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On the Efficient Simulation of the Distribution of

the Sum of Gamma-Gamma Variates with

Application to the Outage Probability Evaluation

Over Fading Channels
Chaouki Ben Issaid, Nadhir Ben Rached, Abla Kammoun, Mohamed-Slim Alouini, and Raul Tempone

Abstract—The Gamma-Gamma distribution has recently
emerged in a number of applications ranging from modeling
scattering and reverberation in sonar and radar systems to
modeling atmospheric turbulence in wireless optical channels.
In this respect, assessing the outage probability achieved by
some diversity techniques over this kind of channels is of major
practical importance. In many circumstances, this is related to the
difficult question of analyzing the statistics of a sum of Gamma-
Gamma random variables. Answering this question is not a
simple matter. This is essentially because outage probabilities
encountered in practice are often very small, and hence the use
of classical Monte Carlo methods is not a reasonable choice.
This lies behind the main motivation of the present work. In
particular, this paper proposes a new approach to estimate
the left tail of the sum of Gamma-Gamma variates. More
specifically, we propose robust importance sampling schemes that
efficiently evaluates the outage probability of diversity receivers
over Gamma-Gamma fading channels. The proposed estimators
satisfy the well-known bounded relative error criterion for both
maximum ratio combining and equal gain combining cases. We
show the accuracy and the efficiency of our approach compared
to naive Monte Carlo via some selected numerical simulations.

Index Terms—Gamma-Gamma, generalized-K, importance
sampling, Monte Carlo, bounded relative error, outage proba-
bility, maximum ratio combining.

I. INTRODUCTION

The Gamma-Gamma distribution has recently emerged in

many communication systems. Not only that it generalizes

other types of distributions that are used to model the statistics

of the fading channels, such as the K and the double Rayleigh

distribution for instance, but it also shows a good agreement

with the measurements from the experiments conducted in

[1, 2] for example. In radar and sonar systems, it has been

used to model scattering [3] and reverbation [4]. It has been

broadly accepted as an appropriate model for both line-of sight

and non-line-of sight wireless radio-frequency channels [5, 6].

Lately, it started to gain popularity in modeling atmospheric
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turbulence in wireless optical channels [7, 8]. The Gamma-

Gamma distribution is a compound model since it presents

the product of two Gamma random variables (RVs) that model

the small and large scale fluctuations, respectively [9]. It was

shown that this probability density function (PDF) models

accurately the atmospheric turbulence in free-space optics

(FSO) over a wide range being a good fit for both weak and

strong turbulence regimes [10, 11]. A concise review of the

use of Gamma-Gamma to model the statistics of the signal

fading channels can be found in [10].

The statistics of the sum of Gamma-Gamma RVs is needed,

for instance, when investigating the efficiency of certain

diversity techniques, e.g. maximum ratio combining (MRC)

or equal gain combining (EGC) [12]. To the best of our

knowledge, a closed-form expression for the distribution of the

sum of independent and not necessarily identically distributed

(i.n.i.d) Gamma-Gamma RVs, known also as the generalized-

K distribution, does not exist in the literature. In fact, the

presence of the modified Bessel function of the second kind

in the expression of the Gamma-Gamma PDF, makes this

task analytically challenging [13]. In the independent and

identically distributed (i.i.d) case, there have been few attempts

to derive analytically the sum of Gamma-Gamma variates.

The first attempt was in [14] where the authors presented

the PDF of the sum in the case of i.i.d RVs as a nested

series. The limitation of this derivation is that the fading

parameters were assumed to be integers. For the non-integer

case, an infinite series representation was derived in [15] using

the generalized power series representation of the modified

Bessel function of the second kind. The analytical compli-

cations and the computational burden of deriving the exact

PDF of the sum led many authors to turn their attention

to look for an approximate distribution. In [16], the authors

used a single Gamma PDF as an approximate distribution of

the generalized-K PDF. By matching the first moment and

the amount of fading of the instantaneous power in both

cases, the parameters of the Gamma PDF were derived for

both the i.i.d and i.n.i.d scenarios. A similar approach was

introduced in [17] where a Gamma-Gamma PDF is used to

approximate the distribution of the sum. Matching the moment

generating functions (MGFs) of the generalized-K and the

Gamma-Gamma PDFs led to determine the expression of the

parameters of the approximate PDF. In [13], the distribution

of the sum was approximated by a single Gamma-Gamma
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distribution in the i.i.d case. In the i.n.i.d scenario, a nested

finite weighted sum of Gamma-Gamma PDFs was used to fit

the PDF of the sum. The latter approximation assumes that

one of the shaping parameters, is the same for all variates. A

more general distribution, α − µ, was used in [18], to fit the

distribution of the sum in the i.i.d case. In his work, Peppas

used the moment matching technique, and more specifically,

the first, the second, and the fourth moments were used to

determine the parameters of the α − µ distribution. The sum

of K-distributed RVs, a special case of the sum of Gamma-

Gamma variates, has been investigated in [19]. The authors

have derived infinite series expressions for both the PDF

and the cumulative distribution function (CDF) of the sum

of K-distributed RVs. Capitalizing on these expressions, they

have studied the system performance, in the presence of fad-

ing/shadowing, noise and interference, in terms of the average

bit error probability and the outage probability. However, it is

well-known that an approximation has the risk to lead to an

inaccurate representation of the distribution of the sum of the

RVs for a certain set of parameters. Indeed, although it often

simplifies the analysis without producing large errors, it may

be that such an approximation is sensitive to the parameters

of the problem. Thus, it can be accurate for some values

and not for others. For the sake of illustration, the authors

in [17] have shown a clear discrepancy between simulation

and the approximate approaches presented in [13, 16, 18].

To overcome this problem, one can resort to a numerical

simulation approach, e.g. Monte Carlo (MC) method, which

can provide more accurate results.

In this work, we are interested in estimating the probability

of rare events (e.g. of the order of 10−8), for which the MC

method is inaccurate if the sample size is not large enough

[20]. In fact, a naive MC estimator, based on a reasonably

limited number of simulation runs, may provide irrelevant re-

sults. For example, suppose we want to compute a probability

p = 10−8 and we decided to use only 106 samples. With a

probability greater than 0.99, the result will be equal to zero

providing irrelevant information on the value of p and the 99%
confidence interval in this case is [0, 4.6×10−6], thus a grossly

erroneous estimation [21]. If one wants to obtain reasonably

accurate results when dealing with rare events, one can use

variance reduction techniques, for instance the importance

sampling (IS) method [22]. IS introduces a new distribution,

often called biased PDF, that “encourages” the sampling of

values from the importance region. The fundamental point in

the implementation of a simulation using IS is the choice of

the biased distribution. Constructing a good biased distribution

is the art of IS. In fact, the advantage can then be a tremendous

computational time savings while the disadvantage, in the case

of a poor choice of biased distribution, is an estimator with

a larger variance than a MC estimator. That is why, an IS

estimator needs to satisfy certain criteria to guarantee the

efficiency of the method.

In this paper, we propose efficient IS schemes for the

estimation of the outage probability of multibranch MRC and

EGC diversity receivers over Gamma-Gamma fading channels.

More precisely, we select the biased PDF as a Gamma-

Gamma distribution with shifting a certain parameter in the

functional form of the distribution. The main result of our work

is that the proposed IS approaches possess the well-desired

bounded relative error property, in both MRC and EGC cases,

which means that the number of samples required to meet a

fixed accuracy requirement remains bounded independently of

how small is the outage probability. It is important to note

that, to the best of the authors knowledge, the use of the

IS method to estimate the outage probability with diversity

techniques among researchers in wireless communications is

quite limited. Recently, the authors in [23] have addressed this

problem using two unified IS schemes. However, not only the

i.i.d setting was assumed to show the bounded relative error

property but also sampling according to their biased PDF is not

straightforward in the Gamma-Gamma fading model scenario.

The reminder of this paper is organized as follows. We

start by describing the system model in Section II. We then

provide in Section III a brief description of the fundamental

concepts of IS method. In section IV, we present our approach

to estimate the outage probability in our particular set-up.

We also discuss the efficiency of the proposed method in

both the MRC and EGC cases. In Section V, we show

some selected numerical simulations related to the outage

probability of multibranch MRC and EGC diversity receivers

over Gamma-Gamma fading channels. Finally, the paper ends

with a summary of the main results.

Throughout this paper, we use the following notations: P(A)
denotes the probability that the event A will take place, fX(·)
(respectively f∗

X(·)) is the original (respectively biased) PDF

of the RV X . The notations E[Y ], V[Y ] (respectively E
∗[Y ]

and V
∗[Y ]) stand respectively for the expectation and the

variance of the random quantity Y with respect to (w.r.t)

the PDF fX(·) (respectively f∗
X(·)). We refer to the indicator

function by ✶(·). We denote by ΓΓ(k,m,Ω) a Gamma-Gamma

variate with parameters (k,m,Ω). Finally, for the limiting

behavior of functions, f = O(g) means that f is bounded

above up to a constant factor by g asymptotically and we use

f ∼ g when f is equal to g asymptotically.

II. SYSTEM MODEL

The instantaneous signal-to-noise ratio (SNR) expression at

the diversity receiver, is given by [24]

γend =
Es

N0

√
L1−p+q

(

L
∑

ℓ=1

X
p

2

ℓ

)q

, (1)

where (p, q) = (1, 2) for the EGC case and (p, q) = (2, 1) for

the MRC case. The ratio Es

N0
is the SNR per symbol at the

transmitter, L is the number of diversity branches. Eq. (1) is

slightly modified compared to reference [24] in order to model

the channel gains {Xℓ}Lℓ=1 as i.n.i.d Gamma-Gamma variates

ΓΓ(kℓ,mℓ,Ωℓ), ℓ = 1, . . . , L, whose PDFs are given by [11]

fXℓ
(x) =

2(kℓmℓ)
kℓ+mℓ

2 x
kℓ+mℓ

2
−1

Γ(mℓ)Γ(kℓ)Ω
kℓ+mℓ

2

ℓ

Kkℓ−mℓ

(

2

(

kℓmℓ

Ωℓ

x

)
1
2

)

,

x ≥ 0, ℓ = 1, . . . , L, (2)

where kℓ and mℓ are two positive real numbers that represent

the distribution parameters, Kν(·) is the modified Bessel
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function of the second kind of order ν [25, Sec. (8.432)], Γ(·)
is the Gamma function [25, Sec. (8.31)], and Ωℓ is the mean

power of the RV Xℓ, ℓ = 1, . . . , L.

The Gamma-Gamma distribution ΓΓ(k,m,Ω) generalizes

other types of PDFs when certain values of the fading param-

eters are considered. For instance, it is a good approximation

for the Gamma distribution when k → +∞ or m → +∞.

For m = 1 or k = 1, it coincides with a K-distribution,

while when k = 1 and m = 1, it reduces to the square of

the double Rayleigh distribution. In small perturbations, the

Gamma-Gamma model gives similar results to the log-normal

model [11] and fits the simulation data performed by Flatté

et al. [26]. Also, since the K-distribution is a special case

of the Gamma-Gamma distribution, it can also model strong

turbulence regime. To sum up, the Gamma-Gamma turbulence

model allows to describe different turbulence regimes and

shows a good fit with data from measurements [11].

The outage probability P , which quantifies the probability

that the instantaneous SNR falls below a certain threshold γth,

is frequently used as a performance metric of communication

systems operating over fading channels

P = P(γend ≤ γth) = P

(

L
∑

ℓ=1

X
p

2

ℓ ≤
(

N0

Es

√
L1−p+qγth

)
1
2

)

.

(3)

At a higher level of abstraction, our aim is to find the

CDF of the sum of Gamma-Gamma RVs. More specifically,

we are interested in the case in which the outage probability

requirements are very low, i.e. of the order 10−8. This situation

occurs, for instance, when studying the performance of FSO

systems since they are often used for high-speed backhaul

wireless links which aggregate the data generated by multiple

users [27].

III. IMPORTANCE SAMPLING

As stated previously, no closed-form results for the CDF of

the sum of i.n.i.d Gamma-Gamma variates were derived in the

literature. For the reader convenience, we recall first the main

concepts behind IS. This will facilitate the understanding of

the proposed approach that will be discussed in depth later.

Writing P = E
[

✶(SL≤γ0)

]

, the naive MC estimator of (3)

is given by

P̂MC =
1

N

N
∑

i=1

✶(SL(ωi)≤γ0), (4)

where N is the number of MC samples, and {SL(ωi)}Ni=1 are

i.i.d. realizations of the RV SL. The sequence {Xℓ(ωi)}Lℓ=1

is sampled independently according to the PDFs (2), for each

realization of SL.

When the value of P is very small, naive MC turns out to be

computationally expensive. In fact, in this setting, a very large

number of samples N , of the order of 100/P , is required to

ensure that P̂MC estimates accurately the quantity of interest

with 10% relative error.

An alternative method to evaluate the probability of rare

events is the IS technique [22]. In addition to reducing the

computational work compared to naive MC, IS is known for

its simplicity and ease of implementation compared to the

other variance reduction techniques. The main idea behind

this method is to construct an unbiased estimator of P , with

smaller variance than the naive MC estimator, by introducing

an auxiliary PDF f∗
Xℓ

(·). For a concise review of the use of

IS in communication systems, the reader is referred to [28].

IS exploits the fact that the representation of P as an

expected value is not unique. In fact, we can re-write P as

P = E
[

✶(SL≤γ0)

]

=

∫

RL

✶(SL≤γ0)

L
∏

ℓ=1

fXℓ
(xℓ) dx1 . . . dxL

=

∫

RL

✶(SL≤γ0)L(x1, . . . , xL)
L
∏

ℓ=1

f∗
Xℓ

(xℓ) dx1 . . . dxL

= E
∗
[

✶(SL≤γ0)L(X1, . . . , XL)
]

. (5)

The likelihood ratio is defined as

L(X1, . . . , XL) =

L
∏

ℓ=1

fXℓ
(Xℓ)

f∗
Xℓ

(Xℓ)
. (6)

By defining the biased densities {f∗
Xℓ

(·)}Lℓ=1, IS aims to “en-

courage” the sampling from the importance region {SL ≤ γ0}.

In this case, the IS estimator of (3) is

P̂IS =
1

N∗

N∗

∑

i=1

✶(SL(ωi)≤γ0)L(X1(ωi), . . . , XL(ωi)), (7)

where for each realization i = 1, . . . , N , the sequence

{Xℓ(ωi)}Lℓ=1 are sampled independently according to the

biased PDFs {f∗
ℓ (·)}Lℓ=1. The use of a biased distribution

will lead to a biased estimator if we apply it directly to the

simulations. However, the different simulations are weighted

in order to correct this bias, thereby the IS estimator is

unbiased. The weight that is given to each simulation is

the likelihood ratio which is the Radon-Nikodym density

of the original distribution w.r.t the biased one. The main

difficulty with the IS implementation is the right choice of

the biased PDFs {f∗
Xℓ

(·)}Lℓ=1. A bad choice can produce a

large likelihood ratio. In order to avoid such a situation, many

criteria have been used in the literature in order to characterize

the goodness of an IS approach [29] among which we mention

the bounded relative error. This latter represents one of the

desirable property in the field of rare events algorithms.

Definition 1. The IS estimator has a bounded relative error if

the following statement holds

lim sup
γ0→0

E
∗
[

✶(SL≤γ0)L2(X1, . . . , XL)
]

P 2
< +∞. (8)

This criterion can be seen as a measure of robustness

of the IS estimator. In fact, if it holds, then the number

of simulation runs N needed to achieve a fixed accuracy

requirement remains bounded independently of how small the

outage probability P is. This has to be compared to naive MC

simulation which requires the number of samples to grow as

O(P−1) in order to retrieve the same accuracy.

To quantify the efficiency of IS compared to naive MC, we

introduce the following two metrics
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Definition 2. The relative error of naive MC simulation is

given by

ε =
C

P

√

P (1− P )

N
, (9)

where C = 1.96 which corresponds to a 95% confidence

interval. From the above definition, we can see that the relative

error is nothing but the ratio of half-width of the confidence

interval over the estimated value.

Similarly, we define the relative error of an IS approach as

ε∗ =
C

P

√

V∗[✶(SL≤γ0)L(X1, . . . , XL)]

N
. (10)

Definition 3. If we fix the relative error requirement, then,

we can easily determine the number of required simulation

runs. In fact, for a fixed ǫ0 and using Eqs. (9) and (10), the

number of samples needed by naive MC simulations and IS

are respectively given by

N = (P (1− P ))

(

C

Pǫ0

)2

, (11)

N∗ = V
∗[✶(SL≤γ0)L(X1, . . . , XL)]

(

C

Pǫ0

)2

. (12)

In the following section, we present a clever choice of the

biased PDF in both MRC and EGC cases. Moreover, the

efficiency of our proposed IS approach is studied for both

scenarios.

IV. PROPOSED APPROACH

A. MRC case

The outage probability in the MRC case is given by

P = P(γend ≤ γth) = P (SL ≤ γ0) , (13)

where SL =
L
∑

ℓ=1

Xℓ and γ0 = N0

Es
γth.

In this subsection, we propose to shift the mean of each variate

under the original PDF, i.e. the mean under the biased PDF

of Xℓ is Ω∗
ℓ = Ωℓ − Ω0,ℓ where Ω0,ℓ satisfies 0 ≤ Ω0,ℓ < Ωℓ

and as γ0 → 0, it approaches Ωℓ, ℓ = 1, . . . , L. In this case,

the biased PDF is

f∗
Xℓ

(Xℓ) =
2(kℓmℓ)

kℓ+mℓ
2 X

kℓ+mℓ
2

−1

ℓ

Γ(mℓ)Γ(kℓ)(Ωℓ − Ω0,ℓ)
kℓ+mℓ

2

×Kkℓ−mℓ

(

2

(

kℓmℓ

Ωℓ − Ω0,ℓ
Xℓ

)
1
2

)

, x ≥ 0, ℓ = 1, . . . , L.

(14)

Inspired by the i.i.d case, we select Ω0,ℓ to be as follows

Ω0,ℓ = Ωℓ −
γ0
L
, ∀ℓ = 1, . . . L. (15)

Our choice of this particular biased PDF (14) is mainly

motivated by the fact that, as we decrease the threshold and

hence we decrease the outage probability, Ω∗ will approach

zero and thus samples from the region of interest {SL ≤ γ0}
will take place more frequently. To validate the previous

statement, we plot in Fig. 1 the PDF of S2 = X1 + X2
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Fig. 1. PDF of the sum of two i.i.d Gamma-Gamma RVs with k = 3.99,
m = 1.7, Ω = 1, and Ω0 = 0.5.

under the original and the biased distributions in the i.i.d

setting. From this figure, we observe that the distribution of S2

when X1 and X2 are sampled from the biased PDFs is more

concentrated to the left tail than when they are sampled from

their original PDFs. Thus, important samples, i.e. samples that

belong to {S2 < γ0}, are more likely to occur when sampling

according to the biased PDFs than from the original ones.

Remark 1. Note that the sequence of parameters {Ω0,ℓ}Lℓ=1

defined in (15) represents a particular solution of the equation

E
∗

[

L
∑

ℓ=1

Xℓ

]

= γ0.

With the value of Ω0 at hand, we characterize in the

following theorem the robustness of the proposed IS approach.

In fact, we show that it achieves the bounded relative error

property which represents one of the most relevant criterion

measuring the efficiency of IS schemes.

Theorem 1. Let {Xℓ}Lℓ=1 be a sequence of i.n.i.d Gamma-

Gamma RVs and f∗
Xℓ

(·) be defined as in (14) where Ω0,ℓ is

given by (15). Then, the IS estimator (7) has a bounded relative

error provided that min
1≤ℓ≤L

(kℓ −mℓ) > 1
2 and kℓ − mℓ /∈ N,

ℓ = 1, . . . , L.

Proof: See Appendix A.

B. EGC case

For the EGC case, the outage probability expression is

defined as

P = P(γend ≤ γth) = P (TL ≤ η0) , (16)

where TL =
L
∑

ℓ=1

√
Xℓ and η0 =

(

N0L
Es

γth

)
1
2

.

The PDF of Zℓ =
√
Xℓ is given by

fZℓ
(z) =

4 (kℓmℓ)
kℓ+mℓ

2 zkℓ+mℓ−1

Γ(mℓ)Γ(kℓ)Ω
kℓ+mℓ

2

ℓ

Kkℓ−mℓ

(

2

(

kℓmℓ

Ωℓ

)
1
2

z

)

.

(17)
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Using the same kind of transformation as in the MRC case,

the biased PDF can be written as

f∗
Zℓ
(z) =

4 (kℓmℓ)
kℓ+mℓ

2 zkℓ+mℓ−1

Γ(mℓ)Γ(kℓ)(Ωℓ − Ω0,ℓ)
kℓ+mℓ

2

×Kkℓ−mℓ

(

2

(

kℓmℓ

Ωℓ − Ω0,ℓ

)
1
2

z

)

. (18)

Under the biased PDF, the mean of the RV Zℓ is given by

E
∗[Zℓ] =

Γ(mℓ +
1
2 )Γ(kℓ +

1
2 )

Γ(mℓ)Γ(kℓ)

(

Ωℓ − Ω0,ℓ

kℓmℓ

)
1
2

. (19)

Regarding the choice of the parameter Ω0,ℓ, we follow a

similar approach to the MRC case. A particular solution of

the equation E
∗

[

L
∑

ℓ=1

Zℓ

]

= η0 is chosen

Ω0,ℓ = Ωℓ −
αℓ

L2
η20 , (20)

where αℓ = kℓmℓ

[

Γ(mℓ)Γ(kℓ)

Γ(mℓ+
1
2
)Γ(kℓ+

1
2
)

]2

.

Theorem 2. Let {Zℓ}Lℓ=1 be i.n.i.d square root of Gamma-

Gamma variates and f∗
Zℓ
(·) be defined as in (18) where Ω0,ℓ

is given by (20). Thus, the IS estimator (7) has a bounded

relative error when the conditions min
1≤ℓ≤L

(kℓ −mℓ) > 1
2 and

kℓ −mℓ /∈ N, ℓ = 1, . . . , L hold.

Proof: See Appendix B.

Remark 2. The variance of Zℓ under the new PDF is given

by

V
∗[Zℓ] =

[

1− Γ(mℓ +
1
2 )Γ(kℓ +

1
2 )

kℓmℓΓ(mℓ)Γ(kℓ)

]

(Ωℓ − Ω0,ℓ) . (21)

From the above expression, we can see that the choice of Ω0,ℓ

in (20) will lead to reducing the variance as η0 → 0.

Remark 3. Theorem 1. can be extended to the case when

max
1≤ℓ≤L

(kℓ −mℓ) < − 1
2 .

Using that for x ≥ 0, ν 7→ Kν(x) is even, we can write

Kkℓ−mℓ
(x) = Kmℓ−kℓ

(x), where mℓ − kℓ > 1
2 . Then, we

can use the bound [30, Eq.(1.3)] for ν = mℓ − kℓ. Note also

that since in this case mℓ > kℓ, then the asymptotic expansion

of the CDF of Xℓ around x = 0 is given by

FXℓ
(x) ∼

x→0

Γ(mℓ − kℓ)

Γ(mℓ)Γ(kℓ + 1)

(

kℓmℓ

Ωℓ

x

)k

, mℓ > kℓ,

mℓ − kℓ /∈ N. (22)

Thereby, we can prove that the proposed IS estimator still has

the bounded relative error property. Similar argument can be

used to extend Theorem 2.

Remark 4. It is worth mentioning that in FSO, the fading pa-

rameters k and m are related to Rytov variance σ2
R. Depending

on the value of this variance, we can characterize the severity

of the atmospheric turbulence. In fact, according to [31], a

Rytov variance less than 0.3 corresponds to a weak turbulence,

while moderate to strong turbulence is characterized by a value

greater than 0.3.

For a plane wave propagation, the expression of k and m are

given by [11]

k =






exp







0.49σ2
R

(

1 + 1.11σ
12
5

R

)
7
6






− 1







−1

,

m =






exp







0.51σ2
R

(

1 + 0.69σ
12
5

R

)
5
6






− 1







−1

. (23)

In Fig. 2, we plot the difference k −m and we observe that

such a difference is always bigger than 1
2 . In fact, we can

show that in this case k−m ≥ 3
2 . Also, we can easily observe

that k − m /∈ N. Therefore, the conditions k − m > 1
2 and

k − m /∈ N can be seen as reasonable assumptions when

studying the performance of FSO systems using model (23).

0.2 0.4 0.6 0.8 1

1.6

1.8

2

2.2

2.4

Rytov standard deviation σR

D
if

fe
re

n
ce

k
−

m

Fig. 2. Difference k − m as function of Rytov standard deviation σR

assuming model (23).

V. SIMULATION RESULTS

In this section, the outage probability is estimated using both

the naive MC as well as the proposed IS approach described

in Section IV. First, the accuracy of these two methods is

analyzed in both MRC and EGC settings. Then, the gain,

in terms of required number of samples needed to meet a

fixed accuracy requirement, achieved by IS w.r.t naive MC is

quantified.

A. MRC Case

We consider the estimation of the outage probability of

L-branch MRC diversity receivers in the case of Gamma-

Gamma fading model. The set of parameters of this experiment

are given in Table I. For the computation of the parameters

(kℓ,mℓ), we use the model given by (23) for different Rytov

variance values. For three different choices of L ∈ {4, 5, 6},

we plot in Fig. 3 the outage probability estimated by both

standard MC and our IS approach as a function of the SNR

threshold γth. Although there is a good agreement between
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MC and IS for high values of outage probabilities for each

value of L, naive MC, unlike IS, fails to estimate the low

outage probabilities. For instance, for L = 4, the naive MC

estimator matches perfectly the IS estimator up to an outage

probability value of the order of 10−5. Then, as we decrease

the SNR threshold, the MC estimate becomes erroneous.

While only 104 simulation runs are sufficient for IS to yield

a very accurate estimate of the outage probability, much more

than 107 samples must be used by naive MC in order to

retrieve the same accuracy.

TABLE I
FADING PARAMETERS USED TO SIMULATE THE OUTAGE PROBABILITY OF

L-BRANCH DIVERSITY RECEIVERS OVER I.N.I.D GAMMA-GAMMA FADING

MODEL IN FIG. 3.

L Fading Parameters (kℓ, mℓ)

4 (3.99, 1.7), (5.41, 3.78), (4.05, 1.98), (8.43, 6.92)

5 (3.99, 1.7), (5.41, 3.78), (4.05, 1.98), (4.39, 2.56), (8.43, 6.92)

6 (3.99, 1.7), (5.41, 3.78), (4.05, 1.98)
(4.39, 2.56), (4.74, 3.01), (8.43, 6.92)

4 6 8 10 12 14

10−9

10−7

10−5

10−3

10−1

L = 4, 5, 6

γ th(dB)

O
u
ta

g
e

P
ro

b
ab

il
it

y

Naive MC

Proposed IS

Fig. 3. Outage probability of L-branch MRC diversity receivers over Gamma-
Gamma fading model with Es/N0 = 10 dB, Ωℓ = 0 dB, ℓ = 1, . . . , L, and
fading parameters of Table I. Number of samples N = 107 and N∗ = 104.

The computational efficiency is investigated in Fig. 4. To

guarantee a 95% accuracy level, N∗ remains almost constant

independently of how small the outage probability is. This fact

is expected due to the bounded relative error criterion. On the

other hand, as we decrease the SNR threshold, we observe that

N grows with a very high rate. For instance, for L = 4 and

γth = 4 dB, approximately 1.2×1012 samples are required by

naive MC simulations to ensure a 95% accuracy requirement,

whereas only 3.1 × 104 simulation runs are sufficient for the

proposed IS approach to meet the same accuracy. This goes in

favor toward the high computational out-performance of the

newly proposed IS scheme w.r.t naive MC simulations.

In Fig. 5, we plot the relative errors of both methods for the

case L = 4. For large outage probability values, the relative

error of naive MC is slightly smaller than IS. However, we

observe that as the outage probability becomes smaller, the

relative error of IS remains almost constant, in agreement

with the bounded relative error property, while the naive MC

4 6 8 10 12 14

103

106

109

1012

1015

L = 4, 5, 6

γ th(dB)

S
im

u
la

ti
o
n

R
u
n
s

Naive MC

Proposed IS

Fig. 4. Number of required simulation runs for 5% relative error for L-branch
MRC diversity receivers over Gamma-Gamma fading model with Es/N0 =

10 dB, Ωℓ = 0 dB, ℓ = 1, . . . , L, and fading parameters of Table I.

relative error grows rapidly although the number of samples

used for MC is 104 times greater than the one used for IS

simulation. This observation highlights again the efficiency of

the proposed IS estimator compared to naive MC when dealing

with small outage probabilities.

4 6 8 10 12 14
0

2

4

6

γ th(dB)

R
el

at
iv

e
E

rr
o
r

Naive MC

Proposed IS

Fig. 5. Relative error of both methods for L = 4 with number of samples
N = 108 and N∗ = 104.

B. EGC case

Now, we turn our attention to study the outage probability of

L-branch EGC diversity receivers. The simulation parameters

are the same as in Table I. The behavior of the outage

probability as a function of the SNR threshold γth, is depicted

in Fig. 6 for three different values of the number of branches

L = 4, 5, and 6. The number of simulation runs used here is

N = 107 for MC and N∗ = 104 for IS. Similar conclusions

are drawn as in the previous subsection. In fact, with few

number of simulation runs, our IS scheme provides again

a highly accurate estimate compared to the standard MC

approach.
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2 4 6 8 10 12
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Fig. 6. Outage probability of L-branch EGC diversity receivers over Gamma-
Gamma fading model with Es/N0 = 10 dB, Ωℓ = 0 dB, ℓ = 1, . . . , L, and
fading parameters of Table I. Number of samples N = 107 and N∗ = 104.

To have a clear idea about the efficiency of our proposed IS

estimator, we turn our attention to Fig. 7. To this end, we set

both relative errors given by Definition 2 to be ε = ε∗ = 5%,

and we compute, using the expressions detailed in Definition 3,

the number of simulation runs N and N∗ needed respectively

by naive MC and IS to meet the aforementioned 95% accuracy

level. From this figure, it is clearly obvious that the proposed

IS method outperforms naive MC simulation in all of the three

considered scenarios. Furthermore, we note that as the SNR

threshold decreases, the efficiency increases. In fact, for each

scenario, the number of samples N is rapidly growing as the

outage probability becomes smaller, whereas N∗ is almost

constant over the considered range of outage probabilities.

The latter statement is a consequence of the bounded relative

error property of the IS estimator. For the sake of illustration,

for L = 4, the number of samples N∗ required by IS is

approximately 7 × 104 (respectively 9 × 107) times less than

the number of samples used in MC simulations for γth = 4

dB (respectively γth = 1 dB).

In Fig. 8, we plot the relative errors of both methods for

the case L = 4. Similar conclusions to the MRC case can also

be drawn in this setting. In fact, it is clear that the variation

of the relative error of the IS is much slower than that of the

standard MC.

VI. CONCLUSION

In this paper, we proposed efficient IS schemes for the esti-

mation of the left tail of the sum of Gamma-Gamma variates as

well as the sum of the square root of Gamma-Gamma variates.

These schemes were used to efficiently estimate the outage

probability of multibranch MRC and EGC diversity receivers

over Gamma-Gamma fading channels. We showed that the

proposed estimators possess the bounded relative error for both

MRC and EGC cases. Simulation results show a significant

reduction in the number of samples for the same level of

accuracy which highlights the efficiency of the proposed IS

estimator compared to naive MC.

0 2 4 6 8 10 12
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107

1013

1019

1025

L = 4, 5, 6

γ th(dB)

S
im

u
la

ti
o
n

R
u
n
s

Naive MC

Proposed IS

Fig. 7. Number of required simulation runs for 5% relative error for L-branch
EGC diversity receivers over Gamma-Gamma fading model with Es/N0 =

10 dB, Ωℓ = 0 dB, ℓ = 1, . . . , L, and fading parameters of Table I.

4 6 8 10 12
0
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1

1.5
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R
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E

rr
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Naive MC

Proposed IS

Fig. 8. Relative error of both methods for L = 4 with number of samples
N = 108 and N∗ = 104.

APPENDIX A

PROOF OF THEOREM 1

Proof: To prove the Theorem 1, we recall first the

definition of the likelihood ratio

L(X1, . . . , XL) =

L
∏

ℓ=1

fXℓ
(Xℓ)

f∗
Xℓ

(Xℓ)

=
L
∏

ℓ=1

(

Ωℓ − Ω0,ℓ

Ωℓ

)
L
2
(kℓ+mℓ) Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ
Xℓ

)
1
2

)

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ−Ω0,ℓ
Xℓ

)
1
2

) .

(A.1)

We bound the ratio of the modified Bessel function of the

second kind, in the case when min
1≤ℓ≤L

(kℓ −mℓ) > 1
2 , using
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[30, Eq.(1.3)]

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ
Xℓ

)
1
2

)

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ−Ω0,ℓ
Xℓ

)
1
2

)

≤ exp

(

2

√

kℓmℓ

Ωℓ − Ω0,ℓ

Xℓ − 2

√

kℓmℓ

Ωℓ

Xℓ

)

(

Ωℓ − Ω0,ℓ

Ωℓ

)

mℓ−kℓ
2

.

(A.2)

Thus, the likelihood ratio can be bounded by

L(X1, . . . , XL) ≤
L
∏

ℓ=1

(

Ωℓ − Ω0,ℓ

Ωℓ

)mℓ

× exp

(

2

L
∑

ℓ=1

√

kℓmℓXℓ

[

1
√

Ωℓ − Ω0,ℓ

− 1√
Ωℓ

])

. (A.3)

Replacing the expression of Ω0,ℓ in (14), we get

L(X1, . . . , XL) ≤
L
∏

ℓ=1

Ω−mℓ

ℓ

(γ0
L

)

L∑

ℓ=1

mℓ

× exp

(

2

√

L

γ0

L
∑

ℓ=1

√

kℓmℓXℓ

)

. (A.4)

Let k0 = max
1≤ℓ≤L

kℓ and m0 = max
1≤ℓ≤L

mℓ, then we can write

L(X1, . . . , XL) ≤
L
∏

ℓ=1

Ω−mℓ

ℓ

(γ0
L

)

L∑

ℓ=1

mℓ

× exp

(

2

√

L

γ0

√

k0 m0

L
∑

ℓ=1

√

Xℓ

)

. (A.5)

Using Cauchy-Schwarz-Buniakowsky inequality [25, Sec.

11.311], we can write

L
∑

ℓ=1

√

Xℓ ≤
√
L

√

√

√

√

L
∑

ℓ=1

Xℓ. (A.6)

Therefore, Eq. (A.5) becomes

L(X1, . . . , XL) ≤
L
∏

ℓ=1

Ω−mℓ

ℓ

(γ0
L

)

L∑

ℓ=1

mℓ

× exp



2
L√
γ0

√

k0 m0

√

√

√

√

L
∑

ℓ=1

Xℓ



 . (A.7)

Therefore, we obtain the following upper bound

E
∗
[

✶{SL≤γ0}L2(X1, . . . , XL)
]

≤
L
∏

ℓ=1

Ω−2mℓ

ℓ

(γ0
L

)2
L∑

ℓ=1

mℓ

× exp
(

4L
√

k0m0

)

. (A.8)

On the other hand, we have that

L
⋂

ℓ=1

{Xℓ ≤
γ0
L
} ⊂ {

L
∑

ℓ=1

Xℓ ≤ γ0}. (A.9)

This leads to

P ≥
L
∏

ℓ=1

P

(

Xℓ ≤
γ0
L

)

. (A.10)

We recall that the CDF of a Gamma-Gamma RV is given by

[32]

FXℓ
(x) =

1

Γ(mℓ) Γ(kℓ)
G2,1

1,3

[

kℓ mℓ

Ωℓ

x

∣

∣

∣

∣

1
kℓ,mℓ, 0

]

,

(A.11)

where Gm,n
p,q [·] is the Meijers G-function defined in [25,

Eq. (9.301)]. Around x = 0, this CDF has the following

asymptotic expansion [33, Thm. 1.11]

FXℓ
(x) ∼

x→0

Γ(kℓ −mℓ)

Γ(kℓ)Γ(mℓ + 1)

(

kℓmℓ

Ωℓ

x

)mℓ

, kℓ > mℓ,

kℓ −mℓ /∈ N. (A.12)

A lower bound on P is given by

P ≥
L
∏

ℓ=1

FXℓ

(γ0
L

)

∼
γ0→0

L
∏

ℓ=1

Γ(kℓ −mℓ)

Γ(kℓ)Γ(mℓ + 1)

(

kℓmℓγ0
ΩℓL

)mℓ

.

(A.13)

Thus, we get as γ0 → 0

1

P 2
≤

L
∏

ℓ=1

[

Γ(kℓ) Γ(mℓ + 1)

(kℓmℓ)mℓΓ(kℓ −mℓ)

]2

Ω2mℓ

ℓ

(

L

γ0

)2
L∑

ℓ=1

mℓ

.

(A.14)

Combining (A.8) and (A.14), we obtain

lim sup
γ0→0

E
∗
[

✶{SL≤γ0}L2(X1, . . . , XL)
]

P 2

≤
L
∏

ℓ=1

[

Γ(kℓ) Γ(mℓ + 1)

(kℓmℓ)mℓΓ(kℓ −mℓ)

]2

exp
(

4L
√

k0 m0

)

.

(A.15)

and hence the proof is concluded.

APPENDIX B

PROOF OF THEOREM 2

To prove Theorem 2, we start by defining the likelihood

ratio as

L(Z1, . . . , ZL) =
L
∏

ℓ=1

fZℓ
(Zℓ)

f∗
Zℓ
(Zℓ)

=

L
∏

ℓ=1

(

Ωℓ − Ω0,ℓ

Ωℓ

)

kℓ+mℓ
2

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ

)
1
2

Zℓ

)

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ−Ω0,ℓ

)
1
2

Zℓ

) .

(B.1)
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Using [30, Eq.(1.3)], we can bound the the ratio of the

modified Bessel function when min
1≤ℓ≤L

(kℓ −mℓ) >
1
2

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ

)
1
2

Zℓ

)

Kkℓ−mℓ

(

2
(

kℓmℓ

Ωℓ−Ω0,ℓ

)
1
2

Zℓ

) ≤
(

Ωℓ − Ω0,ℓ

Ωℓ

)

mℓ−kℓ
2

× exp

(

2
√

kℓmℓ

[

1
√

Ωℓ − Ω0,ℓ

− 1√
Ωℓ

]

Zℓ

)

. (B.2)

Thereby, we can bound the likelihood ratio by

L(Z1, . . . , ZL)

≤
L
∏

ℓ=1

(

Ωℓ − Ω0,ℓ

Ωℓ

)mℓ

exp

(

L
∑

ℓ=1

2
√
k0m0

√

Ωℓ − Ω0,ℓ

Zℓ

)

. (B.3)

Replacing Ω0,ℓ by its expression (20) and defining α =
min

1≤ℓ≤L
αℓ, we obtain

L(Z1, . . . , ZL) ≤
(η0
L

)2
L∑

ℓ=1

mℓ
L
∏

ℓ=1

(

αℓ

Ωℓ

)mℓ

× exp

(

2

η0

√

k0m0

α

L
∑

ℓ=1

Zℓ

)

. (B.4)

Therefore, we obtain the following upper bound

E
∗
[

✶{TL≤η0}L2(Z1, . . . , ZL)
]

≤
(η0
L

)4
L∑

ℓ=1

mℓ
L
∏

ℓ=1

(

αℓ

Ωℓ

)2mℓ

× exp

(

4

√

k0m0

α

)

. (B.5)

A lower bound for the probability P is given by

P ≥
L
∏

ℓ=1

FZℓ
(
η0
L
). (B.6)

The square root of Gamma-Gamma RV is given by

FZℓ
(z) = P (Zℓ ≤ z) = P

(

Xℓ ≤ z2
)

= FXℓ
(z2). (B.7)

Using (A.12), the expansion of the CDF of Zℓ around z = 0
is thereby given by

FZℓ
(z) ∼

z→0

Γ(kℓ −mℓ)

Γ(kℓ)Γ(mℓ + 1)

(

kℓmℓ

Ωℓ

z2
)mℓ

, kℓ > mℓ,

kℓ −mℓ /∈ N, (B.8)

Thus, we can write as η0 → 0

1

P 2
≤

L
∏

ℓ=1

[

Γ(kℓ)Γ(mℓ + 1)

Γ(kℓ −mℓ)

]2(
Ωℓ

kℓmℓ

)2mℓ
(

L

η0

)4
L∑

ℓ=1

mℓ

.

(B.9)

Using Eq. (B.5) and (B.9), we get the following upper bound

lim sup
γ0→0

E
∗
[

✶{TL≤η0}L2(Z1, . . . , ZL)
]

P 2

≤
L
∏

ℓ=1

[

Γ(kℓ)Γ(mℓ + 1)

Γ(kℓ −mℓ)

]2(
αℓ

kℓmℓ

)2mℓ

exp

(

4

√

k0m0

α

)

.

(B.10)

which concludes the proof.

REFERENCES

[1] L. C. Andrews and R. L. Philips, Laser Beam Propaga-

tion Through Random Media. Bellingham, WA, USA:

SPIE Press, 2005.

[2] A. Abdi and M. Kaveh, “A comparative study of two

shadow fading models in ultrawideband and other wire-

less systems,” IEEE Transactions on Wireless Communi-

cations, vol. 10, pp. 1428–1434, May 2011.

[3] D. J. Lewinsky, “Nonstationary probabilistic target and

clutter scattering models,” IEEE Transactions Antenna

Propagation, vol. 31, pp. 490–498, May 1983.

[4] M. Gu and D. A. Abraham, “Using McDaniel’s model

to represent non-Rayleigh reverberation,” IEEE Transac-

tions Oceanic Engineering, vol. 26, pp. 348–357, July

2001.

[5] P. M. Shankar, “Error rates in generalized shadowed

fading channels,” Wireless Personal Communications,

vol. 28, pp. 233–238, Feb. 2004.

[6] I. M. Kostic, “Analytical approach to performance anal-

ysis for channel subject to shadowing and fading,” IEE

Proceedings-Communications, vol. 152, pp. 821–827,

Dec. 2005.

[7] P. M. Shankar, “Outage probabilities in shadowed fading

channels,” IEE Proceedings-Communications, vol. 152,

pp. 828–832, Dec. 2005.

[8] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos,

G. K. Karagiannidis, and A. A. Rontogiannis, “On the

performance analysis of digital communications over

generalized-K fading channel,” IEEE Commununication

Letters, vol. 5, pp. 353–355, May 2006.

[9] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser

Beam Scintillation with Applications. Bellingham,

Washington: SPIE Press, 2001.

[10] S. Al-Ahmadi, “The Gamma-Gamma signal fading

model: a survey,” IEEE Antennas and Propagation Mag-

azine, vol. 56, pp. 245–260, Oct. 2014.

[11] M. A. Al-Habash, L. C. Andrews, and R. L. Philips,

“Mathematical model for the irradiance probability den-

sity function of a laser propagating through turbulent

media,” Optical Engineering, vol. 40, pp. 1554–1562,

Aug. 2001.

[12] P. Deng, M. Kavehrad, Z. Liu, Z. Zhou, and X. Yuan,

“Capacity of MIMO free space optical communica-

tions using multiple partially coherent beams propaga-

tion through non-Kolmogorov strong turbulence,” Optics

Express, vol. 21, pp. 15 213–15 229, Jul 2013.

[13] N. D. Chatzidiamantis and G. K. Karagiannidis, “On the

distribution of the sum of Gamma-Gamma variates and

applications in RF and optical wireless communications,”

IEEE Transactions on Communications, vol. 59, pp.

1298–1308, May 2011.

[14] P. S. Bithas, P. T. Mathiopoulos, and S. A. Kotsopoulos,

“Diversity reception over generalized-(KG) fading chan-

nels,” IEEE Transactions on Wireless Communications,

vol. 6, pp. 4238–4243, Dec. 2007.



10

[15] E. Bayaki, R. Schober, and R. K. Mallik, “Performance

analysis of MIMO free-space optical systems in Gamma-

Gamma fading,” IEEE Transactions on Communications,

vol. 57, pp. 3415–3424, Nov. 2009.

[16] S. Al-Ahmadi and H. Yanikomeroglu, “On the approx-

imation of the generalized-K distribution by a Gamma

distribution for modeling composite fading channels,”

IEEE Transactions On Wireless Communications, vol. 9,

pp. 706–713, Feb. 2010.

[17] V. P. Thanh, T. Cong-Thang, and T. P. Anh, “On

the MGF-based approximation of the sum of indepen-

dent Gamma-Gamma random variables,” in Proceedings

of IEEE 81st Vehicular Technology Conference (VTC

Spring), Glasgow, Scotland, May 2015, pp. 1–5.

[18] K. P. Peppas, “A simple, accurate approximation to

the sum of Gamma-Gamma variates and applications

in MIMO free-space optical systems,” IEEE Photonics

Technology Letters, vol. 23, pp. 839–841, July 2011.

[19] P. S. Bithas and A. A. Rontogiannis, “Mobile commu-

nication systems in the presence of fading/shadowing,

noise and interference,” IEEE Transactions on Commu-

nications, vol. 63, pp. 724–737, Mar. 2015.

[20] J. Morio, M. Balesdent, D. Jacquemart, and C. Vergé,
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the École Polytechnique de Tunisie, La Marsa,
Tunisia, in 2012 and the M.S. degree in Applied
Mathematics and Computational Science from King
Abdullah University of Science and Technology,
Thuwal, Saudi Arabia, in 2013, where he is cur-
rently working toward the Ph.D degree in Statistics.
His current research interests include rare event
simulation algorithms for the accurate performance
analysis of wireless communication systems.

Abla Kammoun was born in Sfax, Tunisia. She received the engineering
degree in signal and systems from the Tunisia Polytechnic School, La
Marsa, and the Master’s degree and the Ph.D. degree in digital commu-
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