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Abstract 17 

The anaerobic oxidation of methane, a key geochemical process that is involved in the cycling 18 

of sulfate and iron (oxyhydr)oxides in marine sediments, results in the formation of iron sulfides. 19 

Although ferrimagnetic iron sulfides have been identified in seepage systems, the link between iron 20 

migration and sediment magnetic properties remains poorly understood. Here, we investigate two 21 

cores from the Sea of Marmara to evaluate biogeochemical iron cycling and iron sulfide mineralogy 22 

in gas hydrate-bearing sediments. Magnetic analyses indicate the presence of greigite and pyrrhotite 23 

in a core from a hydrate-rich site with a high hydrocarbon flux, which contrasts with a lack of these 24 

minerals in a core characterized by only mild seepage. This is supported by the results of rock 25 

magnetic and scanning electron microscope analyses of the sediments. The presence of authigenic 26 

greigite is critical for assessing local redox records and together with the occurrence of monoclinic 27 

pyrrhotite may suggest specific diagenetic processes in gas hydrate environments. Our analysis 28 

demonstrates the usefulness of these ferrimagnetic minerals, with a high saturation isothermal 29 

remanent magnetization to magnetic susceptibility ratio (SIRM/χ > 15 kAm−1) and a high index of 30 

hysteresis parameters (DJH > 0.2) indicative of magnetic mineralogy changes, for evaluating 31 

variability in the intensity of seepage fluxes and for estimating gas hydrate distributions. 32 

 33 

Keywords 34 

Iron geochemistry  35 

Magnetic properties 36 

Sea of Marmara 37 

Seepage activity 38 

Gas hydrate 39 

Sediments  40 



1. Introduction 41 

The nature of iron sulfide minerals formed during diagenesis (e.g., pyrite (FeS2), greigite 42 

(Fe3S4), pyrrhotite (Fe1-xS)) in gas hydrate‐bearing systems commonly exerts a significant influence 43 

on the magnetic properties of associated marine sediment (Bertolin et al., 1995; Roberts and Weaver, 44 

2005; Horng and Roberts, 2006; Merinero et al., 2008; Roberts, 2015; Kars and Kodama, 2015; 45 

Zheng et al., 2016). In such sediments, the rate of anaerobic oxidation of methane (AOM) tends to 46 

correlate positively with the upward migrating methane flux (Borowski et al., 2013), with sulfate 47 

reduction coupled to AOM (sulfate-AOM) producing hydrogen sulfide that reacts with Fe2+ to form 48 

the iron sulfide minerals (Jørgensen, 1990; Mazumdar et al., 2012; Horng, 2018). In these reactions, 49 

dissolved ferrous iron is a key reactant and its availability is controlled by local redox conditions 50 

(Lim et al., 2011; Lin et al., 2016). Compared with sulfate, Fe (oxyhydr)oxides are more energetically 51 

favorable electron acceptors during AOM, particularly below the sulfate-methane transition zone 52 

(SMTZ) in deep-sea sediments (Yang et al., 2021). However, the specific geochemical pathway 53 

involving iron during AOM (Fe-AOM) is unresolved, and the origin of the dissolved iron remains 54 

unclear (Boetius et al., 2000; Gorlas et al., 2018; Luo et al., 2020). 55 

High pyrite concentrations may occur in the SMTZ, and its preservation in the geological record 56 

has been suggested as a possible proxy for sustained methane delivery from deeper sediments (Chen 57 

et al., 2006; Lim et al., 2011; Lin et al., 2016). While magnetic minerals, such as iron sulfides and 58 

(oxyhydr)oxides, also occur in methane-rich sediments associated with gas hydrates, the nature of 59 

this association has not been adequately resolved (Musgrave et al., 2006; Larrasoaña et al., 2007; Lin 60 

et al., 2021). The magnetic properties and paleomagnetic signature of host sediments are altered by 61 

the characteristics of the iron minerals that form as a result of in-situ increases in methane or gas 62 

hydrate. Complex interplays of factors, including the availability of dissolved iron, sedimentation 63 

rate, and fluid and gas circulation, determine the dissolution and precipitation of iron minerals (Yang 64 

et al., 2018; Chen et al., 2021). However, changes in sediment magnetic properties during generation 65 

of authigenic iron sulfides from other iron minerals have not been fully explored in either 66 

experimental or field studies. 67 

Here, we report magnetic properties for two sediment cores from the Sea of Marmara (SoM), 68 

Turkey, combined with high-definition scanning electron microscope observations of iron sulfide 69 

minerals and selective geochemical extractions of Fe phases. Our aim is to identify whether 70 

ferrimagnetic iron sulfides such as greigite and pyrrhotite are present, and if so, to clarify their 71 



formation and preservation pathways, as well as their potential as indicators of a high methane flux 72 

related to the occurrence of gas hydrates. 73 

 74 

2. Geological Background and Samples 75 

The SoM is a semi-closed sea connecting the Black Sea to the Mediterranean Sea (Fig. 1). It 76 

is located in an area characterized by high seismic activity owing to the presence of the North 77 

Anatolian Fault, which facilitates upward fluid migration to the sea floor, and seawater infiltration 78 

into the sediment (Ambraseys, 2002; Dupré et al., 2012; Géli et al., 2018; Grall et al., 2018; Henry 79 

et al., 2018). The SoM has three main basins – the Tekirdağ and Çınarcık basins in the west and east, 80 

respectively, and the Central basin (Okay et al., 2000; Şengör et al., 1985; Sorlien et al., 2012; 81 

Çağatay and Uçarkuş, 2019). These basins are separated by two highs – the Western High and the 82 

Central High (Fig. 1). Gas emissions are widespread in the SoM, and result from mixing of gases 83 

originating from thermogenic, microbial or mantle sources (Géli et al., 2008; Bourry et al., 2009; 84 

Burnard et al., 2012; Ruffine et al., 2018a; Ruffine et al., 2018b). 85 

 86 

Fig. 1. Location map of the Western High (core MRS-CS-05, where gas hydrates have been discovered) and 87 

Çınarcık Basin (core MRS-CS-16, without gas hydrate) in the Sea of Marmara.  88 

 89 

Samples were collected during the MarsiteCruise expedition in November 2014 onboard the 90 

R/V Pourquoi Pas?. Two 10-m-long cores were collected with a piston corer (Calypso®) from the 91 

Western High (core MRS-CS-05) and the Çınarcık Basin (core MRS-CS-16) (Fig. 1). After recovery, 92 

the cores were cut and sampled in the ship-based laboratory. Subsamples at 1 m intervals were 93 

vacuum freeze-dried for subsequent analyses. Gas hydrates were recovered from the Western High, 94 



where hydrate-bound gases are primarily of thermogenic origin, comprising CH4 (82−87%), heavy 95 

hydrocarbons (4.6−8.9%), and relatively high CO2 concentrations (7.6−8.6%). By contrast, gas 96 

hydrate is not present in the Çınarcık Basin, and instead primary microbial gases occur, comprising 97 

a high CH4 concentration (> 99.6%) and trace amounts of heavy hydrocarbons (< 0.01%) and CO2 98 

(< 0.1%) (Ruffine et al., 2018c). 99 

The sedimentary sequence in core MRS-CS-05 from the Western High consists of an upper 100 

marine unit (~0−3.5 mbsf) and an underlying lacustrine unit, whereas the sequence in core MRS-CS-101 

16 from the Çınarcık Basin comprises only the upper marine unit. The marine unit of core MRS-CS-102 

05 is composed of dark green-gray silty clay with total organic matter (TOC) content of 1.7 ± 0.4 103 

wt% and total iron sulfide content of 0.7 ± 0.2 wt%, and the lacustrine unit contains brecciated and 104 

soupy structures, which can be attributed to gas hydrate dissociation. The marine unit of core MRS-105 

CS-16 is a hemipelagic greenish-gray mud sequence, with a TOC content of 1.2 ± 0.2 wt% and a 106 

total iron sulfide content of 0.5 ± 0.2 wt%, and is interrupted by numerous sandy turbidites and gas 107 

expansion voids (Yang et al., 2018; Liu et al., 2019).  108 

The Holocene sedimentation rate is lower in the Western High (~0.2−0.5 m/ka) than in the 109 

Çınarcık Basin (~1−2 m/ka; Çağatay et al., 2000; Çağatay et al., 2009; Çağatay et al., 2015). Thus, 110 

the core from the Western High records environmental and geological changes through the Late-111 

Pleistocene to Holocene, including a warm/wet climatic period and marine transgression from the 112 

Mediterranean at ~12.6 kyr (Major et al., 2002; Vidal, 2010; Eriş et al., 2012; Çağatay et al., 2015). 113 

The core from the Çınarcık Basin captures more recent, hemipelagic sedimentation from ~7.7 kyr to 114 

the present (Liu et al., 2021).  115 

 116 

3. Material and Methods 117 

3.1. Magnetic measurements 118 

Sediment magnetic susceptibility (χ) was measured using a Bartington Instruments MS2 119 

magnetic susceptibility meter. Temperature dependence of low-field magnetic susceptibility (χ-T) 120 

was measured in an argon atmosphere using an AGICO MFK1-FA Kappabridge magnetic 121 

susceptibility meter. Hysteresis loop and isothermal remanent magnetization (IRM) measurements, 122 

limited to a maximum field of 1T, were performed with a MicroMag 3900 alternating-gradient 123 

magnetometer. The IRM imparted with a 1T field is referred to as saturation IRM (SIRM). First-124 

order reversal curves (FORCs) were measured (Pike et al., 1999) and FORC diagrams were processed 125 



with the FORCinel software (Harrison and Feinberg, 2008). Low-temperature magnetic 126 

measurements were also conducted using a Quantum Design Magnetic Properties Measurement 127 

System (MPMS). Housen and Musgrave (1996b) proposed an index DJH, which is the ratio of the 128 

hysteresis parameters (Mrs/Ms)/(Bcr/Bc), to identify magnetic mineralogy changes associated with gas 129 

hydrates. Mrs is the saturation remanence, Ms is the saturation magnetization, Bcr is the remanent 130 

coercive field, and Bc is the coercive field. 131 

 132 

3.2. Iron speciation and mineral analysis 133 

The sequential extraction procedure of Poulton and Canfield (2005) was used to determine 134 

operationally-defined Fe pools. Target phases include Fe carbonates (e.g., siderite and ankerite) 135 

extracted with sodium acetate for 24 h (Fecarb); easily reducible Fe (oxyhydr)oxides (e.g., ferrihydrite 136 

and lepidocrocite) extracted with hydroxylamine–hydrochloride for 48 h (Feox1); reducible, 137 

crystalline iron (oxyhydr)oxides (e.g., goethite, akageneite and hematite) extracted with sodium 138 

dithionite for 2 h (Feox2), and mixed ferrous-ferric minerals (e.g., magnetite) extracted with 139 

ammonium oxalate for 6 h (Femag). Fe contents in each extraction solution were determined using 140 

inductively coupled plasma optical emission spectrometry (ICP-OES). Bulk Al and Ti contents were 141 

determined by ICP-OES after microwave digestion. The concentrations of these elements were within 142 

the certified ranges, with precision better than 3%. To provide more detailed information about the 143 

main Fe phases extracted in each step, a subsample was investigated by X-ray powder diffraction 144 

(PANalytical X’Pert Pro). An additional subsample was used to determine iron sulfide mineral 145 

morphology, which was determined using a focused ion beam-scanning electron microscope (FIB-146 

SEM, Helios NanoLab 650) equipped with an energy dispersive X-ray spectrometry (EDS). 147 

 148 

4. Results 149 

4.1. Magnetic properties 150 

Low χ values (almost < 20×10−8 m3/kg) were measured in core MRS-CS-16; while χ for samples 151 

from core MRS-CS-05 has higher values (mainly > 40×10−8 m3/kg), with a maximum value at 400 152 

cmbsf depth (Fig. 2a). SIRM/χ values are generally higher in core MRS-CS-05 relative to core MRS-153 

CS-16 (Fig. 2b).  The magnetic index DJH is also higher in samples from core MRS-CS-05 154 

(0.25−0.31) than those in core MRS-CS-16 (average 0.06) (Fig. 2c).  155 



 156 
Fig. 2. Downcore magnetic parameter and geochemical trends. (a) Magnetic susceptibility (χ), (b) SIRM/χ, (c) DJH 157 

(Mrs/Ms versus Bcr/Bc), (d) Al/Ti ratio, and (e−h) operationally-defined Fe phases determined via sequential 158 

extraction. The dominant mineral phases in each Fe pool are: Fecarb: siderite; Feox1: lepidocrocite; Feox2: hematite; 159 

and Femag: magnetite. Dashed lines in (b) and (c) refer to threshold parameters for identifying ferrimagnetic iron 160 

sulfide and gas hydrate occurrences. 161 

 162 

χ-T curves (Fig. 3) have different behavior for the two cores. In core MRS-CS-05, the curves 163 

for samples from 200 and 600 cmbsf are similar (Fig. 3a, c). Notably, for a sample from 400 cmbsf, 164 

the heating curve rises sharply at ~370°C and then decreases and approaches zero at 580°C (Fig. 3b). 165 

By contrast, there is no notable difference among χ-T curves for samples from core MRS-CS-16 (Fig. 166 

3d−f). 167 



 168 
Fig. 3. Magnetic susceptibility versus temperature (χ-T) curves for selected samples from cores MRS-CS-05 (a−c) 169 

and MRS-CS-16 (d−f). Red and blue lines denote heating and cooling curves, respectively. 170 

 171 



 Hysteresis loops for samples from two cores are shown in Fig. 4. Hysteresis loops for samples 172 

from core MRS-CS-05 have relatively high coercivities and widths, with S-shaped loops (Fig. 4a), 173 

while the coercive forces for samples from core MRS-CS-16 are lower, with narrower sigmoidal 174 

shaped hysteresis loops (Fig. 4b). 175 

 176 
Fig. 4. Hysteresis loops for samples from the two cores from the Sea of Marmara. Results for (a) samples from 177 

core MRS-CS-05, and (b) samples from core MRS-CS-16. 178 

 179 

FORC diagrams further confirm the different magnetic properties of the two cores. The closed 180 

oval-shaped contours with a central peak in FORC diagrams (Fig. 5a−c) and Mrs/Ms (Fig. 5f) 181 

demonstrate that samples from MRS-CS-05 contain a high proportion of single domain (SD) greigite 182 

(Roberts et al., 2006, 2011). 183 



 184 
Fig. 5. FORC diagrams and hysteresis ratios plotted on a Day plot (Day et al., 1977). (a), (b) and (c) Concentric 185 

contours and a large vertical spread are indicative of a significant SD contribution in core MRS-CS-05, which 186 

contrasts with the results from core MRS-CS-16 in (d), (e) and the blue oval zone in (f). Bu: interaction field among 187 

particles. SF: smoothing factor. 188 



 189 

Moreover, the Besnus transition at ~30−34K is recognizable in ZFC and FC curves for a sample 190 

from core MRS-CS-05 (Fig. 6a) due to the presence of monoclinic pyrrhotite (Besnus and Meyer, 191 

1964; Dekkers et al., 1989; Rochette et al., 1990; Horng and Roberts, 2018) and/or siderite (Housen 192 

et al., 1996a). However, there is no obvious Besnus transition in other samples from the two cores 193 

(Fig. 6b and Fig. S2). 194 

 195 

Fig. 6 Zero field-cooled (ZFC) and field-cooled (FC) curves for representative samples from the two cores. Results 196 

indicate that (a) monoclinic pyrrhotite occurs at 400 cmbsf in core MRS-CS-05, and (b) neither a Besnus transition 197 

nor a Verwey transition are apparent in curves for a sample from core MRS-CS-16. 198 

 199 

4.2 Sediment geochemistry 200 

The Al/Ti ratio in the two cores is approximately 18.2 ± 0.2 wt% (Fig. 1d). Variations in Fe 201 

speciation are shown in Fig. 2e−h. Higher Fecarb concentrations generally occur in samples from core 202 

MRS-CS-05 (ranging from 0.08 to 0.41 wt%) compared to those from core MRS-CS-16 (< 0.18 wt% 203 

(Fig. 1e). Feox1 concentrations in both cores remain nearly constant at 0.19 ± 0.01 wt%, except for a 204 

sample from 400 cmbsf from core MRS-CS-05, where the concentration is 0.61 wt% (Fig. 1f). For 205 

Feox2, the values in core MRS-CS-05 are relatively stable, with an average of 0.12 ± 0.02 wt%, while 206 

in core MRS-CS-16, Feox2 values are higher than 0.21 wt% and reach a peak of 0.94 wt% at 100 207 

cmsbf (Fig. 1g). The two cores have similar Femag values (0.13−0.19 wt%) in the 100−600 cmbsf 208 

intervals, with a small increase at the bottom of core MRS-CS-16 (Fig. 1h). The SMTZ was 209 



determined using porewater sulfate data from two additional cores taken close to the sampled cores 210 

(Fig. S1) and the results indicate that the present-day SMTZ of the MRS-CS-05 site is close to the 211 

sediment-water interface, which contrasts with the relatively deep SMTZ depth of ~200 cmbsf at the 212 

MRS-CS-16 site. These SMTZ depths in the Çınarcık Basin and Western High are in agreement with 213 

those of previous studies (Çağatay et al., 2004; Tryon et al., 2010). 214 

 215 

4.3 FIB-SEM observations 216 

Pyrite is observed by FIB-SEM at several depths in the two cores and can be used to indicate 217 

methane activity. Framboidal pyrite represents the dominant pyrite morphology, but a variety of 218 

morphologies occur, including isolated or clustered pyrite framboids, cubic and octahedral 219 

microcrystals, and irregular pyrite aggregates (Fig. 7a−f).  220 

 221 

Fig. 7. High-resolution images of pyrite and greigite (analysed by FIB-SEM) in samples from core MRS-CS-05. 222 

(a)−(f) Different pyrite morphologies. Crystal edges in (c) and (f) may suggest nucleation processes affected by 223 

methane seepage. (g) and (h) Fine-grained SD greigite. (i) EDS elemental mapping of greigite in (h). 224 



 225 

5. Discussion 226 

5.1. Magnetic mineralogy of the sediment cores 227 

High χ values were observed previously in cores at ~400 cmbsf from the Western High, which 228 

are considered to be associated with the lacustrine/marine transition and the sapropel layer (Drab et 229 

al., 2015; Makaroğlu et al., 2020). Similar High SIRM/χ values (> 15 kAm−1) in core MRS-CS-05 230 

are potential indicators of ferrimagnetic greigite (Snowball and Thompson, 1988; Roberts, 1995; 231 

Chen et al., 2021), which suggests that this mineral may be common in this core. For the sample from 232 

400 cmbsf, the warming curve (Fig. 3b) has a decreasing trend between 300 and 400°C, which 233 

probably reflects the occurrence of ferrimagnetic greigite and/or pyrrhotite (Maher and Thompson, 234 

1999; Roberts et al., 2011). Another peak at ~480°C that subsequently decreases to zero at 580°C 235 

indicates the Curie temperature of magnetite, which we attribute to the transformation of greigite to 236 

magnetite at and above ~370°C during heating (Table S1; Dunlop and Özdemir, 1997). The Besnus 237 

transition at 32K by the first derivative (Fig. 6a), approximate reversible heating and cooling curves 238 

with a Curie temperature of ~320°C (Fig. 3b), and markedly high Mrs/Ms values and low Bcr/Bc 239 

values all suggest that monoclinic 4C pyrrhotite is present, rather than its polytype hexagonal 3T 240 

pyrrhotite or siderite (35−38K) (Dekkers, 1989; Frederichs et al., 2003; Roberts, 2015; Horng, 2018). 241 

Magnetic property measurements, together with FIB-SEM-EDS imaging, provide evidence that SD-242 

sized greigite is the primary remanence carrier in core MRS-CS-05. These magnetic anomalies are 243 

consistent with the finding that high DJH values (> 0.2) are indicative of gas hydrates (Housen and 244 

Musgrave 1996b; Kars and Kodama, 2015).  245 

 246 

5.2. Factors affecting magnetic characteristics 247 

Al and Ti, which are conservative elements during chemical weathering and diagenesis (Nesbitt 248 

and Markovics, 1997; Wei et al., 2003), are commonly used to estimate the abundance of terrigenous 249 

material in sedimentary environments (Murray and Leinen, 1996). The relatively consistent and 250 

stable Al/Ti ratios suggest a similar detrital origin for the two cores. Hence, the variability in iron 251 

speciation, as a redox sensitive proxy, dominantly reflects differences in local redox conditions and 252 

Fe mineral transformations, rather than variability in the detrital mineral input. Authigenic greigite 253 

and pyrrhotite in core MRS-CS-05 (Fig. 3a−c, Fig. 5a−c, Fig. 6a, Fig.7g−i) are intermediate mineral 254 

phases during the formation of pyrite (Gagnon et al., 1995; Roberts and Weaver, 2005). Framboidal 255 



pyrite can form in syn- and early-diagenesis and its precise morphology may reflect specific 256 

environmental and geochemical parameters (Wilkin et al., 1996; Çağatay et al., 2004; Chang et al. 257 

2020). A peak in pyrite concentrations in methane seepage sediments commonly indicates the 258 

location of the SMTZ (Larrasoaña et al., 2007; Dewangan et al, 2013). However, because greigite is 259 

also widespread throughout the core, the pyrite concentration profile considered in isolation, likely 260 

does not indicate the present-day SMTZ position. 261 

Previous studies suggest that under appropriate conditions, such as during rapid sedimentation 262 

with an associated upward SMTZ shift, preservation of greigite rather than pyrite may dominate in 263 

continental margin sediments (Greve et al., 2021). The sedimentation rate and SMTZ in the Western 264 

High (MRS-CS-05) is lower than that in the Çınarcık Basin (MRS-CS-16) (Çağatay et al., 2004), so 265 

magnetic mineral diagenesis in core MRS-CS-05 is more likely linked to a strong fluid flux due to 266 

gas hydrate dissociation, with the SMTZ occurring close to the seafloor. Indeed, near seafloor gas 267 

hydrate formation and decomposition were previously reported from the Western High by Tryon et 268 

al. (2010) and Ruffine et al (2018b, c), which also plays a key role in pore-water salinity, which in 269 

turn is likely to be an important controlling factor during greigite preservation (Chen et al., 2021). 270 

However, the abrupt increase in Fecarb and Feox1 minerals (Fig. 2e, f) and the decrease in greigite (Fig. 271 

2b) below ~400 cmbsf in core MRS-CS-05 are mainly due to the low-salinity and sulfate-limited 272 

lacustrine conditions in the Sea of Marmara before ~12.6 ka. 273 

 274 

5.3. Iron pools and pathways 275 

During Fe mineral diagenesis, the magnetic characteristics of core MRS-CS-05 changed 276 

dramatically, due to the formation and preservation of authigenic greigite and pyrrhotite. Although 277 

the two cores have similar Fe concentrations in the Femag pool (with a possible slight relative increase 278 

in the deeper sediments of core MRS-CS-16; Fig. 2h), magnetite may not contribute significantly to 279 

the magnetic susceptibility because of the reducing sedimentary conditions, as discussed below. In 280 

addition, the ferric-Fe pools (i.e., Feox1 and Feox2, which dominantly comprise lepidocrocite and 281 

hematite, respectively) generally have low and stable concentrations in core MRS-CS-05, with the 282 

exception of the peak in Feox1 linked to the development of lacustrine conditions with sulfate 283 

limitation (Fig. 2f). These low concentration ferric-Fe pools are accompanied by the presence of 284 

reduced non-sulfidic Fe phases in the Fecarb pool (e.g., siderite; Fig. 2e), and Fe sulfides such as 285 

greigite, pyrrhotite and pyrite (Fig. 3a−c, Fig. 5a−c, Fig. 6a, Fig.7g−i). We conclude that the primary 286 



reactive iron (oxyhydr)oxides in MRS-CS-05 were subjected to strongly reducing and acidic 287 

conditions, which were associated with upward migrating hydrate-bound gases and methanogenesis, 288 

thus producing dissolved Fe(II), which subsequently formed iron sulfide minerals, thereby 289 

dramatically changing the sediment magnetic properties .  290 

The above observations indicate that the occurrence and preservation of greigite and pyrrhotite 291 

in marine sediments has important implications for the interpretation of magnetic records. Two 292 

scenarios can be considered to explain the magnetic properties and iron mineralogy in the two cores 293 

(Fig. 8). Scenario A involves methane production and consumption during early diagenesis, where 294 

sulfate-driven AOM results in the precipitation of pyrite and calcite (which is precipitated 295 

preferentially over siderite). This scenario may result in low Fecarb concentrations (e.g., Fig. 2e) and 296 

the weak magnetism observed for core MRS-CS-16. Here, detrital iron (oxyhydr)oxides (e.g., 297 

hematite) may be the main contributor to the χ values (Table S2, r = 0.872). 298 

 299 

Fig. 8. Two scenarios involving different iron geochemical pathways that may explain the magnetic properties and 300 

mineralogy observed in the two cores. Scenario A is the most common in a methane seepage environment, with 301 

paramagnetic iron sulfides formed in sediments due to sulfate-AOM. Scenario B proposes Fe-AOM as a significant 302 



factor associated with reductive dissolution of Fe (oxyhydr)oxides, which results in the precipitation of sulfide 303 

minerals such as greigite and pyrrhotite, with a major change in the local magnetic characteristics. 304 

 305 

In scenario B, post-depositional processes in gas hydrate sediments are affected by a strong 306 

hydrocarbon flux. The associated fluids, with high CO2 concentrations and heavy hydrocarbons, exert 307 

a strong influence on redox conditions and pH, thereby enhancing the dissolution of detrital iron 308 

(oxyhydr)oxides, as observed in core MRS-CS-05 (Fig. 2f, g). The dissolved Fe(II) results in different 309 

potential geochemical pathways (1, 2 and 3 in Fig. 8). If HS− and HCO3
− from AOM are abundant, 310 

pyrite and siderite are the dominant phases formed, with little change in magnetic properties 311 

(pathways 1 and 2). However, when the SMTZ is located near the seafloor, HS− is deficient in 312 

porewaters, leading to greigite and pyrrhotite formation. This provides an explanation for the down-313 

core magnetic property evolution of core MRS-CS-05 (pathway 3). Under such conditions, Fe-driven 314 

AOM (FeIII oxides + CH4 + H+ → FeII + HCO3
− + H2O) likely exerts a strong influence on the 315 

magnetic minerals formed. 316 

 317 

6. Conclusions 318 

Magnetic property measurements and geochemical data, combined with electron microprobe 319 

imaging, were systematically conducted on two cores from the Sea of Marmara. The presence of 320 

authigenic greigite and monoclinic pyrrhotite are inferred in the core from the Western High, which 321 

was sampled in a current seepage with abundant gas hydrate distribution. This authigenic mineral 322 

suite was formed due to upward-migrating fluids that contain dissolved methane and high 323 

concentrations of CO2 and heavy hydrocarbons. Our findings establish a close relationship between 324 

sediment magnetic properties, diagenetic iron cycling, and the presence of gas hydrate. Based on the 325 

observed magnetic property changes, specific geochemical iron cycling pathways may explain 326 

greigite and pyrrhotite formation. It appears that salinity and hydrogen sulfide are also factors that 327 

favor preservation of these iron sulfides. Therefore, rock magnetism combined with geochemical data 328 

are promising tools for constraining gas hydrate distributions in both modern and ancient settings. 329 
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