

This is a repository copy of Magnetic properties of gas hydrate-bearing sediments and their association with iron geochemistry in the Sea of Marmara, Turkey.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/195486/

Version: Supplemental Material

Article:

Yang, H, Zhang, P, Lu, H et al. (6 more authors) (2023) Magnetic properties of gas hydrate-bearing sediments and their association with iron geochemistry in the Sea of Marmara, Turkey. Chemical Geology, 620. 121339. ISSN 0009-2541

https://doi.org/10.1016/j.chemgeo.2023.121339

© 2023, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

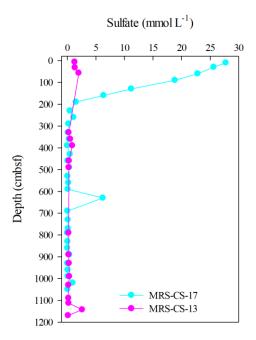
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for

Magnetic properties of gas hydrate-bearing sediments and their association with iron geochemistry in the Sea of Marmara, Turkey


Hailin Yang^{a,b,*}, Peng Zhang^c, Hailong Lu^{a,*}, Meinan Shi^d, Jianming Li^e, Yinghan Lu^a, Yujia Liu^a, Livio Ruffine^f, Simon W. Poulton^b

- ^a Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- ^b School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- ^c State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- ^d School of Ocean Sciences, China University of Geoscience, Beijing 100083, China
- ^e Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
- f Ifremer, Univ Brest, CNRS, UMR Geo-Ocean, F-29280 Plouzané, France
- * Corresponding author *E-mail address*: <u>hlu@pku.edu.cn</u> (H. Lu), <u>hyang@pku.edu.cn</u> (H. Yang).

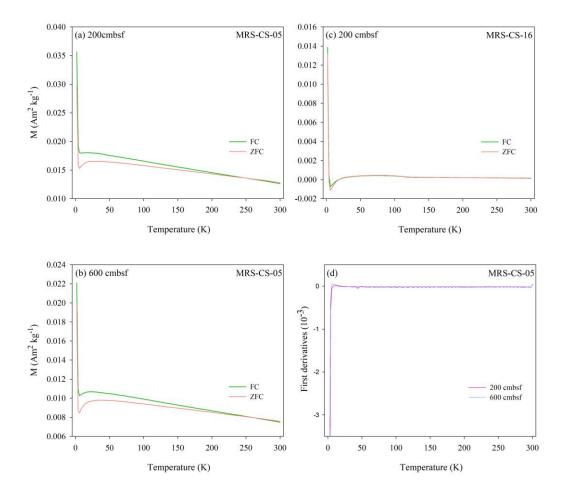

Contents of this file

Figure S1

Tables S1 to S2

Fig. S1. Porewater sulfate concentration of core MRS-CS-13 (same site with MRS-CS-05) and MRS-CS-17 (same site with MRS-CS-16)

Fig. S2. Zero field-cooled (ZFC) and field-cooled (FC) curves for representative samples from the two selected cores.

 Table S1 Magnetic characteristics of iron bearing minerals

Speciation	Mineral	Chemical form	Magnetic	Magnetic	Curie or Néel
			property	susceptibility	temperature
				$(10^{-8} \mathrm{m}^3/\mathrm{kg})$	(°C)
Iron oxides	Magnetite	Fe ₃ O ₄	Ferrimagnetic	$5-10\times10^4$	580
	Hematite	α -Fe ₂ O ₃	Antiferromagnetic	58-78, 119-169	675
Iron	Goethite	α-FeOOH	Antiferromagnetic	35, 38, 70, <126	120
(oxyhydr)oxides	Ferrihydrite	$Fe_5HO_8 \cdot 4H_2O$	Antiferromagnetic	100	-158258
	Lepidocrocite	γ-FeOOH	Paramagnetic	50-75, 69	-196
Iron carbonate	Siderite	FeCO ₃	Paramagnetic	100	-238
Iron sulfides	Pyrite	FeS_2	Paramagnetic	30	
	Monoclinic Pyrrhotite	Fe_7S_8 , $Fe_{1-x}S$	Ferrimagnetic	5×10^3	320
	Hexagonal Pyrrhotite	$Fe_9S_{10}, Fe_{11}S_{12}$	Antiferromagnetic		
	Greigite	Fe_3S_4	Ferrimagnetic	$0.5 - 2 \times 10^4$	330

Note: "—" no solid data

Table S2 Correlations between magnetic susceptibility (χ) values and iron mineral contents

	χ	Fecarb	Fe _{ox1}	Fe _{ox2}	Fe _{mag}
		(dominantly	(dominantly	(dominantly	(dominantly
		siderite)	lepidocrocite)	hematite)	magnetite)
MRS-CS-05					
χ	1	0.717	0.488	-0.022	-0.464
siderite		1	0.908**	-0.560	-0.541
lepidocrocite			1	-0.636	-0.561
hematite				1	0.276
magnetite					1
MRS-CS-16					
χ	1	0.575	0.190	0.872**	-0.314
siderite		1	0.535	0.247	-0.223
lepidocrocite			1	-0.196	0.221
hematite				1	-0.372
magnetite					1

Pearson correlation matrix by SPSS statistical software; ** correlation is significant at the 0.01 level.