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On the Efficient Simulation of Outage Probability

in a Log-normal Fading Environment
Nadhir Ben Rached, Abla Kammoun, Mohamed-Slim Alouini, and Raul Tempone

Abstract—The outage probability (OP) of the signal-to-
interference-plus-noise ratio (SINR) is an important metric that
is used to evaluate the performance of wireless systems. One
difficulty toward assessing the OP is that, in realistic scenarios,
closed-form expressions cannot be derived. This is for instance the
case of the Log-normal environment, in which evaluating the OP
of the SINR amounts to computing the probability that a sum of
correlated Log-normal variates exceeds a given threshold. Since
such a probability does not admit a closed-form expression, it
has thus far been evaluated by several approximation techniques,
the accuracies of which are not guaranteed in the region of small
OPs. For these regions, simulation techniques based on variance
reduction algorithms is a good alternative, being quick and highly
accurate for estimating rare event probabilities. This constitutes
the major motivation behind our work. More specifically, we
propose a generalized hybrid importance sampling scheme, based
on a combination of a mean shifting and a covariance matrix
scaling, to evaluate the OP of the SINR in a Log-normal
environment. We further our analysis by providing a detailed
study of two particular cases. Finally, the performance of these
techniques is performed both theoretically and through various
simulation results.

Index Terms—outage probability, sum of correlated Log-
normal, importance sampling, mean shifting, covariance matrix
scaling.

I. INTRODUCTION

The outage probability (OP) of the signal-to-interference-

plus-noise ratio (SINR), defined as the probability that the

SINR falls bellow a certain threshold, is an important perfor-

mance metric for wireless communication systems operating

over fading channels. Evaluating the OP, while being of major

practical interest, is not an easy task, the main difficulty

being in the handling of the distribution of the propagation

channels. Several distributions can be assumed, among which

we distinguish the Log-normal distribution which is shown to

exhibit a good fit to realistic propagation channels. It has thus

far been used to model several types of attenuation includ-

ing shadowing [2], large-scale fading in the ultra-wideband

communications [3], and the weak-to-moderate turbulence

channels in free-space optical communications [4]. If the Log-

normal modeling is considered, the computation of the OP
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with co-channel interference turns out to be equivalent to the

problem of evaluating the probability that a sum of correlated

Log-normal random variables (RVs) exceeds a given threshold

[5].

Several works have attempted to analyze this problem but,

to the best of our knowledge, none has successfully provided

a closed-form expression for its probability density function

(PDF). Failing that, several researchers resorted to different

approximation techniques of the sum distribution of correlated

Log-normal RVs. The methods presented in the literature can

be mainly classified into two categories. The first category

includes methods where the Log-normal sum is approximated

by another Log-normal RV. These are essentially the methods

in [6] and in [7] wherein the parameters of the approximate

Log-normal RV are computed using moment matching. In

the same vein, moment matching in the logarithm domain

and moment generating function based approaches have been

derived to determine the parameters of the approximating

distributions in [8] and [9], respectively. The authors in [5]

have further extended the moment matching approach [6] to

problems involving binary weighted sums of correlated Log-

normal variates, by incorporating second order statistics. In-

terested readers are referred to [10] and the references therein

for a more comprehensive list. A second class of techniques

employing non Log-normal approximation densities has been

proposed as well. For instance, a variant of type IV Pearson

distribution has been used to approximate the Log-normal sum

distribution [10]–[12]. In [13], an exponential function in the

Log-normal probability scale has been proposed to approxi-

mate the cumulative distribution function of the sum of Log-

normal variates. Generally, the accuracy of the previously cited

approaches and their related works is not guaranteed for all

scenarios, i.e their accuracy can degrade for a particular choice

of the distribution parameters or for an arbitrary number of

summands. This has clearly been illustrated in [14] where the

authors have shown that an optimal Log-normal approximation

to the sum distribution fails to be accurate in estimating small

probabilities. This range of probabilities corresponds to the

region of operating OP and is, as such, of major practical

interest for many practical systems [15].

On the other hand, it is well-acknowledged that the

framework of rare events simulation can represent a good

efficient solution, especially when ranges of small OP are con-

sidered. While several advances in the development of these

methods have recently been recorded, their popularity among

researchers in wireless communication systems has thus far

remained limited. Surprisingly, after forerunning work in the

1980s and 1990s [16], [17] and references therein, application
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of rare events simulation methods for the purpose of assessing

the performance of wireless communications systems has

taken a back seat until recently [18]–[20], although their par-

ticular adequacy to the estimation of small probabilities make

them all the more suitable to the estimation of operating OP.

This lies behind the major contribution of our work. In particu-

lar, we propose a generalized hybrid importance sampling (IS)

scheme to efficiently estimate the OP in the presence of noise

and interference in a Log-normal environment. The proposed

method belongs to the class of IS-based approaches, which

basically consist in changing the sampling distribution to a new

one satisfying better properties. In our situation, we propose

to select the new sampling distribution by jointly shifting

the mean and scaling the covariance matrix corresponding to

the original multivariate normal distribution. Two interesting

particular cases of the generalized hybrid IS approach are

studied in detail in this paper. The first is only based on scaling

the covariance matrix which finds its root in [21] and was the

subject of the conference version [1]. The second particular

IS scheme is constructed by considering a particular structure

between the shifting and the scaling parameters. We present

a profound analysis of all these approaches. Particularly, we

show that they all satisfy the asymptotic optimality criterion,

a property that is well-used to measure the efficiency of IS

schemes [22]. For the sake of comparison, we study their

performances in terms of the coefficient of variation. As an

interesting outcome of this analysis, we distinguish the regions

wherein only scaling the covariance matrix outperforms the

hybrid approach and vice versa. It is important to note that

contrary to previous works that apply IS techniques for the

purpose of analyzing performances [23], our work is the

first one to take into account the co-channel interference. It

constitutes, in this respect, a first step in promoting the use

of IS techniques for evaluating the performance of wireless

communication systems when operating in realistic scenarios.

The rest of the paper is organized as follows. In Section II,

the system model is described. We review in Section III the

basic concept of IS. In section IV, the generalized hybrid IS

scheme is presented. Moreover, we provide a detailed analysis

of two particular scenarios. Finally, simulations are carried out

in section V comparing the computational efficiency of the IS

schemes with the naive Monte Carlo (MC) approach.

II. SYSTEM MODEL

In a wireless system with N co-channel interferers, the

instantaneous SINR at the desired receiver can be expressed

as:

SINR =
X0

∑N
i=1 Xi + η

(1)

where η is the variance of the additive white Gaussian noise,

X0 is the received power of the useful signal, {Xi}Ni=1 is

the set of received powers of the N interfering signals. The

RVs {Xi}Ni=0 are assumed to be independent and not nec-

essarily identically distributed Log-normal variates. A widely

used performance measure of wireless communication systems

operating over fading channels in the presence of interference

is the OP which is defined as the probability that the SINR

falls bellow a given threshold γth:

α = P (SINR < γth) . (2)

Let Yi = log(Xi) be the associated Gaussian RVs with mean

µi and standard deviation σi, i = 0, 1, ..., N . The quantity α
can then be rewritten as

α = P

(

N
∑

i=0

exp (Zi) > 1/γth

)

(3)

where

Zi =

{

Yi − Y0 i = 1, 2, ..., N

log(η)− Y0 i = 0.
(4)

Hence, we transform the problem of evaluating the OP to

that of computing the probability that a sum of correlated

Log-normal RVs exceeds a certain threshold, i.e. the prob-

ability of the event {∑N
i=0 exp (Zi) > 1/γth}, where vector

Z = (Z0, Z1, ..., ZN )
t

has a joint N+1-dimensional Gaussian

distribution N (µ,Σ) with PDF

f(z) =
exp

(

− 1
2 (z − µ)tΣ−1(z − µ)

)

√

detΣ(2π)N+1
(5)

µ being its mean vector

µ = (log(η)− µ0, µ1 − µ0, µ2 − µ0, ...., µN − µ0)
t

(6)

and Σ its covariance matrix given by

Σ = σ2
0aa

t + diag
[

(

0, σ2
1 , ...., σ

2
N

)t
]

(7)

with a being the vector of all ones and diag [x] denoting the

diagonal matrix whose diagonal elements are the entries of x.

III. IMPORTANCE SAMPLING

Naive MC simulation is the standard technique to estimate

α by

α̂MC =
1

M

M
∑

i=1

H





N
∑

j=0

exp
(

Z
(i)
j

)



 (8)

where {(Z(i)
0 , Z

(i)
1 , ..., Z

(i)
N )t}Mi=1 are independent realizations

of the random vector Z under the PDF f and H(X) is

the indicator function corresponding to the set {X > 1/γth}.

Since for typical wireless communication systems, operating

OP take relatively small values, the use of naive MC sim-

ulation will inevitably require high computational complexity

and thus does not constitute a good option. Variance reduction

algorithms represent, in this respect, good alternatives that

achieve high computational gains over naive MC simulations.

This motivates us to consider in the present work the use

of IS-based simulation approaches for the estimation of the

probability of interest α [24].

Prior to delving into the core of the present work, we

shall first, for the reader convenience, review the concept of

IS. The methodology behind IS is to perform a change of

the probability measure with the aim of achieving a variance

reduction. More clearly, instead of sampling according to f ,
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the idea of IS is to consider a new PDF g according to which

sampling is performed. This can be done by rewriting α as

follows

α = Ef

[

H

(

N
∑

i=0

exp (Zi)

)]

=

∫

H

(

N
∑

i=0

exp (zi)

)

f(z0, ..., zN )dz0...dzN

=

∫

H

(

N
∑

i=0

exp (zi)

)

f(z0, ..., zN )

g(z0, ..., zN )
g(z0, ..., zN )dz0...dzN

= Eg

[

H

(

N
∑

i=0

exp (Zi)

)

L(Z0, ..., ZN )

]

(9)

where Ef [·] and Eg [·] are the expectations under the PDFs

f and g respectively, whereas L(Z0, ..., ZN ) is the likelihood

ratio defined as:

L(Z0, ..., ZN ) =
f(Z0, ..., ZN )

g(Z0, ..., ZN )
. (10)

The IS estimator is thus defined as:

α̂IS =
1

M

M
∑

i=1

Tγth

(

Z
(i)
)

where {Z(i) = (Z
(i)
0 , Z

(i)
1 , ..., Z

(i)
N )t}Mi=1 are independent

realizations of the random vector Z under the PDF g and

Tγth
(Z) is given by:

Tγth
(Z) = H

(

N
∑

i=0

exp (Zi)

)

L(Z0, ..., ZN ). (11)

The crucial step of IS lies in the choice of an appropriate

PDF g that results in a substantial variance reduction. In

fact, a good choice of the PDF g should emphasize the

generation of important samples, i.e. samples belonging to the

set {∑N
i=0 exp (Zi) > 1/γth} for a sufficiently small threshold

γth. Ensuring that these important realizations are frequently

sampled is likely to lead to a reduction in the variance of the

IS estimator 1.

To measure the goodness of an IS scheme, many per-

formance measures have been used in the literature [22].

Among the most used metrics, we distinguish the asymptotic

optimality which holds when:

lim
γth→0

log
(

Eg

[

T 2
γth

(Z)
])

log (α)
= 2. (12)

Note that this limit cannot be made larger since:

Eg

[

T 2
γth

(Z)
]

≥ α2 (13)

and thus applying the logarithm on both sides and using the

fact that log (α) < 0, we get:

log
(

Eg

[

T 2
γth

(Z)
])

log (α)
≤ 2. (14)

1A reduction in the variance of the IS estimator can be guaranteed if the
boundaries of the event are known. However, most often the boundaries of
the event are not known, see [25], [26].

The asymptotic optimality reveals two interesting feature.

From (12), we easily observe that when α2 → 0 at an

exponential rate, the second moment goes also to zero with

the same exponential rate. This represents the best rate that the

second moment can achieve as per (14). Moreover, it can be

easily shown that whenever the asymptotic optimality holds,

the number of simulation runs M needed to ensure a fixed

accuracy requirement satisfies M = o(α−ǫ) for all ǫ > 0, see

[20]. This has to be compared with the naive MC approach

which requires a number of simulation runs of the order of

α−1 in order to meet the same accuracy requirement.

IV. GENERALIZED HYBRID IS SCHEME

The main reason behind the failure of the naive MC

approach inheres in its inability to generate a sufficient number

of samples in the set {∑N
i=0 exp (Zi) > 1/γth} when γth is

sufficiently small. In order to overcome such a problem, we

propose a generalized hybrid IS scheme that consists in both

shifting the mean vector µ by the vector θ1a and inflating

the covariance matrix Σ by a factor 1
1−θ2

, where θ1 ≥ 0 and

0 ≤ θ2 < 1. More precisely, the IS PDF g used in the proposed

generalized hybrid approach is a multivariate Gaussian PDF

with a shifted mean µ + θ1a and a scaled covariance matrix

Σ/(1− θ2):

g(z) =
exp

(

− 1−θ2
2 (z − (µ++θ1a))

tΣ−1(z − (µ+ θ1a))
)

√

det (Σ/(1− θ2))(2π)N+1

, gθ1,θ2(z). (15)

The Scalars θ1 and θ2 should be selected in such a way

that when γth → 0 the entries of the new mean vector and

covariance matrix go to infinity. In doing so, we encour-

age the sampling of big values of the RVs Z0, Z1, ..., ZN ,

which leads to an increase in the probability of the event

{∑N
i=0 exp (Zi) > 1/γth} under the IS distribution gθ1,θ2 .

More precisely, by shifting the mean vector and inflating the

covariance matrix, we turn the rare event {∑N
i=0 exp (Zi) >

1/γth} into a non-rare one presenting a higher number of

occurrences. This is particularly obtained by imposing that

θ1 → ∞ and θ2 → 1 as γth → 0.

The likelihood ratio (10) corresponding to the generalized

hybrid IS approach is given through a simple computation as

follows:

L(Z0, Z1, ..., ZN ) =
exp

(

− θ2
2 (Z− µ)tΣ−1(Z− µ)

)

(1− θ2)(N+1)/2

× exp

(

(1− θ2) θ
2
1

2
a
t
Σ

−1
a− (1− θ2) θ1 (Z− µ)

t
Σ

−1
a

)

.

(16)

The generalized hybrid IS approach defines a whole class of

IS schemes associated with different settings of the parameters

θ1 and θ2. In particular, the IS obtained by only scaling the

covariance matrix is given by setting θ1 to 0. This method will

be referred to as CMS-based approach and a proper way of

selecting the parameter θ1 will be provided. When θ1 and θ2
are different from zero, the analysis of the resulting scheme

becomes more difficult. For the sake of simplicity, we consider

only the case in which θ1 = 1
1−θ2

. Note that the purpose of this
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choice is to facilitate the analysis of the generalized hybrid IS

approach. The resulting IS scheme will be termed the mean

shift- covariance matrix scaling (MS-CMS) IS approach. In

the sequel, we establish the asymptotic optimality of the CMS

and MS-CMS based techniques and carry out an asymptotic

analysis.

Remark 1. It is worth mentioning that setting θ2 = 0 yields

a mean shift IS approach. Such an approach has been recently

proposed in [27] to deal with the efficient simulation of the

left-tail of the sum of correlated Log-normal RVs, i.e. the

probability that a sum of correlated Log-normal RVs falls

below a sufficiently small threshold. However, in the present

work where we are interested in the efficient simulation of

the probability that a sum of correlated Log-normal variates

exceeds a sufficiently large threshold, we can easily prove that

the mean shift technique is not efficient in the sense that it does

not achieve the asymptotic optimality property (12).

To make a comparison between the CMS and MS-CMS

based techniques, we propose to derive their asymptotic coef-

ficient of variations. To this end, the following Lemma which

provides a closed-form expression for the second moment of

the RV Tγth
(Z) will be very useful. Note that this Lemma can

be used for both schemes as it applies for any given θ1 ≥ 0
and 0 ≤ θ2 < 1.

Lemma 1. The second moment of Tγth
(Z) satisfies:

Egθ1,θ2

[

T 2
γth

(Z)
]

=
(

1− θ22
)−N+1

2 exp

(

θ21 (1− θ2)

1 + θ2
a
t
Σ

−1
a

)

× Pθ1,θ2

(

N
∑

i=0

exp (Zi) >
1

γth

)

(17)

where Pθ1,θ2 (·) is the probability measure under which

the random vector Z follows a multivariate Normal

N
(

µ− (1−θ2)θ1
1+θ2

a, Σ

1+θ2

)

.

Proof: See Appendix A.

With this Lemma at hand, we are now ready to analyze the

performances of CMS and MS-CMS based schemes.

A. CMS IS Based Approach

Herein, we consider the case in which θ1 = 0 and θ2 = θ.

This corresponds to the IS scheme where we only scale the

covariance matrix Σ by 1
1−θ . Its corresponding IS PDF g0,θ(·)

in (15) will be denoted by gθ(·). Recall that θ satisfy 0 ≤ θ <
1 and should tend to 1 as γth goes to zero. From (16), the

likelihood ratio associated with the CMS technique is

L(Z0, Z1, ..., ZN ) =
exp

(

− θ
2 (Z− µ)tΣ−1(Z− µ)

)

(1− θ)(N+1)/2
. (18)

From now on, to ease the notations, the RV Tγth
(Z)

obtained by the CMS approach is denoted by Tγth,CMS,θ(Z),
while its corresponding IS estimator is denoted by α̂IS,CMS,θ.

It was shown in [21] that the CMS approach achieves the

asymptotic optimality property (12) if θ is selected in such

way that:

(1− θ)
−1

= o
(

exp(p log(1/γth)
2)
)

, for all p > 0. γth → 0.
(19)

While the above relation ensures asymptotic optimality, it

does not tell how this parameter should be selected in practice.

To answer this question, the authors of [21] establish that the

root of the following non linear equation, which we denote

here by θ̃

Eg
θ̃

[

N
∑

i=0

exp (Zi)

]

=
N
∑

i=0

exp

(

µi +
Σii

2(1− θ̃)

)

= 1/γth.

(20)

satisfy (19) and hence guarantees the asymptotic optimality of

the resulting estimator.

In order to avoid the high complexity required to solve

the previous non-linear equation, we propose in the sequel a

more simplified approach that directly minimizes the asymp-

totic variance or equivalently the second moment of the IS

estimator. In fact, it was proved in [21] that the second moment

of Tγth,CMS,θ(Z) satisfies when θ → 1 as γth → 0:

Egθ

[

T 2
γth,CMS,θ(Z)

]

= Θ
(

(

1− θ2
)−(N+1)/2

log(1/γth)

× exp

(

− (log(1/γth)− µ)2(1 + θ)

2σ2

)

)

(21)

where σ2 = max
k

Σkk, µ = max
k;Σkk=σ2

µk, and f = Θ(g)

means that f = O (g) and g = O (f). Thus, we select θ̂ to

be the value that minimizes the previous right hand side term.

Through a simple computation, a closed-form expression of

the minimizer is obtained as follows

θ̂ =
−1 +

√
1 + 4c2

2c
(22)

where c = (log(1/γth)−µ)2/2(N+1)σ2. It is worth noticing

that this choice also guarantees the asymptotic optimality

property. As a matter of fact, the value of θ̂ satisfies the

following relation

(1− θ̂)−1 ∼
γth→0

(log(1/γth))
2

σ2(N + 1)
(23)

and hence (19) is satisfied.

In the following theorem, we provide asymptotic equivalents

for the squared coefficient of variation 2 associated with the

estimators Tγth,CMS,θ̃(Z) and Tγth,CMS,θ̂(Z).

Theorem 1. The estimators Tγth,CMS,θ̃(Z) and

Tγth,CMS,θ̂(Z) satisfy respectively:

varg
θ̃

[

Tγth,CMS,θ̃(Z)
]

α2
= Θ

(

(

1

γth

)
1
4

log

(

1

γth

)
N+1

2
+1
)

(24)

and

varg
θ̂

[

Tγth,CMS,θ̂(Z)
]

α2
= Θ

(

log

(

1

γth

)N+2
)

. (25)

2The coefficient of variation is sometimes called relative error in some
references related to rare event simulations, see for instance [22].
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Proof: See Appendix B.

Theorem 1 provides the coefficient of variation associated

with both settings of θ. As will be elaborated on later, this

could serve to indicate the order of the number simulation

runs needed by the estimator to ensure a fixed accuracy re-

quirement. In fact, it suffices to select a number of samples that

is proportional to the squared coefficient of variation. In par-

ticular, the number of simulation runs should be proportional

to ( 1
γth

)
1
4 log( 1

γth
)

N+1

2
+1 when θ = θ̃ and to log( 1

γth
)N+2

when θ = θ̂. Recalling that the naive MC requires a number

of simulation runs of the order of log( 1
γth

) exp(
(log( 1

γth
)−µ)2

2σ2 ).
Thus, we clearly expect the CMS approach using both settings

of θ to yield a substantial computational gain over naive MC

simulations.

For the reader convenience, a pseudo-code describing all

steps to estimate α via the proposed CMS IS-based approach

is as follows:

Algorithm 1 CMS IS-based Approach Algorithm

Inputs: M , γth, µ, Σ.

Outputs: α̂IS,CMS,θ.

Evaluate θ from (20) or from (22).

for i = 1, ...,M do

Generate a realization of
(

Z
(i)
0 , Z

(i)
1 , ..., Z

(i)
N

)t

from

N (µ,Σ/1− θ)).
Evaluate Tγth,CMS,θ(Z

(i)).
end for

Compute the IS estimator as α̂IS,CMS,θ =

1
M

M
∑

i=1

Tγth,CMS,θ(Z
(i)).

B. MS-CMS IS Approach

This part is devoted to the analysis of the MS-CMS ap-

proach wherein the shifting and the scaling parameter are

related as θ1 = 1
1−θ2

and θ2 = θ with 0 ≤ θ < 1. The

reason behind using such a particular setting is to simplify the

analysis and hence the asymptotic optimality property. The

IS PDF corresponding to this scheme is N
(

µ+ a

1−θ ,
Σ

(1−θ)

)

which is given in (15) and will be denoted again by gθ(·).
Recall also that the value of θ should be chosen such that it

goes to 1 as γth goes to 0. From (16), the likelihood ratio

following this MS-CMS IS approach is given as follows:

L(Z0, ..., ZN )

=
exp

(

− θ
2 (Z− µ)tΣ−1(Z− µ)− (Z− µ)tΣ−1

a
)

(1− θ)
N+1

2

× exp

(

a
tΣ−1

a

2(1− θ)

)

. (26)

In the MS-CMS scheme, the RV Tγth
(Z) is denoted by

Tγth,MS−CMS,θ and its corresponding IS estimator is denoted

by α̂IS,MS−CMS,θ. Applying Lemma 1, we can derive an

asymptotic expression of the second moment of the RV

Tγth,MS−CMS,θ(Z). We obtain the following result:

Proposition 1. Assume that θ is selected such that θ → 1
as γth → 0. Then, the second moment of Tγth,MS−CMS,θ(Z)
satisfies the following as γth → 0:

Egθ

[

T 2
γth,MS−CMS,θ(Z)

]

= Θ









exp

(

a
t
Σ

−1
a

1−θ2 − (log( 1
γth

)+ 1
1+θ

−µ)2(1+θ)

2σ2

)

log( 1
γth

)(1− θ2)
N+1

2









. (27)

Proof: See Appendix C.

Selecting θ to be the minimizer of the right-hand side of

(27) does not lead to a compact closed-form expression for θ
and, furthermore, cannot be easily exploited to establish the

asymptotic optimality criterion. On the other hand, one can

easily convince oneself that when θ satisfies (1 − θ)−1 =
o(log(1/γth)

2), the asymptotic optimality criterion (12) holds.

A plausible choice of θ can be thus given by:

θ̄ = 1− σ2

2(log( 1
γth

)− µ)
. (28)

Plugging this value into the result of Proposition 1, we prove

that the squared coefficient of variation of the MS-CMS

estimator is given by:

Theorem 2. The squared coefficient of variation of the esti-

mator Tγth,MS−CMS,θ̄(Z) is given as follows:

vargθ̄
[

Tγth,MS−CMS,θ̄ (Z)
]

α2

= Θ



log

(

1

γth

)
N+1

2
+1(

1

γth

)
1
4
+a

t
Σ

−1
a−1

σ2



 . (29)

Moreover, the asymptotic optimality criterion (12) holds.

Proof: See Appendix D

As it was mentioned in the previous subsection, the co-

efficient of variation helps to select the number of required

simulation runs in order to meet a fixed accuracy requirement.

In fact, Theorem 2 indicates that the number of simulation runs

needed to meet a fixed accuracy could be chosen to be propor-

tional to log( 1
γth

)
N+1

2
+1( 1

γth
)

1
4
+a

t
Σ

−1
a−1

σ2 . Thus, compared to

naive MC simulations, it is clearly obvious that the MS-CMS

IS will achieve a substantial gain over naive MC simulation

in terms of the number of samples that are needed for a fixed

accuracy requirement.

For the reader convenience, a pseudo code of the MS-CMS

IS approach is provided:
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Algorithm 2 MS-CMS IS-based Approach Algorithm

Inputs: M , γth, µ, Σ.

Outputs: α̂IS,MS−CMS,θ.

Evaluate θ from (28).

for i = 1, ...,M do

Generate a realization of
(

Z
(i)
0 , Z

(i)
1 , ..., Z

(i)
N

)t

from

N (µ +
a

1−θ
,Σ/1− θ)).

Evaluate Tγth,MS−CMS,θ(Z
(i)).

end for

Compute the IS estimator as α̂IS,MS−CMS,θ =

1
M

M
∑

i=1

Tγth,MS−CMS,θ(Z
(i)).

C. Comparison

Theorem 1 and Theorem 2 clearly show that asymptotically

the CMS approach with θ = θ̂ should outperform, for very

low values of γth, the CMS approach with θ = θ̃ as well

as the MS-CMS approach. This is because, as γth → 0,

the coefficient of variation associated with the CMS IS-based

approach with θ = θ̂ increases at a lower rate than that of

the CMS approach with θ = θ̃ and the MS-CMS IS approach.

However, it might happen that for moderately low values of

γth, the MS-CMS approach outperforms both CMS based

techniques. Given that we are interested in values of α that

cover the operating range of OP values, say between 10−8 and

10−3, it important, from an engineering perspective, to identify

scenarios in which the MS-CMS approach may overcome the

two versions of the CMS approach and vice versa. A close

look at Theorem 1 and Theorem 2 reveals that the sign of
a

t
Σ

−1
a−1

σ2 and how much it is close to − 1
4 play a central

role in performing this comparison. In fact, in the presence

of noise, the quantity a
t
Σ

−1
a−1

σ2 appearing in Theorem 2 is

equal to
1/σ2

0−1

σ2
0
+max1≤i≤N σ2

i

. Hence, considering a fixed value

of max1≤i≤N σ2
i , it turns out that σ2

0 is the key parameter

for comparing both proposed IS schemes. For the sake of

illustration, we plot in Fig. 1 the quantity a
t
Σ

−1
a−1

σ2
0
+max1≤i≤N σ2

i

as a function of σ0 and for a fixed max1≤i≤N σi = 4 dB.

We point out from this figure that, for a small value of σ0,

i.e. σ0 < 1 (equivalently 4.345 dB), both versions of the CMS

approach will certainly outperform the MS-CMS scheme. This

is because the term a
t
Σ

−1
a−1

σ2
0
+max1≤i≤N σ2

i

is positive in this case.

However, as we increase σ0, which is equivalent to increasing

the fluctuations of the desired user power, the term a
t
Σ

−1
a−1

σ2

becomes negative. In this situation, we expect the MS-CMS

approach to outperform the CMS one. Furthermore, we expect

that the higher gain of the MS-CMS approach would be

obtained when σ0 becomes close to the value minimizing
a

t
Σ

−1
a−1

σ2 . In the next section, all the above statements will

be validated through various simulation results.

V. SIMULATION RESULTS

In this section, we compare by simulations the perfor-

mances of the naive MC approach with the CMS-based

approaches using the two proposed scaling parameters θ̃ and

θ̂ and the MS-CMS IS-based approach. Particularly, we first

4 6 8 10 12
−0.2

−0.1

0

0.1

σ0(dB)

a
t
Σ

−
1
a
−

1

σ
2

Fig. 1. a
t
Σ

−1
a−1

σ2
0
+max1≤i≤N σ2

i

function of σ0 with max1≤i≤N σi = 4 dB.

assess the accuracy of these methods in evaluating the OP of

the SINR in a Log-normal environment. Then, we quantify

and compare their computational efficiency in terms of the

number of simulation runs needed to achieve a given accuracy

requirement. This allows us to identify the region over which

the CMS approaches outperform the MS-CMS and vice versa.

Before introducing our results, we shall first recall for the

reader convenience some performance metrics used to gauge

the efficiency of the proposed methods.

From the use of the central limit theorem, we define the

relative error of naive MC estimator as the relative half-width

confidence interval of the estimator

ǫMC = C

√

α(1− α)√
MMCα

(30)

where C is the confidence constant (in our simulations, it is

chosen to be equal to 1.96 which corresponds to 95% con-

fidence interval), whereas MMC is the number of simulation

runs used in the naive MC simulations. Similarly, the relative

errors of the CMS IS-based approach with θ = θ̃ and θ = θ̂
are respectively:

ǫCMS,θ̃ = C

√

varg
θ̃

[

Tγth,CMS,θ̃(Z)
]

√

MCMS,θ̃α
(31)

and

ǫCMS,θ̂ = C

√

varg
θ̂

[

Tγth,CMS,θ̂(Z)
]

√

MCMS,θ̂α
(32)

where MCMS,θ̃ and MCMS,θ̂ denote their corresponding num-

ber of simulation runs. Finally, we define the relative error

given by the MS-CMS IS-based approach as follows:

ǫMS−CMS,θ̄ = C

√

vargθ̄
[

Tγth,MS−CMS,θ̄(Z)
]

√

MMS−CMS,θ̄α
(33)

where MMS−CMS,θ̄ is the number of simulation runs used by

the MS-CMS approach.
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Fig. 2. Outage Probability with N co-channel interferers with parameters
: µ0 = 10 dB, σ0 = 4 dB. N = 2 (Solid Line): µi = 0 dB, and σi = 4

dB, i = 1, 2. N = 4 (Dashed Line): µi = 0 dB, and σi = 4 dB, i =

1, 2, 3, 4. η = −10 dB, MMC = 107, and M
CMS,θ̃

= M
CMS,θ̂

=

MMS−CMS,θ̄ = 5× 105.

In a first experiment, we consider the estimation of the OP

of the SINR using N co-channel interferers. The parameters

of the desired user power are µ0 = 10 dB and σ0 = 4
dB. The co-channel interferers’ power are independent and

identically distributed variates with parameters µi = 0 dB

and σi = 4 dB, i = 1, ..., N . Fig. 2 reports the OP with

respect of the threshold γth when the number of co-channel

interferers takes the values N = 2 (solid line) and N = 4
(dashed line). It is worth mentioning that the range of the

threshold values used in all the below simulation results is

chosen such that OP covers the operating range of OP values,

say between 10−8 and 10−3. The number of simulation runs

used by naive MC simulations is MMC = 107 whereas

MCMS,θ̃ = MCMS,θ̂ = MMS−CMS,θ̄ = 5× 105 samples are

employed for the three proposed IS schemes. From this figure,

we easily point out the limitation of naive MC simulations.

In fact, for both choices of N , we observe that it ensures

a good accuracy as long as the OP is greater than 10−5.

Then, as we decrease the value of γth, it either exhibit an

oscillatory behavior or lead to erroneous estimates of the

OP equal to zero. This shows that more than 107 would be

required by naive MC simulations to read an acceptable level

of accuracies for very small OP. On the other hand, the two

proposed CMS approaches as well as the MS-CMS scheme

yield very accurate results using only 5×105 simulation runs.

This goes in favor towards the performance of the three IS

approaches compared to naive MC simulations. We further

our analysis by studying the efficiency of the three proposed

IS schemes with respect to naive MC simulations in terms

of the number of samples needed to ensure a fixed accuracy

requirement. To this end, we set an accuracy requirement

ǫMC = ǫCMS,θ̃ = ǫCMS,θ̂ = ǫMS−CMS,θ̄ = 5%, and we plot

in Fig. 3 the number of samples MMC , MCMS,θ̃, MCMS,θ̂,

and MMS−CMS,θ̄ needed to ensure this accuracy level as a

function of γth (N = 2 with solid line and N = 4 with

dashed line). This figure reveals that, for both values of N ,
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R
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CMS IS Scheme: θ = θ̃

CMS IS Scheme: θ = θ̂

MS-CMS IS Scheme: θ = θ̄

Fig. 3. Number of required simulation runs for 5% relative error with
parameters : µ0 = 10 dB, σ0 = 4 dB. N = 2 (Solid Line): µi = 0

dB, and σi = 4 dB, i = 1, 2. N = 4 (Dashed Line): µi = 0 dB, and σi = 4

dB, i = 1, 2, 3, 4. η = −10 dB.

the proposed IS schemes save a substantial number of samples

compared to naive MC simulation while ensuring the same

level of accuracy. Particularly, it is clear from this figure that

the number of samples required by naive MC simulations

increases at an exponential rate as we decrease the threshold

γth, whereas the proposed IS approaches require the number

of samples to increase at a slower rate. More precisely, the

efficiency of the proposed IS approaches is increasing as we

decrease the threshold. This is illustrated in Fig. 3 where, for

95% accuracy and N = 4, the naive MC simulation requires

approximately 2×106 (respectively 2×1011) samples, whereas

the two versions of the CMS IS approach need approximately

1.3× 105 (respectively 106) simulation runs when γth = −12
dB (respectively γth = −24 dB).

Fig. 3 reveals also that the CMS IS schemes with θ =
θ̃ and θ = θ̂ achieve approximately the same computational

efficiency. This in particular suggests working with the closed-

form expression of θ̂ in (22) in lieu of θ̃ requiring to solve the

involved non-linear equation in (20). Furthermore, it is worth

mentioning that, in this experiment, both versions of the CMS

IS approach outperform the MS-CMS IS scheme. For instance

when N = 4 and in the considered range of γth, the MS-

CMS approach requires approximately twice the number of

samples needed by the two versions of the CMS approach to

meet the same accuracy. This result is quite expected from

the analysis of the coefficient of variations in Theorem 1 and

Theorem 2 as well as the result shown in Fig. 1. One can

easily check that under the considered set of parameters, the

quantity a
t
Σ

−1
a−1

σ2 appearing in Theorem 2 is positive and

equal approximately to 0.1. Thus, the coefficient of variation

of the MS-CMS approach is worse than the one given by the

CMS IS approach with θ = θ̃.

As illustrated in Fig. 1, the MS-CMS approach can outper-

form the CMS approaches for sufficiently high values of σ0.

To validate this claim, we consider in a second experiment

the same set of parameters as before but with σ0 = 5 dB.

Fig. 4 reports the OP as a function of the threshold γth for
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CMS,θ̂

=

MMS−CMS,θ̄ = 5× 105.

different number of co-channel interferers (N = 2 with solid

line and N = 4 with dashed line). Similarly to the previous

experiment, the three proposed IS schemes yield very accurate

results compared to naive MC simulation using less number

of samples. In Fig. 5, we quantify the number of simulation
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Fig. 5. Number of required simulation runs for 5% relative error with
parameters : µ0 = 10 dB, σ0 = 5 dB. N = 2 (Solid Line): µi = 0

dB, and σi = 4 dB, i = 1, 2. N = 4 (Dashed Line): µi = 0 dB, and σi = 4

dB, i = 1, 2, 3, 4. η = −10 dB.

runs needed by the three proposed IS approaches as well as

the naive MC simulation to meet a fixed accuracy requirement.

Again, the efficiency of the proposed IS schemes over naive

MC simulations is clearly established. As seen, when N = 4
and in order to meet 5% relative error, about 1.3 × 106 (re-

spectively 1011) samples are needed by naive MC simulation,

whereas only about 8.5×104 (respectively 3×105) simulation

runs are required by the MS-CMS IS scheme when γth = −14
dB (respectively γth = −28 dB). Moreover, contrary to

the previous results shown in Fig. 3, we note that the MS-

CMS approach is more efficient requiring less simulation runs

than the two versions of the CMS approach. When N = 4,

the MS-CMS approach requires three times (respectively 1.5
times) less simulation runs than the two version of the CMS

approaches when γth = −28 dB (respectively γth = −14
dB). As it was already mentioned, this result is expected

since the quantity a
t
Σ

−1
a−1

σ2 is equal in this case to −0.11
approximately, and thus the coefficient of variation of the MS-

CMS technique is approximately Θ(log( 1
γth

)
N+1

2
+1( 1

γth
)0.14),

whereas the one given by the CMS approach with θ = θ̃ is

Θ(log( 1
γth

)
N+1

2
+1( 1

γth
)0.25).
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Fig. 6. Outage Probability with N co-channel interferers with parameters
: µ0 = 10 dB, σ0 = 6 dB. N = 2 (Solid Line): µi = 0 dB, and σi = 4

dB, i = 1, 2. N = 4 (Dashed Line): µi = 0 dB, and σi = 4 dB, i =

1, 2, 3, 4. η = −10 dB, MMC = 107, and M
CMS,θ̃

= M
CMS,θ̂

=

MMS−CMS,θ̄ = 5× 105.

To further investigate the role played by the term a
t
Σ

−1
a−1

σ2

in the efficiency of the MS-CMS approach, we further in-

crease σ0 and set it to 6 dB. With this set of parameters,

the quantity a
t
Σ

−1
a−1

σ2 is approximately −0.17 and hence

the coefficient of variation of the MS-CMS approach is

Θ(log( 1
γth

)
N+1

2
+1( 1

γth
)0.08). We thus expect the MS-CMS

approach to exhibit a higher gain than the CMS based tech-

niques. We plot again in Fig. 6 the OP as a function of

γth. The same conclusions are drawn as in the first and

the second experiments. The high accuracy of the proposed

IS approaches compared to naive MC simulations is clearly

evident using less number of simulation runs. In Fig. 7, we

compare the performance of the IS schemes and naive MC

simulation in terms of number of samples required to meet a

fixed accuracy level. Again all of the proposed IS approaches

results in a substantial computational gain over naive MC

simulations and the gain is increasing as we decrease the

threshold γth. For instance, for N = 4, the MS-CMS approach

requires approximately 16 (respectively 2 × 105) times less

simulation runs than the naive MC approach when γth = −16
dB (respectively γth = −32 dB). Moreover, as expected, the

MS-CMS approach outperforms the two version of the CMS

methods and the gain is higher than the one in the second

experiment.
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dB, i = 1, 2, 3, 4. η = −10 dB.

VI. CONCLUSION

In this work, we proposed an efficient hybrid IS approach

based on a combination of a mean shifting and a covariance

matrix scaling techniques to estimate the OP of the SINR

over Log-normal fading channels. Our approach hinges on

the observation that the estimation of the OP is equivalent

to computing the probability that a sum of correlated Log-

normal variates exceeds a given threshold, thereby carrying the

considered problem into the standard framework of variance

reduction techniques. Two particular cases of the hybrid IS

scheme were considered, namely; the CMS and the MS-

CMS approaches. We furthered our analysis by providing

asymptotic expressions of coefficient of variations given by

these two schemes. Moreover, we showed that they achieve the

asymptotic optimality property. Furthermore, we identified the

regions where the CMS approach outperforms the MS-CMS

method and vice versa.
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APPENDIX A

PROOF OF LEMMA 1

The second moment of Tγth
(Z) is:

Egθ1,θ2

[

T 2
γth

(Z)
]

= Ef [Tγth
(Z)]

=

∫

{
∑

N
i=0

exp(zi)>
1

γth
}

L(z0, ..., zN )f(z0, ..., zn)dz0...dzN .

(34)

Upon putting the expression of the likelihood ratio (16) into

(34), we get

Egθ1,θ2

[

T 2
γth

(Z)
]

=
exp

(

(1−θ2)θ
2
1

2 a
tΣ−1

a+ (1− θ2)θ1µ
tΣ−1

a

)

(1− θ22)
N+1

2

√

det(Σ)(2π)N+1

×
∫

{
∑

N
i=0

exp(zi)>
1

γth
}

exp

(

−1 + θ2
2

(z − µ)tΣ−1(z − µ)

)

× exp
(

−(1− θ2)θ1a
t
Σ

−1
a
)

dz0...dzN

=
exp

(

(1−θ2)θ
2
1

2 a
tΣ−1

a+ (1− θ2)θ1µ
tΣ−1

a

)

(1− θ22)
N+1

2

√

det(Σ)(2π)N+1

×
∫

{
N
∑

i=0

exp(zi)>
1

γth
}

exp

(

−1 + θ2
2

(z − µ1)
t
Σ

−1(z − µ1)

)

× exp

(

−1 + θ2
2

[

µ
t
Σ

−1
µ− µ1

t
Σ

−1
µ1

]

)

dz0...dzN

(35)

where µ1 = µ− (1−θ2)θ1
1+θ2

a. After a straightforward computa-

tion, it follows that:

Egθ1,θ2

[

T 2
γth

(Z)
]

=
(

1− θ22
)−N+1

2 exp

(

(1− θ2)θ
2
1

2
a
t
Σ

−1
a

)

× exp

(

(1− θ2)
2θ21

2(1 + θ2)
a
t
Σ

−1
a

)

× Pθ1,θ2

(

N
∑

i=0

exp (Zi) >
1

γth

)

=
(

1− θ22
)−N+1

2 exp

(

(1− θ2)θ
2
1

1 + θ2
a
t
Σ

−1
a

)

× Pθ1,θ2

(

N
∑

i=0

exp (Zi) >
1

γth

)

(36)

where Pθ1,θ2 (·) is the probability measure under which the

random vector Z follows a multivariate normal with mean

vector µ1 and covariance matrix Σ

1+θ2
.

APPENDIX B

PROOF OF THEOREM 1

The result in (24) was proven in [21]. As for the second

part of the proof, we start by plugging the value of θ̂ in (22)

into the asymptotic expression in (21). In doing so, we obtain:

Eg
θ̂

[

T 2
γth,CMS,θ̂

(Z)
]

= Θ
(

(

1− θ̂
)−(N+1)/2

log(1/γth)

× exp

(

− (log(1/γth)− µ)2(1 + θ̂)

2σ2

)

)

. (37)

Now, using (23) and the fact that

1 + θ̂ = 2− (N + 1)σ2

(

log
(

1
γth

)

− µ
)2 + o







1
(

log
(

1
γth

)

− µ
)2







(38)

the expression in (37) becomes

Eg
θ̂

[

T 2
γth,CMS,θ̂

(Z)
]

=Θ
(

log

(

1

γth

)N

exp






−

(

log
(

1
γth

)

− µ
)2

σ2







)

.

(39)

On the other hand, the probability of interest α satisfies [28]:

α ∼ σ
√
2π
(

log
(

1
γth

)

− µ
) exp






−

(

log
(

1
γth

)

− µ
)2

2σ2






.

(40)

Finally, by combining the previous asymptotic expression

together with (39), we conclude the proof.

APPENDIX C

PROOF OF PROPOSITION 1

Replacing θ2 by θ and θ1 by 1
1−θ2

in the result of Lemma

1, it follows that:

Egθ

[

T 2
γth,MS−CMS,θ(Z)

]

=
(

1− θ2
)−N+1

2

× exp

(

a
tΣ−1

a

1− θ2

)

Pθ





N
∑

i=0

exp (Zi) >
exp

(

1
1+θ

)

γth





(41)

where Pθ(·) is the probability measure under which the

random vector Z is a multivariate normal with mean vector µ

and covariance matrix Σ

1+θ . Given that θ → 1 as γth → 0, we
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have, using the result in [21], that

Pθ





N
∑

i=0

exp (Zi) >
exp

(

1
1+θ

)

γth





∼
sσ exp

(

−
(

log
(

1
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)

+ 1
1+θ
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)

2

(1+θ)

2σ2

)

√

2π (1 + θ)
(

log
(

1
γth

)

+ 1
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)
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exp

(
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(

log
(

1
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)
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1+θ

−µ
)

2

(1+θ)

2σ2

)

log
(

1
γth

)













. (42)

Hence, by combining the previous result in (41), we conclude

the proof.

APPENDIX D

PROOF OF THEOREM 2

Using Proposition 1 and the value of θ̄ in (28), we get after

straightforward computations that:

Egθ̄

[

T 2
γth,MS−CMS,θ̄(Z)

]

= Θ
(

log

(

1

γth

)
N+1

2
−1(

1
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)
1
4

× exp
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(

log
(

1
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)
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)2

σ2







× exp







(

a
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)
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log
(

1
γth

)

− µ
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(

1
γth

)
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)
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)
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(
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(

1
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2
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1
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)
1
4
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(

log
(
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× exp

(

a
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σ2

(

log

(

1
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)

− µ
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)

. (43)

Now, using the asymptotic expression in (40), it follows that

vargθ̄
[

Tγth,MS−CMS,θ̄(Z)
]

α2

=Θ



log

(

1

γth

)
N+1

2
+1(

1

γth

)
1
4
+a

t
Σ

−1
a−1

σ2



 (44)

which conclude the first part of the proof. It remains thus to

establish the asymptotic optimality property. Recall that this

property holds if
varg

θ̄
[Tγth,MS−CMS,θ̄(Z)]

α2−ǫ → 0 for all ǫ > 0.

[20]. To estbalish this, we shall exploit (44) and 40. We thus

have for any ǫ > 0:

vargθ̄
[

Tγth,MS−CMS,θ̄(Z)
]

α2−ǫ

= Θ
(

log

(

1

γth

)
N+1

2
+1−ǫ(

1

γth

)
1
4
+a

t
Σ

−1
a−1

σ2

× exp

(

− ǫ

2σ2

(

log

(

1

γth

)

− µ

)2
)

)

(45)

which goes to 0 as γth goes to 0 for all ǫ > 0. Hence the MS-

CMS IS-based approach estimate α asymptotically optimal.
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Télécommunications (ENST)]. From June 2010 to April 2012, she has been
a Postdoctoral Researcher in the TSI Department, Télécom Paris Tech. Then
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