(2.20b) for large r and integrating the radial equation (2.13)
inwards to find X o/ Bwf, then matching with the boundary
conditions near the horizon.

For all the differences in expectation values that we
consider, either the integrals over frequency converge very
rapidly due to an exponential factor in the denominator or
else they are taken over a finite interval of values of the
frequency. The sum over m is also straightforward. It
remains then to find the sum over Z. We find that this is
dominated by the low-£ modes and that summing over
modes with values of # up to 40 gives results for the
differences in expectation values which are accurate to at
least three significant figures.

B. Past and future quantum states

1. Past Unruh state

We begin by examining the past quantum states defined
in Sec. III B. Considering the difference in expectation

o
a)fm + Omfm] coth| —

(ufm + 0()fm] coth

- (4.21h)

i

values between the past Unruh |U~) and past Boulware
|B~) states, we find

max{O,'ZQ}
-2 / dwo™, coth

min{O.‘f—f}

&l

(4.21i)

(U-|0|U") - (B|O|B)
) 4
:E E da 4.22
£=0 m=— f/ a)eXP|2m| 1 Mm ( )

As r — oo, the up modes take a particularly simple form
(2.20b) and we find the following leading order behavior of
the expectation values:

(U7|SC|U~) - (B~|SC(B")
20+1
B 2 4.23
16ﬂ'21"22/ |a)| exp |2’““| )| el (4230)
(U=|7#]U") = (B=|7"B")
q (20 + 1)
6471’3}’22/ @|(exp | 22| - 1)
x |B™2(1,1,0,0)T (4.23b)
(U|T4|U™) - (B~|T%|B")
226 + 1)
1677.'2}’22/ |w| exp|2”“’| -1)
1 0 0
1 0 0
x |B*|2 4.23
BN o on o (4.23¢)
00 0 02

By virtue of the Wronskian relations (2.24), the inte-
grands in (4.23) are regular when @ = 0. As seen by a static
observer far from the black hole, the past Unruh state [U™)
contains a flux of particles at infinity relative to the past
Boulware state [B~). The past Boulware state is defined to be
as empty as possible at past null infinity 7, and contains an
outgoing flux of radiation in the superradiant modes [47,48],
given by the following expectation values, as r — oo:

17D - q = max{‘lQ 2
B |/ B )~~——— dw 20+1 B
BB gt [ g ae I8

min{%,()}

(4.24a)
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max{”Q

167‘[2]"22Lm{qQ0} 2f+1)|B ’

(4.24b)

(B~|77/B~)

and the resulting fluxes of charge and energy are [48]:

q © max{‘:—g,O} ) u
Kg-=—— / do— (20 +1)|BE?, (4252
B 647[3; min{%,o} |a)|( )l I ( )
1 & [max{£0}  ?
= " do— (2¢6+1)|BY 2. (4.25b
563 foy ]G DI (425

As observed in [48], in the past Boulware state the flux
of charge - always has the same sign as the black hole
charge Q, so that in this state the black hole is losing charge
by the emission of particles in the superradiant modes.
Similarly, the flux of energy Lz- is always positive, so the
black hole is losing energy.

Since J” and T do not require renormalization (see
Appendix A), adding the relevant components in (4.23),
(4.24), we find

(U= |77 |U) ~— 4ﬂ3r22/ dw(2¢+1)w

_ |B—mf ‘2
alexplz] 1))
(4.26a)

2
<o
(oxpl 1)

(UTIT|U7)

o ,22/ dw(2¢ + 1

4 B P B, ]
(el = 1) aleplz — 1))

(4.26b)
where @ is given by (2.16) and @ is
LY (4.27)
”+

The flux of charge resulting from (4.26a) agrees with that in
Ref. [47]:

g - [

% |: | mf|2 _ |B—mf|2
o(expl - 1) @(explFH - 1)

(4.28a)

while the flux of energy in the past Unruh state is

1 [Se] )
_ 2
Ly- = e ; / do(2¢ + 1w

|B—mf|2
o(exp[E?] — 1)

| wl |2

X Lb (exp[z’f(“’] y (4.28b)
The integrals in (4.28) are taken over positive frequencies
@ > 0. The first term in each case is the contribution of
modes which have positive frequency w as seen by a static
observer far from the black hole, while the modes in the
second term have negative frequency as seen by the same
observer. We see that there is thermal emission of particles
with an effective chemical potential ¢Q/r, [2,47]. The
chemical potential has the opposite sign for negative
frequency particles as compared to positive frequency
particles.

Consider first the flux of charge (4.28a). Here the
emission of positive frequency modes gives a contribution
to Ky- which has the same sign as the scalar field charge ¢,
while the emission of negative frequency modes gives a
contribution to K- having the opposite sign to g. On the
other hand, both the positive and negative frequency modes
give a positive contribution to the energy flux Ly- (4.28b),
so that the black hole is losing energy due to the emission of
Hawking radiation. As x — 0, the temperature vanishes and
the fluxes (4.28) reduce to the superradiant flux obtained in
the past Boulware state (4.25).

We find that the expectation values (4.23) diverge as r —
r. and the event horizon is approached. We anticipate that
this is due to the divergence of the past Boulware state |B~)
on the horizon, although a computation of renormalized
expectation values would be required to confirm this
conjecture (see [57,58] for recent work for the Unruh state
on an RN-de Sitter black hole). It is expected that the past
Unruh state [U7), in analogy with the Unruh state on a
Schwarzschild black hole, is regular at the future horizon
‘H* but not the past horizon H~.

In Fig. 4 we plot the differences in expectation values for
the scalar condensate and the components of the current
and stress-energy tensor between the past Unruh [U~) and
Boulware |B™) states. The charge of the black hole, Q, is
fixed, and a selection of values of the scalar field charge ¢
are considered. All expectation values have been multiplied
by an appropriate power of the metric function f(r) (2.2) to
give quantities which are finite and nonzero on the horizon.

We see that the difference in expectation values of the
scalar field condensate does not vary much with the scalar
field charge ¢g. Furthermore, it is positive, indicating that
the expectation value of the scalar field condensate in the
past Unruh state |U™) is greater than in the past Boulware
state [B™), at least for a scalar field whose charge has the
same sign as the black hole charge. Near the horizon, the
scalar field condensate diverges like f(r)~!, which we
suspect is due to the past Boulware state |B~) rather than
the past Unruh state |[U™).
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FIG. 4. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor
operators, between the past Unruh, |U™), and past Boulware state, |B™), in the spacetime of a RN black hole with QO = 0.8M. All
expectation values are multiplied by powers of f(r) so that the resulting quantities are regular at r = r .
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As expected from (4.7), the difference in expectation
values of the radial component of the current is proportional
to —r~2, with the constant of proportionality K equal to
zero when ¢ = 0 and increasing as the scalar field charge
increases. Since K is positive, the black hole is losing
charge as expected. Therefore, while the charge flux in the
past Boulware state |B~) increases as the scalar field charge
increases [48], the charge flux in the past Unruh state |[U™)
increases more rapidly with increasing scalar field charge.
The past Boulware state contains an outgoing flux of
particles in the superradiant modes only [48], while the past
Unruh state contains a thermal distribution of particles
emitted due to Hawking radiation. We deduce that the loss
of charge due to Hawking radiation increases more rapidly
with scalar field charge than the loss of charge due to
quantum superradiance.

The magnitude of the difference in expectation values of
the time component of the current also vanishes when ¢ = 0
and increases significantly as the scalar field charge increases
(similar behavior is found for a massless, conformally
coupled scalar field on an RN-de Sitter black hole in [58]).
This also diverges like f(r)~! as the horizon is approached.
As with the scalar condensate, we find that the components of
the difference in expectation values of the current in Kruskal
coordinates (4.8) diverge on the event horizon.

The differences in expectation values of the diagonal
SET components generally do not change much as the
scalar field charge increases and exhibit similar behavior to
the scalar field condensate. All diverge like f(r)~? as the
horizon is approached. The difference in energy density
between the two states considered here is positive, with the
energy density in the past Unruh state being greater than
that in the past Boulware state. In contrast, the difference in
the energy flux increases rapidly as the scalar field charge

increases. The component (77) is negative, indicating that
it is dominated by the flux of energy L rather than the flux
of charge /C. All differences in expectation values between
the past Unruh and past Boulware states tend to zero like
r~2 far from the black hole. We anticipate that the expect-
ation values in the past Boulware state |[B~) will vanish at
infinity, since this state is empty at infinity apart from the
outgoing flux of particles in the superradiant modes.
Therefore we conjecture that renormalized expectation
values in the past Unruh state [U™) will also tend to zero
far from the black hole.

2. Past CCH state

To examine the properties of the past CCH state, it is
convenient to consider the differences

(CCH~|O|CCH™) — (4.29)

)
1 .

U |0‘U E E /oo exp|2ﬂw|_10$fm'
K

=

As r, - —o0, and r — r_, the in modes take a particularly simple form (2.20a) and we find the following leading order
behavior of the expectation values:

20 +1

CCH~|SC|CCH™) — (U~|5C|U-) in |2 4.30
< | | > < | | 671’27'22/ ‘(U| eXp|2”w\ ) wf| ( a)
CCH~|J*|CCH~ " OREE) g p2 =1.1,0,0)T 4.30b
(CCH™|J*|CCHT) = (U7 |U7) 322 do 2] 1 Boel (7 ()7 10,01, (4.30b)
—f(r)™" =f(n=? 0 0
R ~2 -1 0 0
(CCH™|T¥|CCH™) — (U~|T#|U") > ZZ/ (2i+ g B, )
" l6x “lol(exp 22~ 1) 0 0 o) 0
0 0 0 o)
(4.30¢)

From the Wronskian relations (2.24), the integrands in
(4.30) are regular when @ = 0. Transforming to Kruskal
coordinates U, V (2.6) and using (4.8), (4.16), we find that
the leading order divergences in the expectation values
(4.30) cancel on the future horizon H*. We anticipate that
the past Unruh state is regular on H™, so this implies that

[

the expectation value of the current in the past CCH state
is also regular on the future horizon H*. However, we are
not able at this stage to make a similar deduction about the
expectation value of the SET in the past CCH state. The
asymptotic results (4.30) only indicate that any diver-
gence in the SET at the future horizon H™ is no more
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severe than f(r)~!. We will explore this question in more
detail below.

Using (4.28) and the relevant components of (4.30), we
can find the fluxes of charge and energy in the past CCH
state as integrals over positive frequency modes with @ > 0
[where we have used the Wronskian relations (2.24)]:

’CCCH-_’Cu-—$Z/) dw(2¢+1)

th ol = IBS‘;,,)P}, (4.31a)

’CCCH_ ‘CU 167[22/ da) 2f+1

xwi 2+ 2] .
T 1P | (s

It can be seen that the difference in fluxes between the
past CCH and past Unruh states consists of a thermal
spectrum of particles, but without a chemical potential. The
nonsuperradiant modes reduce the flux of energy in the
past CCH state compared to the past Unruh state, while
the flux of energy in the superradiant modes (with either
@ < 0or@ < 0)is enhanced. The flux of charge in the past
CCH state compared with that in the past Unruh state
has a complex form. Nonsuperradiant positive frequency
modes give a charge flux having the opposite sign to the
scalar field charge ¢, and superradiant positive frequency
modes give contribution to the charge flux which has the
same sign as g. The opposite is true for modes with
negative frequency w.

We deduce that, while the past CCH state has attractive
regularity properties, it does not represent an equilibrium
state, since it has nonzero fluxes of charge and energy. This
is to be expected since the in and up modes are thermalized
with different thermal factors.

Differences in expectation values between the past CCH
state [CCH™) and past Unruh state |U~) are shown in Fig. 5.
The black hole charge and scalar field charge have the same
values as in Fig. 4. We immediately see a much greater
variation in these differences as the scalar field charge
varies, compared with the differences in expectation values
shown in Fig. 4. We also note that the differences in
expectation values no longer tend to zero far from the black
hole. This indicates that the past CCH state [CCH™) is not
empty at infinity.

Examining our numerical results for the difference in
expectation values of the scalar field condensate, we find
that this quantity is regular at the event horizon. Therefore
either both the past CCH and past Unruh states are regular
on the horizon, or both diverge there. Since we expect that
the past Unruh state is regular on the future event horizon

but divergent on the past horizon, we conjecture that the
same holds for the past CCH state.

From the difference in expectation values of the radial
component of the current, the black hole is losing charge in
the past CCH state |CCH™). The magnitude of the differ-
ence in charge flux between the past CCH and Unruh states
is about two and a half times that between the past Unruh
and Boulware states. This indicates that the past CCH state
has considerably more outgoing charge flux in the in modes
than the past Unruh state has in the up modes, due to the
different thermal factor for the in modes in the past
CCH state.

The sign of Kccy- — Ky- is not immediately constrained
by (4.31a), but our numerical results show that this quantity
is positive (at least for ¢Q > 0). We deduce that the
contribution to the charge flux of the superradiant positive
frequency modes and nonsuperradiant negative frequency
modes dominates that of the nonsuperradiant positive
frequency modes and superradiant negative frequency
modes.

In contrast to the case for the difference in expectation
values between the past Unruh and past Boulware states,
for the difference between the past CCH and past Unruh
states the time component of the current is positive, and
increases as the scalar field charge increases.

The components of the current in Kruskal coordinates
(4.8) are of particular interest for the properties of the past
CCH state. We expect the past Unruh state to be regular on
the future horizon where the Kruskal coordinate U
vanishes, but divergent on the past horizon (where the
Kruskal coordinate V is zero). Examining the components

(7Yy and (J") shown in Fig. 6, we see that V-1(J") is
regular as r — r, but that U~ (JY) diverges like f(r)~!
This means that (J") is regular on both the future and past

horizons, but (.7 Y} is regular only on the future horizon. If
our assumptions about the regularity of the past Unruh
state are correct, we would deduce that the past CCH state
is also regular on the future horizon but not the past
horizon.

Turning now to the components of the stress-energy
tensor, the diagonal components reveal greater variation as
the scalar charge increases than was observed for the
differences between the past Unruh and past Boulware
states. Furthermore, these components do not decay at
infinity, but instead appear to approach constant values, as
might be expected for a thermal state.

The flux (77) for the difference between the past CCH
and past Unruh states is positive for all values of r
examined, in contrast to the negative values seen for the
difference between the past Unruh and past Boulware
states. Since Kccy- — Ky- > 0, this implies that Locy- —
Ly~ is negative. From (4.31b), we deduce that for the
difference between the past CCH and past Unruh states, the
nonsuperradiant modes dominate the energy flux compared
to the superradiant modes.
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FIG. 5. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor
operators, between the past CCH, |CCH™), and past Unruh state, [U™), in the spacetime of a RN black hole with Q = 0.8M. All
expectation values are multiplied by powers of f(r) so that the resulting quantities are regular at r = r .
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(2.6), between the past CCH,

CCH™), and past Unruh state, [U™), in the spacetime of a RN black hole with Q = 0.8M. All expectation

values are multiplied by powers of f(r) so that the resulting quantities are regular at r = r,.

Examining the components of the SET in Kruskal
coordinates (4.16), our numerical results in Fig. 6 reveal
that U2f(r)""(Tyy), UVF(r)™(Tyy), and VX(Ty) are all
finite and nonzero on the horizon. Therefore (Tyy) will
diverge on the past horizon where V = 0, but is regular on
the future horizon where V is finite and nonzero. As the
future horizon is approached, U ~ O(f(r)), and hence
(Tyyy) is regular there. Similarly, (Tyy) is also regular on
the past horizon. However, <f'UU> will vanish on the past
horizon (where U is finite and nonzero) but will diverge as
f(r)~! as the future horizon is approached. Assuming that

the past Unruh state is regular on the future horizon, we
therefore find a mild divergence in the SET for the past
CCH state on H . Since we expect that the past Unruh state
will be divergent on the past horizon, we are unable to make
any deductions about the regularity of the past CCH state
on the past horizon.

3. Future states

The future quantum states constructed in Sec. III C are
the time-reverse of the past quantum states discussed
above. To see this, we consider the differences
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As expected, the scalar condensate does not distinguish
between past and future states. The expectation values
of the current and stress-energy tensor in (4.33), (4.34)
are obtained from those in (4.23), (4.30) by making the
coordinate transformation t— —t. By virtue of the
Wronskian relations (2.24), the integrands in (4.33) are
regular at @ = 0 and those in (4.34) are regular at v = 0.
Given that we have already explored the properties of the
past Unruh and CCH states in some detail, we will not
consider the future states further.

C. Boulware-like state

Now we turn to the first of the new states defined in this
paper, namely the tentative Boulware-like state constructed
in Sec. III D. To examine the properties of the state |B),

[
since the properties of the past and future Boulware states
are well understood, we consider the differences

B|O|B) — (B~|O|B" oy [
(BIO[B) — (B0 >——KZOmZ_KAH{Z_gO} wol,
(4.35a)
(BIO[B) - (B|OB) = -3 Z / O oo,
== Jmingoy O
(4.35b)

These involve only the superradiant up and down modes.
Since the down modes are the time-reverse of the up modes,
the differences (4.35) are the time-reverse of each other,
which suggests that the state |B) is time-reversal invariant.
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Since the scalar field condensate does not distinguish between past and future states, consider first the expectation values

of the current and stress-energy tensor. As r — oo, we find

~ max{"Q }
B|J*|B B~ J”B 2¢ B |*(1,1,0,0 4.36
(B1J#[B) ~ (B1J"| 64ﬂ3r22/m{wo} @ (2 + DIBILE(1,1,0,0)1 (4362
-1 1 0 0
. max {£2,0 } 11 0 0
B|T%|B B~ T”B 2¢ B |2 , 4.36b
(B17]8) - (B[] mﬂzrzz/m{wo} I IR (4.360)
00 0 0
~ max{qQ }
B|J*[B) — (BT|J¥[B*) ~ 2¢ BY|*(1,-1,0,0)T, 4.36
(BIJ¥[B) — (B+|" 4ﬂ3r22/m{m0} @ (2 + DIBLE(1,-1,0,0) (4.360
-1 -1 0 0
R max{qQO} 0
B|7"|B) — (B*|T¥|BT) ~ 2¢+1)|BY)? 4.36d
TR - (3178 == S [ i I IS G IR
0 0 0 oY

The integrands in these expectation values are all regular
at @ = 0 due to the Wronskian relations (2.24). Using
(4.25) and the relevant components in (4.36), we find that
the fluxes of charge and energy in the state |B) vanish:
Ly =0. (4.37)
Therefore |B) is an equilibrium state and is, indeed, time-
reversal invariant.

The fluxes of charge and energy across past null infinity
are given, as » — oo, by the components JY, Ty, and across
future null infinity by JV, Ty These fluxes are found from
the components (4.36) with respect to Schwarzschild
coordinates using the formulas (4.8), (4.16). At past null
|

(B|SC|B) — (B=|SC|B~)

From the Wronskian relations (2.24), the integrand is finite
when @ = 0.

Figure 7 shows the differences in expectation values
between the Boulware-like state |B) and the past Boulware
state |B7). When the scalar field charge g =0, these
differences in expectation values vanish, as the two states
are identical in this case. Unlike the two differences of past
states considered in Sec. IV B, the scalar field condensate for
this difference of states is negative, decreasing with increasing
scalar field charge. The scalar condensate tends to zero far
from the black hole, but diverges as the horizon is approached.

2¢ B |?
167[2722/111{"Q0} |( + )| wf|

infinity, the differences in expectation values (B|JY[B) —
(B=|JYIB~) and (B|Tyy|B) — (B~|Tyy|B~) vanish. By
construction, the past Boulware state has no incoming
flux of particles at Z~, and hence we deduce that the same
is true for the Boulware state |B). Similarly, at future null
infinity, the differences in expectation values (B|J"|B) —
(B*|7V|B) and (B|Tyy[B) — (B¥|Tyy|B*) also vanish,
and we deduce that |B) also has no outgoing flux of particles
at ZT. It thus appears that we have succeeded in defining a
state which is as empty as possible at both future and past
null infinity.

We can also examine the expectation value of the scalar
field condensate. As r — oo, this takes the form

max {qQ 0}

(4.38)

The difference in expectation values of the radial
component of the current between the Boulware-like
state |B) and the past Boulware state |B™) is positive
everywhere (compare with the previous two differences
in states in Sec. IV B, for which this quantity was
negative). Since Kz = 0 (4.37), only the past Boulware
state contributes to this component of the current.
From [48], the past Boulware state has a positive flux
of charge (we are considering only the case where both
the black hole and the scalar field have positive charge),
yielding a negative flux of charge for this difference
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FIG. 7. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor
operators, between the tentative “Boulware”-like state, |B), and the past Boulware state, |B™), in the spacetime of a RN black hole with
0 = 0.8M. All quantities are multiplied by powers of f(r) so that the resulting quantities are regular at r = r,.
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Difference in expectation values for the components of the current and stress-energy tensor operators in Kruskal coordinates

(2.6), between the tentative “Boulware”-like state |B) and the past Boulware state, |B™), in the spacetime of a RN black hole with
0 = 0.8M. All expectation values are multiplied by powers of f(r) so that the resulting quantities are regular at r = r,.

between the Boulware-like state |B) and the past
Boulware state |B™).

The charge density <j ") is negative near the horizon, but
becomes small and positive further away, tending rapidly to
zero far from the black hole. The results for (J") presented
in Fig. 7 are the negative of those presented in Ref. [48] for
the state |B~), as anticipated since Kz = 0. While the
Boulware-like state |B) is time-reversal invariant, the past
Boulware state |[B™) is not, and this is reflected in the

components (JY) and (J") of the current, which can be
seen in Fig. 8. The component U~'(JY) rapidly decreases
to zero as r — oo, as expected (since <} Y) vanishes at past

infinity where U — o). The component V~'(J") also
tends to zero at infinity, but not as rapidly. Both
U~1(JY) and v-1(J") diverge at the horizon.

The difference in expectation values of the component
(T?) of the stress-energy tensor between the Boulware-like
and past Boulware states is simply minus that found in [48]
for the past Boulware state, as expected since Ly =0
(4.37). The differences in expectation values of the diago-
nal components of the SET between the states |B) and [B™)
all rapidly tend to zero far from the black hole. From Fig. 8,
the components of the difference in the current and SET
expectation values in Kruskal coordinates all diverge on the
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event horizon. Our intuitive expectation is that both the
states |B) and |B~) will diverge at the horizon. This means
that either the past Boulware state |B™) diverges more
rapidly than our tentative Boulware-like state |B) as the
horizon is approached or that these two states diverge at the
same rate, but with different coefficients. We suspect that
the latter is more likely, although a computation of
renormalized expectation values would be required to settle
this question definitively.

Our results indicate that our proposed Boulware-like
state |B) is regular everywhere outside the event horizon, is
an equilibrium state, and has no fluxes of charge or energy.
However, from the construction in Sec. III D, it is not a
conventional vacuum state, since its derivation involved
operators satisfying nonstandard commutation relations
(3.60). This result is analogous to that on Kerr space-time
|

[29], where it is shown that there is no vacuum state which
is as empty as possible at both future and past null infinity.
While our results for the state |B) are intriguing, it remains
to be seen whether this state can be constructed rigorously
or whether the state is pathological in a manner not revealed
by our computations.

D. Hartle-Hawking-like states

We now turn to the Hartle-Hawking-like states con-
structed in Sec. III E.

1. |FT) state

We first consider the state |FT), and in particular the
differences in expectation values

FT|O[FT) — (U~|O[U~ 4.39
<||><H>KM}/ O BT %em (4.39)
As r — r,, we find the expectation values of the current and stress-energy tensor take the asymptotic forms:
n @20 +1) -
PP = (U007}~ eS8 =so 100y, (4.40)
~f) =f) 00
) P*20+1) L fnt o0 0
FT|T"|FT) — (U~ |T" U-) / B |? 4.40b
< | | > < | | 16 2 QZ |a)|(exp|27m;|_1)| a))f’| 0 0 O(l) 0 ( )
0 0 0 O
The integrands in (4.40) are regular at both ® = 0 and o (a0 2
@ = 0 from the Wronskian relations (2.24). Furthermore, £ :%Z / max {2200 dwwc w2,
by considering the components of the current and stress- 167° 7= min {£2,0} |@]
energy tensor in Kruskal coordinates, we find that the (4.41b)

leading order divergences in the expectation values (4.40)
cancel on the future horizon but not on the past horizon.
Given that the past Unruh state is anticipated to be regular
on the future horizon but not the past horizon, this implies
that the expectation values of the current in the state |[FT)
will be regular at the future horizon, but that there may be a
mild divergence in the SET.

Combining the relevant components of (4.40) with
(4.28), and using the Wronskian relations (2.24), we find
the fluxes of charge and energy in the state |[FT) to be

g N [max{Z0}  @(2/+1)
K do""" T coth| =2
" 64ﬂ*;[nm{wm e

’2

(4.41a)

Note that neither of these is zero when g # 0, so the state
|[FT) is not an equilibrium state and is not time-reversal
invariant. This is in contrast to the situation on a rotating
Kerr black hole, where it is argued in [28,29] that the
Frolov-Thorne state is an equilibrium state. Both the fluxes
(4.41) involve contributions from the superradiant modes
only (and vanish when the scalar field charge ¢ = 0). The
flux of charge has the same sign as the black hole charge Q,
and hence the black hole is losing charge. The flux of
energy Lgr is always positive, and therefore the black hole
is also losing energy in this state.

In Fig. 9 we show the differences in expectation values of
the current and SET between the |FT) state and the past
Unruh state [U~). We will return to the expectation value of
the scalar field condensate below.
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FIG. 9. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor
operators, between the state |FT) and the past Unruh state, [U™), in the spacetime of a RN black hole with Q = 0.8M. All quantities are
multiplied by powers of f(r) so that the resulting quantities are regular at r = r.

From the radial component of the current, we see that
the difference in charge flux Kpr — Ky- is negative, in
contrast to the quantity ccy- — Ky-, (see Fig. 5) which
is positive. Since the charge flux Kpr (4.41) contains
contributions only from the superradiant modes, this
suggests that Kpr is small compared to the charge flux
in the past Unruh state K- (which contains an outgoing
flux of Hawking radiation).

The difference in expectation values of the charge
density (J') between the states |FT) and [U~) also has
the opposite sign compared the difference in expectation
values between the past CCH and Unruh states, shown in
Fig. 5. Turning to the components of the current in Kruskal

coordinates, shown in Fig. 10, we see that U~ f(r)(JY)

and V=1(J") are regular and nonzero at the horizon. As for
the difference between the past CCH and Unruh states, we
deduce that the current is regular across the future horizon
where U =0 but not the past horizon where V = 0.
Assuming that the current in the past Unruh state is regular
across the future horizon, we deduce that the same is true
for the current in the |FT) state.

The difference in expectation values of the component
(T?) between the state [FT) and the past Unruh state is
positive, as was found to be the case for the difference in
expectation values of this component of the SET between
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FIG. 10. Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor

operators in Kruskal coordinates (2.6), between the state |FT) and the past Unruh state,

U~), in the spacetime of a RN black hole with

0 = 0.8M. All quantities are multiplied by powers of f(r) so that the resulting quantities are regular at r = r.

the past CCH and Unruh states. Therefore the quantity
Ler — Ly- 1s negative. As with the flux of charge discussed
above, this result for the energy flux makes physical sense,
given that Lpr arises from a sum over superradiant modes
only, while Ly- contains the flux of energy from the
Hawking radiation in all field modes.

The differences in expectation values of the diagonal
components of the SET between the |FT) and |[U™) states
appear to tend to a constant as r — oo, at least for small
values of the scalar field charge (for larger values of g we
would need to consider rather larger values of the radial
coordinate r to see this behavior clearly). The difference in

expectation values of the component (f"i) between these
two states is negative everywhere outside the horizon, as
was the case for the difference between the states |[CCH™)
and |U™). In contrast, far from the black hole, we see that
the differences in expectation values of the components
(T") and (T9) between the states [FT) and |U~) have the
opposite signs to those observed for the differences
between the states [CCH™) and |U™).

We now examine the differences in expectation values of
the components of the SET between the states |FT) and
|U™) in Kruskal coordinates, shown in Fig. 10. First, we see
that the difference in expectation values of the quantity
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V2(Tyy) is finite and nonzero on the horizon, so we
deduce that the difference in expectation values of the
component <%vv> diverges on the past horizon where
V = 0. In addition, the difference in expectation values
of U2f(r)™"Tyy) and UVf(r)""(Tyy) are finite and
nonzero when r = r . As for the differences in expectation
values between the past CCH and the past Unruh states, this
means that (f"UV> is finite on both the future horizon and
the past horizon, but that (7,), while regular on the past
horizon, has a mild divergence on the future horizon. Since
the past Unruh state |U™) is expected to be regular on the
future (but not the past) horizon, we deduce that the state
|FT) has a mild divergence on the future horizon. We are
unable to make any deductions about its regularity on the
past horizon.

From our study of the differences in expectation values
between the states |FT) and |[U™) of the current and SET,
we conclude that the Hartle-Hawking-like state [FT) is very
different physically from the past CCH state [CCH™). The
difference in how these states are defined lies in the thermal
factor associated with the in modes. This clearly has a large
impact on the expectation values of observables. However,
these two states do share some physical features. For
example, at infinity, neither the |FT) state nor the past
CCH state are empty.

There is however one more observable that we must
consider in our discussion of differences in expectation
values between the |FT) and |U™) states, namely the scalar
condensate, which is not shown in Fig. 9. Near the horizon
r — r,, we have the asymptotic form:

(FT|SCIFT) - (U7[SC|U7)

1671'27'22/

Using the Wronskian relations (2.24), the integrand is
finite at @ =0 but diverges at @ = 0. We therefore
conclude that the expectation value of the scalar field
condensate in the state |FT) diverges at the horizon
(assuming that the expectation value of the scalar con-
densate in the past Unruh state [U™) is regular there). Away
from the horizon, the expectation value of the scalar field
condensate is given by

20+ 1
“lol (exp 22 1)

|BIn, 2. (4.42)

(FTISCIFT) - (U[SCIU)
00 4
- @ | ® ml2 (443)
B

Y |

max {"Q 0}

min {qQ 0}

The integrand has a pole when @ = 0 unless the magnitude
of the in modes vanishes at this frequency. Numerical
investigations reveal that there is at least one in mode
whose magnitude is nonzero when @ = 0, and therefore the
difference in expectation values of the scalar field con-
densate between the |FT) and |U~) states is in fact
divergent everywhere outside the event horizon as well.
We therefore deduce that the state |FT) is ill defined, even
though the expectation values of the current and SET
appear to be well behaved in this state. Similar conclusions
were reached on Kerr space-time [29], namely that the
(original) Frolov-Thorne state was ill defined almost every-
where in the space-time. In particular, the expectation value
of the scalar condensate in the Frolov-Thorne state on Kerr
is divergent, but there is evidence that the expectation value
of the SET (the work [29] considers only a neutral scalar
field) is well-behaved, at least close to the horizon. In Kerr
space-time, on the axis of symmetry the superradiant
modes do not contribute [29] and the Frolov-Thorne state
reduces to the past CCH state on this axis. In the situation
we consider here, namely a charged scalar field on an RN
black hole, the superradiant modes contribute everywhere
in the space-time exterior to the event horizon and our state
|[FT) is badly behaved everywhere outside and on the
horizon.

2. |H) state

Finally, we examine the state |H). As with the other
states studied in this paper, we begin with asymptotic
expressions. Comparing (4.21h), (4.211), we see that it is
convenient to consider the differences

(H|O[H) - <FT|O|FT>
°° max {4Q 0} D
/ daol", coth| Z2|,  (4.44)
f—O e Jmin {£2,0} K

which have contributions only from the superradiant in
modes, as may be expected from the construction of these
states in Sec. III E. In particular, since our analysis above
provides evidence that the expectation values of the current
and SET are well defined in the |FT) state, we may consider
differences in expectation values of these two quantities
between the |H) and |[FT) states.
Near the horizon, we find

da)—coth
|o|

‘(2f+1)|Bwf (=f(r)1,1,0,0)T,  (4.45a)

125013-35



BALAKUMAR, BERNAR, and WINSTANLEY

PHYS. REV. D 106, 125013 (2022)

mdx{C’Q 0}

L - T oS [

1n{"Q 0} |(1)|

The leading order divergences in the expectation values
(4.45) cancel on the future horizon but not the past horizon.
Combining this result with the fact that the leading order
divergences in the expectation values (4.40) also cancel,
and the assumed regularity of the past Unruh state |[U™) on
the future horizon, we may deduce that the expectation
value of the current in the state |H) is regular on the future
horizon, and that the expectation value of the SET is at
worst divergent as O(f(r)7!) as r — r .

Combining the relevant components in (4.45) and the
fluxes (4.41), we find that the fluxes of charge and energy
in the state |H) vanish:

) 14
. 1 1 .
(H|O|H) — (U~|O|U") § § / {—” o ol_nmm},
yur exp[Z2) — 1 ™" " exp[22] — 1 ~*

dw—coth

—f(r)™" =f(rn* 0 0
5 f(r)! 0 0
(2,;+ DIBS 0 0 o1 o0
0 0 0 o)
(4.45b)
Ky=0, Ly=0 (4.46)

Therefore the state |H) is a time-reversal invariant, equi-
librium state. Hence, if the state |H) is regular on either the
past or the future horizon, it is regular on both horizons.

Since the expectation value of the scalar condensate in
the state |[FT) is divergent, to study the properties of the
state |H) in more detail, we now consider the differences in
expectation values between the states |H) and |[U~), which
take the form

(4.47)

where @ is given by (4.27). In particular, the difference in expectation values of the scalar condensate is

—~ 2 ™l
H|SC|H) — (U~|SC|U-) wlm wlm )
HISTIH) - (U J5C] ”M/ of i+ il

(4.48)

While the two integrands are singular at @ = 0 and @ = 0 respectively, the Cauchy principal value of each integral exists.

Near the horizon, we have

(H|SC|H) — (U~|SC[U-)

The quantity (4.48) is shown in the first plot in Fig. 11. It
can be seen that the difference in expectation values of the
scalar condensate in the states |H) and |U~) is regular
everywhere on and outside the event horizon. Since the past
Unruh state |[U™) is anticipated to be regular on the future
horizon, we conclude that the expectation value of the
scalar condensate in the state [H), unlike that for the state
|[FT), is also regular on the event horizon of the black hole.
The scalar condensate (4.48) also does not vanish as
r — oo, providing evidence that the state |H) is not empty
at infinity. We also see that the scalar condensate varies
considerably as the scalar field charge g varies.

In Fig. 11 we also depict the differences in expectation
values of the current and SET between the states |H) and
|U™). First, looking at the plot of the radial component of

s ZZ/ dw(2¢ + 1 { (exp[22] —

| mf|2

(4.49)

| 1 a)f|2
1) " w(expfe] - 1>}'

|
the current, we see that the difference in the flux of charge
is negative between these two states. Since Ky is zero
(4.46), we deduce that [Cy- (4.28a) is positive for a black
hole and scalar field both having positive charge. This is as
expected: the black hole emits Hawking radiation in such a
way as to reduce its charge.

The difference in expectation values of the charge
density between the |H) and |U~) states is negative and
nonzero far from the black hole. The magnitude of the
charge density increases significantly as the scalar field
charge increases, although we find for large values of the
scalar field charge (g =0.8M) an interesting effect
whereby the magnitude of the charge density near the
horizon is large but that at infinity is smaller than for lower
values of the scalar field charge. To examine whether the
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Difference in expectation values for the scalar condensate operator and components of the current and stress-energy tensor
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with O = 0.8M. All quantities are multiplied by powers of f(r) so that the resulting quantities are regular at r = r,.
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FIG. 12. Difference in expectation values for the components of the current and stress-energy tensor operators in Kruskal coordinates
(2.6), between the tentative Hartle-Hawking-like state |[H) and the past Unruh state, [U™), in the spacetime of a RN black hole with
0 = 0.8M. All expectation values are multiplied by powers of f(r) so that the resulting quantities are regular at r = r,.

difference in expectation values of the current between
these two states is regular across the horizon, we turn to
Fig. 12. This shows that, in Kruskal coordinates, the
component V='(J") is finite as r — 7, so this component
of the difference in expectation values of the current is
regular on both the past and future horizons. In contrast, the
component U~ (j Y) of the difference in expectation values
diverges as r — r,. We deduce that the difference in
expectation values of the current between the |H) and
|[U~) states is regular across the future horizon but not the
past horizon. Since we assume that the past Unruh state is
regular across the future horizon, we conclude that the

expectation value of the current in the state |H) is also
regular across both the future and past horizons.

We now study the differences in expectation values of the
SET between the |H) and |U™) states. The difference in
expectation values of the component (f"f> is positive far
from the black hole. This is to be expected from the fact that
Ly (4.46) vanishes, while Ly~ (4.28b) is positive. The
differences in expectation values of the diagonal compo-
nents of the SET between these two states appear to
approach constant values far from the black hole. The

difference in the expectation values of the component (]Af}
is negative everywhere outside the horizon, and has a
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magnitude roughly twice that of the difference in the
corresponding expectation values between the states |FT)
and |U~). For all the values of the scalar field charge ¢
studied, the difference in expectation values of the compo-

A

nent (77) is positive close to the horizon, but its sign far
from the black hole depends on the magnitude of the scalar
field charge. For smaller values of the scalar field charge, it
is positive at infinity, but becomes negative at infinity if the
scalar field charge is sufficiently large. Similar behavior is
seen in Fig. 9 for the difference in expectation values of the

A

component (7)) between the states |[FT) and |U~™). The

difference in the expectation values of the component (%)
between the states |H) and |U™) also has similar behavior to
that between the states |[FT) and |U~) states. For smaller
values of the scalar field charge, it is positive everywhere
on and outside the horizon, while for intermediate values of
the scalar field charge it is positive on the horizon but
becomes negative far from the black hole.

The differences in the expectation values of the SET in
Kruskal coordinates are shown in Fig. 12. A similar picture
emerges as for the differences in the expectation values
between the states [CCH™) and |U~) (Fig. 6) as well as for
those between the states |FT) and [U~) (Fig. 10). The

component <fvv> is divergent on the past horizon where
V — 0, but regular on the future horizon. The component
(Tyy) is regular on both the future and past horizons. In
addition, the component @UU) vanishes on the past horizon
where U is finite, but diverges like f(r)~! on the future
horizon where U — 0. Since we assume that the state |[U™) is
regular across the future horizon, we deduce that the state
|H) has a mild divergence on the future horizon. There must
also be a mild divergence on the past horizon as the state |H)
is time-reversal invariant. A full computation of the SET for
the state |H) in the vicinity of the horizons would determine
whether our deduction is valid.

The final question we consider in this section is whether
the state |H) can be considered as an analog of the Hartle-
Hawking state on Schwarzschild. First, the Hartle-Hawking
state on Schwarzschild is regular on both the past and future
event horizons, and in particular the SET is regular on both
horizons. Our numerical results suggest that this is not the
case for the state |H). Second, as discussed in Sec. IIIE,
while the state |H) contains a thermal distribution of
particles in the up modes and nonsuperradiant in modes,
it was constructed using operators satisfying nonstandard
commutation relations (3.73). We therefore expect that |H)
may not have all the properties required of a Hartle-
Hawking state, although, of all the states constructed in
this paper, it is the one which most closely resembles a
Hartle-Hawking-like state.

V. DISCUSSION AND CONCLUSIONS

In this paper we have explored the canonical quantization
of a charged scalar field on a nonextremal RN black hole

background. Our work was motivated by the aim of
disentangling the effects of superradiance and rotation on
the construction and properties of quantum states on Kerr
black holes, since in our setup we have superradiance but no
rotation. As on Kerr space-time, the presence of superradiant
modes complicates the construction of states analogous to
the standard Boulware, Unruh and Hartle-Hawking states.

Nonetheless, in this paper we have constructed a
menagerie of states for a charged scalar field on an RN
black hole. First, we have examined the past and future
Boulware, Unruh and CCH states, defined here in an
analogous manner to the corresponding states on Kerr
spacetime [29]. These states are not invariant under time-
reversal. The past Boulware state is empty far from the
black hole except for an outgoing flux of particles in the
superradiant modes [48]. The past Unruh state contains an
outgoing thermal distribution of particles with a nonzero
chemical potential [47]. The past CCH state is more
complicated, as the in and up basis modes are thermalized
with different thermal factors.

In addition to these past and future states, we have also
attempted to construct states analogous to the Boulware
and Hartle-Hawking states on Schwarzschild space-
time. We have defined a state |B) which is time-reversal
invariant and contains no particles at either future or past
null infinity. However, this is not a vacuum state in the
conventional sense, since its construction relies on employ-
ing creation and annihilation operators which satisfy
modified commutation relations.

We have also sought to define a thermal equilibrium
state. Our first attempt, the state |FT), contains a thermal
distribution of particles but is not an equilibrium state. It is
also ill-defined everywhere on and outside the event
horizon. We have been able to define an equilibrium state
|H), which is time-reversal invariant. However, we have
presented some evidence that this state may not be regular
at the horizon. As with the |B) state, the construction of the
|H) state relies on having creation and annihilation oper-
ators which do not satisfy the usual commutation relations.
While the Kay-Wald theorem [35,36] applies only to a
neutral scalar field, one would expect a more general
version of the theorem to apply to a charged scalar field.
We would anticipate that such a theorem would preclude
the existence of a thermal equilibrium state for a charged
scalar field on an RN black hole. While the state |H)
constructed in this paper seems to be a thermal equilibrium
state, it is likely to evade a generalized Kay-Wald theorem
by failing to satisfy the assumptions of such a theorem.
Specifically, since we have had to introduce nonstandard
commutation relations in the construction of [H), we think
it likely that this state does not satisfy the usual positivity
condition (see the related discussion of the Hartle-Hawking
state on Kerr in Appendix B of [28]).

We are therefore unable to define a conventional vacuum
state which is as empty as possible at both future and past
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null infinity, and our attempts to define a conventional
thermal equilibrium state invariant under time-reversal have
also been unsuccessful. Both these results mimic the
situation on Kerr space-time, leading us to deduce that it
is superradiance which is the dominant effect rather than
the rotation, although for Kerr black holes it is the rotation
which leads to the superradiance.

One of our key results is that we have been unable to
define an analog of the Hartle-Hawking state for a charged
scalar field. Of course, this does not prove that no such state
exists; but the usual method of canonical quantization,
which yields the Hartle-Hawking state on Schwarzschild
space-time, fails here, as it does on Kerr black holes. For a
Kerr black hole background, it is possible to define a thermal
equilibrium state invariant under time-reversal invariance, if
one considers a fermionic rather than a bosonic field [30]. It
would therefore be interesting to explore the fermionic
analogs of our tentative states |B) and |H). Since fermionic
operators satisfy anticommutation relations rather than
commutation relations, one may not need to resort to the
unconventional commutation relations we employed in
defining these states for charged scalar fields.

The thermal equilibrium state defined for fermions on a
Kerr black hole diverges on the speed-of-light surface [30],
the surface on which an observer rigidly rotating with the
same angular speed as the black hole event horizon must
travel at the speed of light. This is similar to the situation in
flat space-time, where rigidly rotating thermal states are
divergent everywhere for bosonic fields [41], but are regular
within the speed-of-light surface for fermionic fields [43].
As in flat space-time [41], for a bosonic field on Kerr space-
time a thermal equilibrium state can be defined if the black
hole is surrounded by a perfectly reflecting mirror located
entirely within the speed-of-light surface [32].

A natural question is then whether a Hartle-Hawking-
like state can be constructed if the RN black hole is
contained within a cavity. While there is a generalized
concept of an ergosphere for an RN black hole [62,63],
there is no surface analogous to the speed-of-light surface
in rotating space-times. While the unbounded RN space-
time is stable under charged scalar field perturbations
[64,65], if the black hole is enclosed by a perfectly
reflecting mirror sufficiently far from the event horizon,
there is an instability [66—71], leading to a charged analog
of the “black hole bomb” [72], the endpoint of which is a
stable black hole with charged scalar field hair [70,73,74].
This suggests that, in analogy with the situation on Kerr
space-time, it may be possible to define a Hartle-Hawking
state for an RN black hole in a cavity if the mirror is
sufficiently close to the event horizon. We plan to return to
this question in future work.

In this paper, we have studied the physical properties of
the states we have defined by examining differences in
expectation values of observables between two quantum
states. The advantage of studying such differences is that

they do not require renormalization. However, to explore
the quantum states in more detail, renormalized expectation
values are required. Renormalized expectation values
would also be useful for studying the evolution of an
evaporating charged black hole beyond the adiabatic
approximation employed in [53-56]. Recently there has
been much interest in expectation values of quantum field
operators inside the event horizon of a black hole [75-78],
particularly for studying the stability of the inner (Cauchy)
horizon of a RN(-de Sitter) or Kerr black hole [57,79-84].
Work to date on this question has largely focused on a
neutral quantum scalar field (apart from the recent work
considering a charged scalar field in [57,58]). A general
formalism for the Hadamard renormalization of expectation
values for a charged quantum scalar field was developed in
[61,85] (see also [86,87] for earlier work based on DeWitt-
Schwinger renormalization). Using this approach, renor-
malized expectation values of the current have been
computed on an RN-de Sitter black hole [57,58] for a
charged scalar field in the Unruh state. As demonstrated in
Appendix A, the r-component of the current does not
require renormalization, and it is shown in [58] that, with a
suitable choice of point-splitting, the z-component is
renormalized by finite terms, which aids its computation.
It would be of great interest to extend the work of [57,58] to
the RN black hole, other quantum states and, ultimately, the
expectation value of the stress-energy tensor. We leave
these questions for future studies.
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APPENDIX A: NONRENORMALIZATION
OF (J') AND (T,)

Our focus in this appendix is to show that the compo-
nents (J") and (T,,) of the current and stress-energy tensor
respectively do not require renormalization. Our method
follows that employed in [28] to prove the corresponding
results for a neutral scalar field on Kerr space-time.

Let Gp(x,x’) be the Feynman Green’s function for the
charged scalar field in a particular, unspecified quantum
state. The renormalized components of the current and
stress-energy tensor in this state are given by [61]

(") = =L m 3 (D iGy(x ). (AL
<iw/w> = l,iglﬂt{Tﬂu[_iGR(x’ xl)]}7 (Alb)

where 7, is the second-order differential operator

) L1 / y
T, =9"D,D} - Egﬂ,,g’” D,D, (Alc)
with g, the bivector of parallel transport. The operator D,
acts at the space-time point x, and D,, acts at the space-time
point x". The biscalar G (x, x’) is regular in the coincidence
limit X’ — x and is given by [61]

Gr(x.x') = Gp(x.x') = Gs(x.x'), (A2)
where Gg(x,x') is the singular part of the Hadamard
parametrix

i [U(x,x)
87 | o(x, x')

Gg(x,x') = + V(x,x)Ino(x,x)|, (A3)

with o(x, x’) equal to one half of the square of the geodesic
distance between the points x and x’, assuming that they are
connected by a unique geodesic. The complex biscalars
U(x,x") and V(x,x') are regular in the coincidence limit
and can be written as covariant Taylor series expansions. To
the order required to perform renormalization in four space-
time dimensions, these take the form [61]

U(x,x") = Ugo(x) + Upy(x)o* + Upgy (x) 0™

+ U03;w/1()‘)‘7;’4‘7”‘7”1 + Uozmm( x)otc” oo

+ . (Ada)
V(x,x") = Voo(x) + Voru(x)o* + Vg, (x)o#0*

+ Vip(x)o + ... (A4b)

The coefficients in the expansions depend only on the
space-time point x, and all dependence on x’ is contained
within ¢(x, x') and its derivatives. Since we are considering

a massless charged scalar field minimally coupled to the
space-time curvature, and the Reissner-Nordstrom metric
has vanishing Ricci scalar, the coefficients given in [61]
simplify to

UOO = 1, <A4C)
UOlﬂ == l.qA”, (A4d)
1 iq q2
Uozlw = 12 l“/ - V TAﬂAy, (A4e)
1 iq q°
Uosi = _ﬂR(/w;l )+ —V WViA + ?A(yvqu)
- A AA; + 12R( A, (A4f)
1
Uoawir = gy Riuwaie) + 502 R Rim) + 360 ? Wl RY Aplo)
. 2
lq q
~ % ViV, VA, - €A<MVUV,1AT>
2 . 3
q lq
- ? [v ;lAI/} [vﬂAr)] + TA(ﬂAuvﬂAr)
4 .
q iq q
o AAA A= ALV R —2 wViAs)
qz
Voo =0, (Adh)
Iq oy .
VOlﬂ = - EV Fay’ (A41)
V—]DR+]R"R lR“ﬂR
0 ™ 040 M T 180 MU 360
1
—— R R, - @ po Foo — q T A, VeF,,
360 ™24 12
iq a .
—ﬁva Fu)av (A4J)
Vi = B RYPrOR 5 < — L R¥R,5 — T F*F (A4k)
17720 e 720 48" P

where brackets round indices denote symmetrization, with
vertical lines surrounding those indices not included in the
symmetrization. .

To show that (J*) and (T',,) do not require renormaliza-
tion, we seek to prove that

&1 = D" [=iGs(x, X)]} =0, (ASa)

Fo=0{T, [-iGs(r. X))} =0.  (ASb)
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Since the Reissner-Nordstrom metric (2.1) is static and
spherically symmetric, without loss of generality we may
consider two space-time points x and x’ as follows:

x=1(0,r,0,0), X =(0,7,0,0). (A6)
Then the unique geodesic connecting the points x
and x" lies in the surface £ = {t = 0, = 0}. Using the
letter X to denote the indices ¢, ¢, and A to denote r, 6, we
have [28]

ot = &0, (A7a)

9.7 =880 ga + 8987 g (A7b)

We are considering a purely electric field with gauge

potential (2.8), and hence we can write

A, =5 Ay, (A7c)

where Ay depends only on A coordinates. Therefore the
quantities (A5) take the form

&1 = H{V'[=iGs(x, X}, (A8a)

8> = {-ilg,'D,V.4|Gs(x.¥)}.  (ASb)

The biscalar o(x,x’) and its derivatives are real, as
are the gauge field potential A, and field strength F,,
as well as all curvature tensors and their derivatives. From
(A7), we have A, 6# = 0, which immediately simplifies the
form of Gg(x,x).

The symmetries of the metric mean that Christoffel
symbols I, having an odd number of X indices vanish,
while those with an even number of X indices are nonzero.
Therefore the nonzero components of all covariant deriv-
atives of the gauge potential A, contain at least one X index
and hence all terms in (A4) containing covariant derivatives
of A, do not contribute to U(x,x’) or V(x,x’) when
contracted with ¢#. As a result, U(x,x’) (Ada), (Adc)-
(Adg) is real and depends only on curvature tensors; the
gauge potential does not contribute.

The gauge field strength has the form

Fo = [515Y — 6X5/F . (A9)
where F 4 depends only on the A coordinates. Hence we
have

VeF

wu = OXVAF 4. (A10)
Therefore V(x,x’) (A4b) is also real. We deduce that
—iGg(x,x') is real and hence ¥ (A8a) is trivially zero,

while &, (A8b) simplifies to

= AV V4 -iGs(x. X)) (AlD)
The derivatives in the above expression commute since
they are evaluated at different space-time points and
Gg(x,x') is a biscalar. Furthermore, Gg(x,x") depends
only on the space-time geometry and the background
electromagnetic field. Therefore Gg(x, x") does not depend
on ¢ and thus V,(—iGg) must be zero. We then have
B2 = 0, as required. . )

In conclusion, the components (J') and (T,.) do not
require renormalization.

APPENDIX B: COMPONENTS OF THE
CURRENT AND STRESS-ENERGY TENSOR

In this appendix we give the explicit formulas for the
mode contributions to the current and stress-energy tensor.
The sums over the azimuthal quantum number m are then
performed using properties of the spherical harmonics
derived in Appendix C.

The classical mode contributions to the current J# are

. q _q0Q
]wfm - 47Tf(l") (a) r >|¢wfm|2’

o == TN B2 (R iy 0,00,

wlm — Ar

(Bla)

rdr r
(B1b)
Hom == 5 WP (P3| V2, (0.0) 5 ¥enl0.0) .
ofm 471'1‘4 ® [0} ‘m 50 m
(Blc)
.0 mq 2
=T 5., B1d
Jwtm 47”,2 sinZ @ |¢(ufm ’ ( )

where J denotes the imaginary part of a complex quantity.
The component jf)fm vanishes identically for all Z and m
using the properties of the spherical harmonics (2.11).
Although the mode contribution to the current component
Jj¥ .. does not vanish, in all our expectation values we will
be summing over m = -7, ...£. From the properties of the
spherical harmonics (2.11), we have |@y ¢ _m|*> = |Purm|*
and hence all sums over m in the expectation values of the ¢
component of the current will vanish. The only nonzero
components of the current will therefore be the ¢ and r
components. The sum over m in these components can be
performed explicitly using (C3), giving

14
ot _ ot
Jor = § :]wfm
m=—¢

__qr+1)
16’ f(r)

VPP (0-22). (B2
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i, = Z o = —MV\Q}FS |:Xz*uf(r)i <th’(r)>}

2
=, 167 r dr r

The components of the mode contributions to the stress-energy tensor are

2 2
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r r2sin%0

w
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(B2b)

(B3a)

(B3b)

(B3c¢)

(B3d)

(B3e)

(B3f)

(B3h)

(B3i)

(B3j)

where ) denotes the real part of a complex quantity. Using (2.11), we immediately have that 7,9z, and t4,, .z, vanish
identically for all # and m. As for the ¢ component of the current, although the mode contributions to the stress-energy
tensor components 7y, .z, and z,, .., are nonzero, when summed over m they vanish. Using the identity (C6), it is also the
case that t,y s, vanishes when summed over m. The remaining components can be summed over m and simplified using

the results (C3), (C9), (C13). Defining
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tv ot = ,:g; wwofm> (B4)
we find

tuwe =t WaP{ [ (0= 22) + A0 P s 1 (P2) L s
frr = — 2?’1:; ! <w - g) AN {Xi (r)% <X"”: (r))] , (B5b)
o =2 WaP{ 5 (0= 22) ostoP - s | 5 (R [, (B30)
Lypwr = Lop.we SIN* 0. (B5e)

From these results the mode contribution to the trace of the stress-energy tensor is
e =2 WP [ (0= 22) -2 b - | () me

Using the radial equation (2.13), this simplifies to

21,” + 1 1X e |?
/,t,mf |N |2D< . (B7)
From (4.17), the mode contribution to the scalar
condensate is
1
SCotm = 5 N e P1X e (D) 1Y (6, )P, (B8)
and hence, using (C3),
£ 20+ 1 5
SCopr = Z SCotm = dnr a2 |N(of| |wa( )| . <B9)
m=—¢
Comparing (B7), (B9), we see that
1
= —EDscwf (B10)

This is to be expected from (4.13), since the curvature terms
in that equation result from the renormalization proc-
ess [61].

APPENDIX C: SOME PROPERTIES OF
SPHERICAL HARMONICS

In this final appendix we collect some results for the
spherical harmonics Y, (0, ) which are employed in

[
Appendix B for simplifying the components of the current
and stress-energy tensor.

We begin with the standard addition theorem for spheri-
cal harmonics

4 ‘
P =———> 7 Y,(0., ¢/ 1
f(COS]/) 2f+] —, fm(ea(p) fm(ev(p)’ (C )
where
cosy = cosfcos@ +sinfsin@ cos (p —¢').  (C2)

Taking the coincidence limit & = 0, ¢’ = ¢ in (C1) yields

the well-known addition formula

4

S ¥ en(0.0) =

m=—¢

20+ 1
4z

(C3)

since Py(1) = 1.
Differentiating both sides of (C1) with respect to 0 gives

4z K 0Y,,(0.9) d(cosy)
m ) Y* 9/, / — P
2+ 1m;f oo enl0.0) =——5=Pi(cosy).
(C4)
with
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0
(C(;); 7) = —sinfcos + cosfsind cos (p — ¢'). (C5)
Taking the coincidence limit, we have
¢
)
> Y = 0. (C6)

m=—¢

We now differentiate (C4) with respect to € to obtain

4r S 0 4 (0,9)0Y5,, (0.9

20414 90 o0
0*(cosy) d(cosy)d(cosy)
=TI by cosy) + 2DV EERD) pi oy, (C7)
where
3}
% = —sin# cos @ + cos @ sinfcos(p — ¢'),
62
% =sin@sin@ + cosfcos @ cos(p —¢’).  (C8)
Taking the coincidence limit yields
¢
oY, |2 20+1 1
2 =——P,(1)=—¢(¢+ 120+ 1),
2 |50 P =g £+ Dr+ 1)
(€9)
since

26 +1)

Py(1) = (C10)

Our final identity is derived by differentiating the addition
theorem (C1) with respect to ¢ and then ¢', which gives

dr f: 0Y 4, (0, 90) Y%, (0. ¢))

20+1 ~,  dgp op’
0*(cosy) d(cosy) d(cosy)
:WP%(COS}/) +T a(p/ P;(COS}/),
(C11)

with

d(cosy) _ d(cosy)
ap o

02
% = sin@sin & cos(p — ¢').

= —sin@sin @' sin(p — ¢'),
(C12)

Taking the coincidence limit, and using (2.11), (C10), we
find

¢

>

m=—¢

2 4

= jg: nﬁ|Yth

m=—¢

oY),
¢

1
= o A+ D+ sin’0. (C13)
T
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